Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 | // SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2024, NVIDIA CORPORATION & AFFILIATES. All rights reserved */ #include <linux/sizes.h> #include <linux/vfio_pci_core.h> /* * The device memory usable to the workloads running in the VM is cached * and showcased as a 64b device BAR (comprising of BAR4 and BAR5 region) * to the VM and is represented as usemem. * Moreover, the VM GPU device driver needs a non-cacheable region to * support the MIG feature. This region is also exposed as a 64b BAR * (comprising of BAR2 and BAR3 region) and represented as resmem. */ #define RESMEM_REGION_INDEX VFIO_PCI_BAR2_REGION_INDEX #define USEMEM_REGION_INDEX VFIO_PCI_BAR4_REGION_INDEX /* Memory size expected as non cached and reserved by the VM driver */ #define RESMEM_SIZE SZ_1G /* A hardwired and constant ABI value between the GPU FW and VFIO driver. */ #define MEMBLK_SIZE SZ_512M /* * The state of the two device memory region - resmem and usemem - is * saved as struct mem_region. */ struct mem_region { phys_addr_t memphys; /* Base physical address of the region */ size_t memlength; /* Region size */ size_t bar_size; /* Reported region BAR size */ __le64 bar_val; /* Emulated BAR offset registers */ union { void *memaddr; void __iomem *ioaddr; }; /* Base virtual address of the region */ }; struct nvgrace_gpu_pci_core_device { struct vfio_pci_core_device core_device; /* Cached and usable memory for the VM. */ struct mem_region usemem; /* Non cached memory carved out from the end of device memory */ struct mem_region resmem; /* Lock to control device memory kernel mapping */ struct mutex remap_lock; }; static void nvgrace_gpu_init_fake_bar_emu_regs(struct vfio_device *core_vdev) { struct nvgrace_gpu_pci_core_device *nvdev = container_of(core_vdev, struct nvgrace_gpu_pci_core_device, core_device.vdev); nvdev->resmem.bar_val = 0; nvdev->usemem.bar_val = 0; } /* Choose the structure corresponding to the fake BAR with a given index. */ static struct mem_region * nvgrace_gpu_memregion(int index, struct nvgrace_gpu_pci_core_device *nvdev) { if (index == USEMEM_REGION_INDEX) return &nvdev->usemem; if (index == RESMEM_REGION_INDEX) return &nvdev->resmem; return NULL; } static int nvgrace_gpu_open_device(struct vfio_device *core_vdev) { struct vfio_pci_core_device *vdev = container_of(core_vdev, struct vfio_pci_core_device, vdev); struct nvgrace_gpu_pci_core_device *nvdev = container_of(core_vdev, struct nvgrace_gpu_pci_core_device, core_device.vdev); int ret; ret = vfio_pci_core_enable(vdev); if (ret) return ret; if (nvdev->usemem.memlength) { nvgrace_gpu_init_fake_bar_emu_regs(core_vdev); mutex_init(&nvdev->remap_lock); } vfio_pci_core_finish_enable(vdev); return 0; } static void nvgrace_gpu_close_device(struct vfio_device *core_vdev) { struct nvgrace_gpu_pci_core_device *nvdev = container_of(core_vdev, struct nvgrace_gpu_pci_core_device, core_device.vdev); /* Unmap the mapping to the device memory cached region */ if (nvdev->usemem.memaddr) { memunmap(nvdev->usemem.memaddr); nvdev->usemem.memaddr = NULL; } /* Unmap the mapping to the device memory non-cached region */ if (nvdev->resmem.ioaddr) { iounmap(nvdev->resmem.ioaddr); nvdev->resmem.ioaddr = NULL; } mutex_destroy(&nvdev->remap_lock); vfio_pci_core_close_device(core_vdev); } static int nvgrace_gpu_mmap(struct vfio_device *core_vdev, struct vm_area_struct *vma) { struct nvgrace_gpu_pci_core_device *nvdev = container_of(core_vdev, struct nvgrace_gpu_pci_core_device, core_device.vdev); struct mem_region *memregion; unsigned long start_pfn; u64 req_len, pgoff, end; unsigned int index; int ret = 0; index = vma->vm_pgoff >> (VFIO_PCI_OFFSET_SHIFT - PAGE_SHIFT); memregion = nvgrace_gpu_memregion(index, nvdev); if (!memregion) return vfio_pci_core_mmap(core_vdev, vma); /* * Request to mmap the BAR. Map to the CPU accessible memory on the * GPU using the memory information gathered from the system ACPI * tables. */ pgoff = vma->vm_pgoff & ((1U << (VFIO_PCI_OFFSET_SHIFT - PAGE_SHIFT)) - 1); if (check_sub_overflow(vma->vm_end, vma->vm_start, &req_len) || check_add_overflow(PHYS_PFN(memregion->memphys), pgoff, &start_pfn) || check_add_overflow(PFN_PHYS(pgoff), req_len, &end)) return -EOVERFLOW; /* * Check that the mapping request does not go beyond available device * memory size */ if (end > memregion->memlength) return -EINVAL; /* * The carved out region of the device memory needs the NORMAL_NC * property. Communicate as such to the hypervisor. */ if (index == RESMEM_REGION_INDEX) { /* * The nvgrace-gpu module has no issues with uncontained * failures on NORMAL_NC accesses. VM_ALLOW_ANY_UNCACHED is * set to communicate to the KVM to S2 map as NORMAL_NC. * This opens up guest usage of NORMAL_NC for this mapping. */ vm_flags_set(vma, VM_ALLOW_ANY_UNCACHED); vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot); } /* * Perform a PFN map to the memory and back the device BAR by the * GPU memory. * * The available GPU memory size may not be power-of-2 aligned. The * remainder is only backed by vfio_device_ops read/write handlers. * * During device reset, the GPU is safely disconnected to the CPU * and access to the BAR will be immediately returned preventing * machine check. */ ret = remap_pfn_range(vma, vma->vm_start, start_pfn, req_len, vma->vm_page_prot); if (ret) return ret; vma->vm_pgoff = start_pfn; return 0; } static long nvgrace_gpu_ioctl_get_region_info(struct vfio_device *core_vdev, unsigned long arg) { struct nvgrace_gpu_pci_core_device *nvdev = container_of(core_vdev, struct nvgrace_gpu_pci_core_device, core_device.vdev); unsigned long minsz = offsetofend(struct vfio_region_info, offset); struct vfio_info_cap caps = { .buf = NULL, .size = 0 }; struct vfio_region_info_cap_sparse_mmap *sparse; struct vfio_region_info info; struct mem_region *memregion; u32 size; int ret; if (copy_from_user(&info, (void __user *)arg, minsz)) return -EFAULT; if (info.argsz < minsz) return -EINVAL; /* * Request to determine the BAR region information. Send the * GPU memory information. */ memregion = nvgrace_gpu_memregion(info.index, nvdev); if (!memregion) return vfio_pci_core_ioctl(core_vdev, VFIO_DEVICE_GET_REGION_INFO, arg); size = struct_size(sparse, areas, 1); /* * Setup for sparse mapping for the device memory. Only the * available device memory on the hardware is shown as a * mappable region. */ sparse = kzalloc(size, GFP_KERNEL); if (!sparse) return -ENOMEM; sparse->nr_areas = 1; sparse->areas[0].offset = 0; sparse->areas[0].size = memregion->memlength; sparse->header.id = VFIO_REGION_INFO_CAP_SPARSE_MMAP; sparse->header.version = 1; ret = vfio_info_add_capability(&caps, &sparse->header, size); kfree(sparse); if (ret) return ret; info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index); /* * The region memory size may not be power-of-2 aligned. * Given that the memory as a BAR and may not be * aligned, roundup to the next power-of-2. */ info.size = memregion->bar_size; info.flags = VFIO_REGION_INFO_FLAG_READ | VFIO_REGION_INFO_FLAG_WRITE | VFIO_REGION_INFO_FLAG_MMAP; if (caps.size) { info.flags |= VFIO_REGION_INFO_FLAG_CAPS; if (info.argsz < sizeof(info) + caps.size) { info.argsz = sizeof(info) + caps.size; info.cap_offset = 0; } else { vfio_info_cap_shift(&caps, sizeof(info)); if (copy_to_user((void __user *)arg + sizeof(info), caps.buf, caps.size)) { kfree(caps.buf); return -EFAULT; } info.cap_offset = sizeof(info); } kfree(caps.buf); } return copy_to_user((void __user *)arg, &info, minsz) ? -EFAULT : 0; } static long nvgrace_gpu_ioctl(struct vfio_device *core_vdev, unsigned int cmd, unsigned long arg) { switch (cmd) { case VFIO_DEVICE_GET_REGION_INFO: return nvgrace_gpu_ioctl_get_region_info(core_vdev, arg); case VFIO_DEVICE_IOEVENTFD: return -ENOTTY; case VFIO_DEVICE_RESET: nvgrace_gpu_init_fake_bar_emu_regs(core_vdev); fallthrough; default: return vfio_pci_core_ioctl(core_vdev, cmd, arg); } } static __le64 nvgrace_gpu_get_read_value(size_t bar_size, u64 flags, __le64 val64) { u64 tmp_val; tmp_val = le64_to_cpu(val64); tmp_val &= ~(bar_size - 1); tmp_val |= flags; return cpu_to_le64(tmp_val); } /* * Both the usable (usemem) and the reserved (resmem) device memory region * are exposed as a 64b fake device BARs in the VM. These fake BARs must * respond to the accesses on their respective PCI config space offsets. * * resmem BAR owns PCI_BASE_ADDRESS_2 & PCI_BASE_ADDRESS_3. * usemem BAR owns PCI_BASE_ADDRESS_4 & PCI_BASE_ADDRESS_5. */ static ssize_t nvgrace_gpu_read_config_emu(struct vfio_device *core_vdev, char __user *buf, size_t count, loff_t *ppos) { struct nvgrace_gpu_pci_core_device *nvdev = container_of(core_vdev, struct nvgrace_gpu_pci_core_device, core_device.vdev); u64 pos = *ppos & VFIO_PCI_OFFSET_MASK; struct mem_region *memregion = NULL; __le64 val64; size_t register_offset; loff_t copy_offset; size_t copy_count; int ret; ret = vfio_pci_core_read(core_vdev, buf, count, ppos); if (ret < 0) return ret; if (vfio_pci_core_range_intersect_range(pos, count, PCI_BASE_ADDRESS_2, sizeof(val64), ©_offset, ©_count, ®ister_offset)) memregion = nvgrace_gpu_memregion(RESMEM_REGION_INDEX, nvdev); else if (vfio_pci_core_range_intersect_range(pos, count, PCI_BASE_ADDRESS_4, sizeof(val64), ©_offset, ©_count, ®ister_offset)) memregion = nvgrace_gpu_memregion(USEMEM_REGION_INDEX, nvdev); if (memregion) { val64 = nvgrace_gpu_get_read_value(memregion->bar_size, PCI_BASE_ADDRESS_MEM_TYPE_64 | PCI_BASE_ADDRESS_MEM_PREFETCH, memregion->bar_val); if (copy_to_user(buf + copy_offset, (void *)&val64 + register_offset, copy_count)) { /* * The position has been incremented in * vfio_pci_core_read. Reset the offset back to the * starting position. */ *ppos -= count; return -EFAULT; } } return count; } static ssize_t nvgrace_gpu_write_config_emu(struct vfio_device *core_vdev, const char __user *buf, size_t count, loff_t *ppos) { struct nvgrace_gpu_pci_core_device *nvdev = container_of(core_vdev, struct nvgrace_gpu_pci_core_device, core_device.vdev); u64 pos = *ppos & VFIO_PCI_OFFSET_MASK; struct mem_region *memregion = NULL; size_t register_offset; loff_t copy_offset; size_t copy_count; if (vfio_pci_core_range_intersect_range(pos, count, PCI_BASE_ADDRESS_2, sizeof(u64), ©_offset, ©_count, ®ister_offset)) memregion = nvgrace_gpu_memregion(RESMEM_REGION_INDEX, nvdev); else if (vfio_pci_core_range_intersect_range(pos, count, PCI_BASE_ADDRESS_4, sizeof(u64), ©_offset, ©_count, ®ister_offset)) memregion = nvgrace_gpu_memregion(USEMEM_REGION_INDEX, nvdev); if (memregion) { if (copy_from_user((void *)&memregion->bar_val + register_offset, buf + copy_offset, copy_count)) return -EFAULT; *ppos += copy_count; return copy_count; } return vfio_pci_core_write(core_vdev, buf, count, ppos); } /* * Ad hoc map the device memory in the module kernel VA space. Primarily needed * as vfio does not require the userspace driver to only perform accesses through * mmaps of the vfio-pci BAR regions and such accesses should be supported using * vfio_device_ops read/write implementations. * * The usemem region is cacheable memory and hence is memremaped. * The resmem region is non-cached and is mapped using ioremap_wc (NORMAL_NC). */ static int nvgrace_gpu_map_device_mem(int index, struct nvgrace_gpu_pci_core_device *nvdev) { struct mem_region *memregion; int ret = 0; memregion = nvgrace_gpu_memregion(index, nvdev); if (!memregion) return -EINVAL; mutex_lock(&nvdev->remap_lock); if (memregion->memaddr) goto unlock; if (index == USEMEM_REGION_INDEX) memregion->memaddr = memremap(memregion->memphys, memregion->memlength, MEMREMAP_WB); else memregion->ioaddr = ioremap_wc(memregion->memphys, memregion->memlength); if (!memregion->memaddr) ret = -ENOMEM; unlock: mutex_unlock(&nvdev->remap_lock); return ret; } /* * Read the data from the device memory (mapped either through ioremap * or memremap) into the user buffer. */ static int nvgrace_gpu_map_and_read(struct nvgrace_gpu_pci_core_device *nvdev, char __user *buf, size_t mem_count, loff_t *ppos) { unsigned int index = VFIO_PCI_OFFSET_TO_INDEX(*ppos); u64 offset = *ppos & VFIO_PCI_OFFSET_MASK; int ret; if (!mem_count) return 0; /* * Handle read on the BAR regions. Map to the target device memory * physical address and copy to the request read buffer. */ ret = nvgrace_gpu_map_device_mem(index, nvdev); if (ret) return ret; if (index == USEMEM_REGION_INDEX) { if (copy_to_user(buf, (u8 *)nvdev->usemem.memaddr + offset, mem_count)) ret = -EFAULT; } else { /* * The hardware ensures that the system does not crash when * the device memory is accessed with the memory enable * turned off. It synthesizes ~0 on such read. So there is * no need to check or support the disablement/enablement of * BAR through PCI_COMMAND config space register. Pass * test_mem flag as false. */ ret = vfio_pci_core_do_io_rw(&nvdev->core_device, false, nvdev->resmem.ioaddr, buf, offset, mem_count, 0, 0, false); } return ret; } /* * Read count bytes from the device memory at an offset. The actual device * memory size (available) may not be a power-of-2. So the driver fakes * the size to a power-of-2 (reported) when exposing to a user space driver. * * Reads starting beyond the reported size generate -EINVAL; reads extending * beyond the actual device size is filled with ~0; reads extending beyond * the reported size are truncated. */ static ssize_t nvgrace_gpu_read_mem(struct nvgrace_gpu_pci_core_device *nvdev, char __user *buf, size_t count, loff_t *ppos) { u64 offset = *ppos & VFIO_PCI_OFFSET_MASK; unsigned int index = VFIO_PCI_OFFSET_TO_INDEX(*ppos); struct mem_region *memregion; size_t mem_count, i; u8 val = 0xFF; int ret; /* No need to do NULL check as caller does. */ memregion = nvgrace_gpu_memregion(index, nvdev); if (offset >= memregion->bar_size) return -EINVAL; /* Clip short the read request beyond reported BAR size */ count = min(count, memregion->bar_size - (size_t)offset); /* * Determine how many bytes to be actually read from the device memory. * Read request beyond the actual device memory size is filled with ~0, * while those beyond the actual reported size is skipped. */ if (offset >= memregion->memlength) mem_count = 0; else mem_count = min(count, memregion->memlength - (size_t)offset); ret = nvgrace_gpu_map_and_read(nvdev, buf, mem_count, ppos); if (ret) return ret; /* * Only the device memory present on the hardware is mapped, which may * not be power-of-2 aligned. A read to an offset beyond the device memory * size is filled with ~0. */ for (i = mem_count; i < count; i++) { ret = put_user(val, (unsigned char __user *)(buf + i)); if (ret) return ret; } *ppos += count; return count; } static ssize_t nvgrace_gpu_read(struct vfio_device *core_vdev, char __user *buf, size_t count, loff_t *ppos) { unsigned int index = VFIO_PCI_OFFSET_TO_INDEX(*ppos); struct nvgrace_gpu_pci_core_device *nvdev = container_of(core_vdev, struct nvgrace_gpu_pci_core_device, core_device.vdev); if (nvgrace_gpu_memregion(index, nvdev)) return nvgrace_gpu_read_mem(nvdev, buf, count, ppos); if (index == VFIO_PCI_CONFIG_REGION_INDEX) return nvgrace_gpu_read_config_emu(core_vdev, buf, count, ppos); return vfio_pci_core_read(core_vdev, buf, count, ppos); } /* * Write the data to the device memory (mapped either through ioremap * or memremap) from the user buffer. */ static int nvgrace_gpu_map_and_write(struct nvgrace_gpu_pci_core_device *nvdev, const char __user *buf, size_t mem_count, loff_t *ppos) { unsigned int index = VFIO_PCI_OFFSET_TO_INDEX(*ppos); loff_t pos = *ppos & VFIO_PCI_OFFSET_MASK; int ret; if (!mem_count) return 0; ret = nvgrace_gpu_map_device_mem(index, nvdev); if (ret) return ret; if (index == USEMEM_REGION_INDEX) { if (copy_from_user((u8 *)nvdev->usemem.memaddr + pos, buf, mem_count)) return -EFAULT; } else { /* * The hardware ensures that the system does not crash when * the device memory is accessed with the memory enable * turned off. It drops such writes. So there is no need to * check or support the disablement/enablement of BAR * through PCI_COMMAND config space register. Pass test_mem * flag as false. */ ret = vfio_pci_core_do_io_rw(&nvdev->core_device, false, nvdev->resmem.ioaddr, (char __user *)buf, pos, mem_count, 0, 0, true); } return ret; } /* * Write count bytes to the device memory at a given offset. The actual device * memory size (available) may not be a power-of-2. So the driver fakes the * size to a power-of-2 (reported) when exposing to a user space driver. * * Writes extending beyond the reported size are truncated; writes starting * beyond the reported size generate -EINVAL. */ static ssize_t nvgrace_gpu_write_mem(struct nvgrace_gpu_pci_core_device *nvdev, size_t count, loff_t *ppos, const char __user *buf) { unsigned int index = VFIO_PCI_OFFSET_TO_INDEX(*ppos); u64 offset = *ppos & VFIO_PCI_OFFSET_MASK; struct mem_region *memregion; size_t mem_count; int ret = 0; /* No need to do NULL check as caller does. */ memregion = nvgrace_gpu_memregion(index, nvdev); if (offset >= memregion->bar_size) return -EINVAL; /* Clip short the write request beyond reported BAR size */ count = min(count, memregion->bar_size - (size_t)offset); /* * Determine how many bytes to be actually written to the device memory. * Do not write to the offset beyond available size. */ if (offset >= memregion->memlength) goto exitfn; /* * Only the device memory present on the hardware is mapped, which may * not be power-of-2 aligned. Drop access outside the available device * memory on the hardware. */ mem_count = min(count, memregion->memlength - (size_t)offset); ret = nvgrace_gpu_map_and_write(nvdev, buf, mem_count, ppos); if (ret) return ret; exitfn: *ppos += count; return count; } static ssize_t nvgrace_gpu_write(struct vfio_device *core_vdev, const char __user *buf, size_t count, loff_t *ppos) { struct nvgrace_gpu_pci_core_device *nvdev = container_of(core_vdev, struct nvgrace_gpu_pci_core_device, core_device.vdev); unsigned int index = VFIO_PCI_OFFSET_TO_INDEX(*ppos); if (nvgrace_gpu_memregion(index, nvdev)) return nvgrace_gpu_write_mem(nvdev, count, ppos, buf); if (index == VFIO_PCI_CONFIG_REGION_INDEX) return nvgrace_gpu_write_config_emu(core_vdev, buf, count, ppos); return vfio_pci_core_write(core_vdev, buf, count, ppos); } static const struct vfio_device_ops nvgrace_gpu_pci_ops = { .name = "nvgrace-gpu-vfio-pci", .init = vfio_pci_core_init_dev, .release = vfio_pci_core_release_dev, .open_device = nvgrace_gpu_open_device, .close_device = nvgrace_gpu_close_device, .ioctl = nvgrace_gpu_ioctl, .device_feature = vfio_pci_core_ioctl_feature, .read = nvgrace_gpu_read, .write = nvgrace_gpu_write, .mmap = nvgrace_gpu_mmap, .request = vfio_pci_core_request, .match = vfio_pci_core_match, .bind_iommufd = vfio_iommufd_physical_bind, .unbind_iommufd = vfio_iommufd_physical_unbind, .attach_ioas = vfio_iommufd_physical_attach_ioas, .detach_ioas = vfio_iommufd_physical_detach_ioas, }; static const struct vfio_device_ops nvgrace_gpu_pci_core_ops = { .name = "nvgrace-gpu-vfio-pci-core", .init = vfio_pci_core_init_dev, .release = vfio_pci_core_release_dev, .open_device = nvgrace_gpu_open_device, .close_device = vfio_pci_core_close_device, .ioctl = vfio_pci_core_ioctl, .device_feature = vfio_pci_core_ioctl_feature, .read = vfio_pci_core_read, .write = vfio_pci_core_write, .mmap = vfio_pci_core_mmap, .request = vfio_pci_core_request, .match = vfio_pci_core_match, .bind_iommufd = vfio_iommufd_physical_bind, .unbind_iommufd = vfio_iommufd_physical_unbind, .attach_ioas = vfio_iommufd_physical_attach_ioas, .detach_ioas = vfio_iommufd_physical_detach_ioas, }; static int nvgrace_gpu_fetch_memory_property(struct pci_dev *pdev, u64 *pmemphys, u64 *pmemlength) { int ret; /* * The memory information is present in the system ACPI tables as DSD * properties nvidia,gpu-mem-base-pa and nvidia,gpu-mem-size. */ ret = device_property_read_u64(&pdev->dev, "nvidia,gpu-mem-base-pa", pmemphys); if (ret) return ret; if (*pmemphys > type_max(phys_addr_t)) return -EOVERFLOW; ret = device_property_read_u64(&pdev->dev, "nvidia,gpu-mem-size", pmemlength); if (ret) return ret; if (*pmemlength > type_max(size_t)) return -EOVERFLOW; /* * If the C2C link is not up due to an error, the coherent device * memory size is returned as 0. Fail in such case. */ if (*pmemlength == 0) return -ENOMEM; return ret; } static int nvgrace_gpu_init_nvdev_struct(struct pci_dev *pdev, struct nvgrace_gpu_pci_core_device *nvdev, u64 memphys, u64 memlength) { int ret = 0; /* * The VM GPU device driver needs a non-cacheable region to support * the MIG feature. Since the device memory is mapped as NORMAL cached, * carve out a region from the end with a different NORMAL_NC * property (called as reserved memory and represented as resmem). This * region then is exposed as a 64b BAR (region 2 and 3) to the VM, while * exposing the rest (termed as usable memory and represented using usemem) * as cacheable 64b BAR (region 4 and 5). * * devmem (memlength) * |-------------------------------------------------| * | | * usemem.memphys resmem.memphys */ nvdev->usemem.memphys = memphys; /* * The device memory exposed to the VM is added to the kernel by the * VM driver module in chunks of memory block size. Only the usable * memory (usemem) is added to the kernel for usage by the VM * workloads. Make the usable memory size memblock aligned. */ if (check_sub_overflow(memlength, RESMEM_SIZE, &nvdev->usemem.memlength)) { ret = -EOVERFLOW; goto done; } /* * The USEMEM part of the device memory has to be MEMBLK_SIZE * aligned. This is a hardwired ABI value between the GPU FW and * VFIO driver. The VM device driver is also aware of it and make * use of the value for its calculation to determine USEMEM size. */ nvdev->usemem.memlength = round_down(nvdev->usemem.memlength, MEMBLK_SIZE); if (nvdev->usemem.memlength == 0) { ret = -EINVAL; goto done; } if ((check_add_overflow(nvdev->usemem.memphys, nvdev->usemem.memlength, &nvdev->resmem.memphys)) || (check_sub_overflow(memlength, nvdev->usemem.memlength, &nvdev->resmem.memlength))) { ret = -EOVERFLOW; goto done; } /* * The memory regions are exposed as BARs. Calculate and save * the BAR size for them. */ nvdev->usemem.bar_size = roundup_pow_of_two(nvdev->usemem.memlength); nvdev->resmem.bar_size = roundup_pow_of_two(nvdev->resmem.memlength); done: return ret; } static int nvgrace_gpu_probe(struct pci_dev *pdev, const struct pci_device_id *id) { const struct vfio_device_ops *ops = &nvgrace_gpu_pci_core_ops; struct nvgrace_gpu_pci_core_device *nvdev; u64 memphys, memlength; int ret; ret = nvgrace_gpu_fetch_memory_property(pdev, &memphys, &memlength); if (!ret) ops = &nvgrace_gpu_pci_ops; nvdev = vfio_alloc_device(nvgrace_gpu_pci_core_device, core_device.vdev, &pdev->dev, ops); if (IS_ERR(nvdev)) return PTR_ERR(nvdev); dev_set_drvdata(&pdev->dev, &nvdev->core_device); if (ops == &nvgrace_gpu_pci_ops) { /* * Device memory properties are identified in the host ACPI * table. Set the nvgrace_gpu_pci_core_device structure. */ ret = nvgrace_gpu_init_nvdev_struct(pdev, nvdev, memphys, memlength); if (ret) goto out_put_vdev; } ret = vfio_pci_core_register_device(&nvdev->core_device); if (ret) goto out_put_vdev; return ret; out_put_vdev: vfio_put_device(&nvdev->core_device.vdev); return ret; } static void nvgrace_gpu_remove(struct pci_dev *pdev) { struct vfio_pci_core_device *core_device = dev_get_drvdata(&pdev->dev); vfio_pci_core_unregister_device(core_device); vfio_put_device(&core_device->vdev); } static const struct pci_device_id nvgrace_gpu_vfio_pci_table[] = { /* GH200 120GB */ { PCI_DRIVER_OVERRIDE_DEVICE_VFIO(PCI_VENDOR_ID_NVIDIA, 0x2342) }, /* GH200 480GB */ { PCI_DRIVER_OVERRIDE_DEVICE_VFIO(PCI_VENDOR_ID_NVIDIA, 0x2345) }, {} }; MODULE_DEVICE_TABLE(pci, nvgrace_gpu_vfio_pci_table); static struct pci_driver nvgrace_gpu_vfio_pci_driver = { .name = KBUILD_MODNAME, .id_table = nvgrace_gpu_vfio_pci_table, .probe = nvgrace_gpu_probe, .remove = nvgrace_gpu_remove, .err_handler = &vfio_pci_core_err_handlers, .driver_managed_dma = true, }; module_pci_driver(nvgrace_gpu_vfio_pci_driver); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Ankit Agrawal <ankita@nvidia.com>"); MODULE_AUTHOR("Aniket Agashe <aniketa@nvidia.com>"); MODULE_DESCRIPTION("VFIO NVGRACE GPU PF - User Level driver for NVIDIA devices with CPU coherently accessible device memory"); |