Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 | // SPDX-License-Identifier: GPL-2.0-only /* * Thermal throttle event support code (such as syslog messaging and rate * limiting) that was factored out from x86_64 (mce_intel.c) and i386 (p4.c). * * This allows consistent reporting of CPU thermal throttle events. * * Maintains a counter in /sys that keeps track of the number of thermal * events, such that the user knows how bad the thermal problem might be * (since the logging to syslog is rate limited). * * Author: Dmitriy Zavin (dmitriyz@google.com) * * Credits: Adapted from Zwane Mwaikambo's original code in mce_intel.c. * Inspired by Ross Biro's and Al Borchers' counter code. */ #include <linux/interrupt.h> #include <linux/notifier.h> #include <linux/jiffies.h> #include <linux/kernel.h> #include <linux/percpu.h> #include <linux/export.h> #include <linux/types.h> #include <linux/init.h> #include <linux/smp.h> #include <linux/cpu.h> #include <asm/processor.h> #include <asm/thermal.h> #include <asm/traps.h> #include <asm/apic.h> #include <asm/irq.h> #include <asm/msr.h> #include "intel_hfi.h" #include "thermal_interrupt.h" /* How long to wait between reporting thermal events */ #define CHECK_INTERVAL (300 * HZ) #define THERMAL_THROTTLING_EVENT 0 #define POWER_LIMIT_EVENT 1 /** * struct _thermal_state - Represent the current thermal event state * @next_check: Stores the next timestamp, when it is allowed * to log the next warning message. * @last_interrupt_time: Stores the timestamp for the last threshold * high event. * @therm_work: Delayed workqueue structure * @count: Stores the current running count for thermal * or power threshold interrupts. * @last_count: Stores the previous running count for thermal * or power threshold interrupts. * @max_time_ms: This shows the maximum amount of time CPU was * in throttled state for a single thermal * threshold high to low state. * @total_time_ms: This is a cumulative time during which CPU was * in the throttled state. * @rate_control_active: Set when a throttling message is logged. * This is used for the purpose of rate-control. * @new_event: Stores the last high/low status of the * THERM_STATUS_PROCHOT or * THERM_STATUS_POWER_LIMIT. * @level: Stores whether this _thermal_state instance is * for a CORE level or for PACKAGE level. * @sample_index: Index for storing the next sample in the buffer * temp_samples[]. * @sample_count: Total number of samples collected in the buffer * temp_samples[]. * @average: The last moving average of temperature samples * @baseline_temp: Temperature at which thermal threshold high * interrupt was generated. * @temp_samples: Storage for temperature samples to calculate * moving average. * * This structure is used to represent data related to thermal state for a CPU. * There is a separate storage for core and package level for each CPU. */ struct _thermal_state { u64 next_check; u64 last_interrupt_time; struct delayed_work therm_work; unsigned long count; unsigned long last_count; unsigned long max_time_ms; unsigned long total_time_ms; bool rate_control_active; bool new_event; u8 level; u8 sample_index; u8 sample_count; u8 average; u8 baseline_temp; u8 temp_samples[3]; }; struct thermal_state { struct _thermal_state core_throttle; struct _thermal_state core_power_limit; struct _thermal_state package_throttle; struct _thermal_state package_power_limit; struct _thermal_state core_thresh0; struct _thermal_state core_thresh1; struct _thermal_state pkg_thresh0; struct _thermal_state pkg_thresh1; }; /* Callback to handle core threshold interrupts */ int (*platform_thermal_notify)(__u64 msr_val); EXPORT_SYMBOL(platform_thermal_notify); /* Callback to handle core package threshold_interrupts */ int (*platform_thermal_package_notify)(__u64 msr_val); EXPORT_SYMBOL_GPL(platform_thermal_package_notify); /* Callback support of rate control, return true, if * callback has rate control */ bool (*platform_thermal_package_rate_control)(void); EXPORT_SYMBOL_GPL(platform_thermal_package_rate_control); static DEFINE_PER_CPU(struct thermal_state, thermal_state); static atomic_t therm_throt_en = ATOMIC_INIT(0); static u32 lvtthmr_init __read_mostly; #ifdef CONFIG_SYSFS #define define_therm_throt_device_one_ro(_name) \ static DEVICE_ATTR(_name, 0444, \ therm_throt_device_show_##_name, \ NULL) \ #define define_therm_throt_device_show_func(event, name) \ \ static ssize_t therm_throt_device_show_##event##_##name( \ struct device *dev, \ struct device_attribute *attr, \ char *buf) \ { \ unsigned int cpu = dev->id; \ ssize_t ret; \ \ preempt_disable(); /* CPU hotplug */ \ if (cpu_online(cpu)) { \ ret = sprintf(buf, "%lu\n", \ per_cpu(thermal_state, cpu).event.name); \ } else \ ret = 0; \ preempt_enable(); \ \ return ret; \ } define_therm_throt_device_show_func(core_throttle, count); define_therm_throt_device_one_ro(core_throttle_count); define_therm_throt_device_show_func(core_power_limit, count); define_therm_throt_device_one_ro(core_power_limit_count); define_therm_throt_device_show_func(package_throttle, count); define_therm_throt_device_one_ro(package_throttle_count); define_therm_throt_device_show_func(package_power_limit, count); define_therm_throt_device_one_ro(package_power_limit_count); define_therm_throt_device_show_func(core_throttle, max_time_ms); define_therm_throt_device_one_ro(core_throttle_max_time_ms); define_therm_throt_device_show_func(package_throttle, max_time_ms); define_therm_throt_device_one_ro(package_throttle_max_time_ms); define_therm_throt_device_show_func(core_throttle, total_time_ms); define_therm_throt_device_one_ro(core_throttle_total_time_ms); define_therm_throt_device_show_func(package_throttle, total_time_ms); define_therm_throt_device_one_ro(package_throttle_total_time_ms); static struct attribute *thermal_throttle_attrs[] = { &dev_attr_core_throttle_count.attr, &dev_attr_core_throttle_max_time_ms.attr, &dev_attr_core_throttle_total_time_ms.attr, NULL }; static const struct attribute_group thermal_attr_group = { .attrs = thermal_throttle_attrs, .name = "thermal_throttle" }; #endif /* CONFIG_SYSFS */ #define THERM_THROT_POLL_INTERVAL HZ #define THERM_STATUS_PROCHOT_LOG BIT(1) static u64 therm_intr_core_clear_mask; static u64 therm_intr_pkg_clear_mask; static void thermal_intr_init_core_clear_mask(void) { if (therm_intr_core_clear_mask) return; /* * Reference: Intel SDM Volume 4 * "Table 2-2. IA-32 Architectural MSRs", MSR 0x19C * IA32_THERM_STATUS. */ /* * Bit 1, 3, 5: CPUID.01H:EDX[22] = 1. This driver will not * enable interrupts, when 0 as it checks for X86_FEATURE_ACPI. */ therm_intr_core_clear_mask = (BIT(1) | BIT(3) | BIT(5)); /* * Bit 7 and 9: Thermal Threshold #1 and #2 log * If CPUID.01H:ECX[8] = 1 */ if (boot_cpu_has(X86_FEATURE_TM2)) therm_intr_core_clear_mask |= (BIT(7) | BIT(9)); /* Bit 11: Power Limitation log (R/WC0) If CPUID.06H:EAX[4] = 1 */ if (boot_cpu_has(X86_FEATURE_PLN)) therm_intr_core_clear_mask |= BIT(11); /* * Bit 13: Current Limit log (R/WC0) If CPUID.06H:EAX[7] = 1 * Bit 15: Cross Domain Limit log (R/WC0) If CPUID.06H:EAX[7] = 1 */ if (boot_cpu_has(X86_FEATURE_HWP)) therm_intr_core_clear_mask |= (BIT(13) | BIT(15)); } static void thermal_intr_init_pkg_clear_mask(void) { if (therm_intr_pkg_clear_mask) return; /* * Reference: Intel SDM Volume 4 * "Table 2-2. IA-32 Architectural MSRs", MSR 0x1B1 * IA32_PACKAGE_THERM_STATUS. */ /* All bits except BIT 26 depend on CPUID.06H: EAX[6] = 1 */ if (boot_cpu_has(X86_FEATURE_PTS)) therm_intr_pkg_clear_mask = (BIT(1) | BIT(3) | BIT(5) | BIT(7) | BIT(9) | BIT(11)); /* * Intel SDM Volume 2A: Thermal and Power Management Leaf * Bit 26: CPUID.06H: EAX[19] = 1 */ if (boot_cpu_has(X86_FEATURE_HFI)) therm_intr_pkg_clear_mask |= BIT(26); } /* * Clear the bits in package thermal status register for bit = 1 * in bitmask */ void thermal_clear_package_intr_status(int level, u64 bit_mask) { u64 msr_val; int msr; if (level == CORE_LEVEL) { msr = MSR_IA32_THERM_STATUS; msr_val = therm_intr_core_clear_mask; } else { msr = MSR_IA32_PACKAGE_THERM_STATUS; msr_val = therm_intr_pkg_clear_mask; } msr_val &= ~bit_mask; wrmsrl(msr, msr_val); } EXPORT_SYMBOL_GPL(thermal_clear_package_intr_status); static void get_therm_status(int level, bool *proc_hot, u8 *temp) { int msr; u64 msr_val; if (level == CORE_LEVEL) msr = MSR_IA32_THERM_STATUS; else msr = MSR_IA32_PACKAGE_THERM_STATUS; rdmsrl(msr, msr_val); if (msr_val & THERM_STATUS_PROCHOT_LOG) *proc_hot = true; else *proc_hot = false; *temp = (msr_val >> 16) & 0x7F; } static void __maybe_unused throttle_active_work(struct work_struct *work) { struct _thermal_state *state = container_of(to_delayed_work(work), struct _thermal_state, therm_work); unsigned int i, avg, this_cpu = smp_processor_id(); u64 now = get_jiffies_64(); bool hot; u8 temp; get_therm_status(state->level, &hot, &temp); /* temperature value is offset from the max so lesser means hotter */ if (!hot && temp > state->baseline_temp) { if (state->rate_control_active) pr_info("CPU%d: %s temperature/speed normal (total events = %lu)\n", this_cpu, state->level == CORE_LEVEL ? "Core" : "Package", state->count); state->rate_control_active = false; return; } if (time_before64(now, state->next_check) && state->rate_control_active) goto re_arm; state->next_check = now + CHECK_INTERVAL; if (state->count != state->last_count) { /* There was one new thermal interrupt */ state->last_count = state->count; state->average = 0; state->sample_count = 0; state->sample_index = 0; } state->temp_samples[state->sample_index] = temp; state->sample_count++; state->sample_index = (state->sample_index + 1) % ARRAY_SIZE(state->temp_samples); if (state->sample_count < ARRAY_SIZE(state->temp_samples)) goto re_arm; avg = 0; for (i = 0; i < ARRAY_SIZE(state->temp_samples); ++i) avg += state->temp_samples[i]; avg /= ARRAY_SIZE(state->temp_samples); if (state->average > avg) { pr_warn("CPU%d: %s temperature is above threshold, cpu clock is throttled (total events = %lu)\n", this_cpu, state->level == CORE_LEVEL ? "Core" : "Package", state->count); state->rate_control_active = true; } state->average = avg; re_arm: thermal_clear_package_intr_status(state->level, THERM_STATUS_PROCHOT_LOG); schedule_delayed_work_on(this_cpu, &state->therm_work, THERM_THROT_POLL_INTERVAL); } /*** * therm_throt_process - Process thermal throttling event from interrupt * @curr: Whether the condition is current or not (boolean), since the * thermal interrupt normally gets called both when the thermal * event begins and once the event has ended. * * This function is called by the thermal interrupt after the * IRQ has been acknowledged. * * It will take care of rate limiting and printing messages to the syslog. */ static void therm_throt_process(bool new_event, int event, int level) { struct _thermal_state *state; unsigned int this_cpu = smp_processor_id(); bool old_event; u64 now; struct thermal_state *pstate = &per_cpu(thermal_state, this_cpu); now = get_jiffies_64(); if (level == CORE_LEVEL) { if (event == THERMAL_THROTTLING_EVENT) state = &pstate->core_throttle; else if (event == POWER_LIMIT_EVENT) state = &pstate->core_power_limit; else return; } else if (level == PACKAGE_LEVEL) { if (event == THERMAL_THROTTLING_EVENT) state = &pstate->package_throttle; else if (event == POWER_LIMIT_EVENT) state = &pstate->package_power_limit; else return; } else return; old_event = state->new_event; state->new_event = new_event; if (new_event) state->count++; if (event != THERMAL_THROTTLING_EVENT) return; if (new_event && !state->last_interrupt_time) { bool hot; u8 temp; get_therm_status(state->level, &hot, &temp); /* * Ignore short temperature spike as the system is not close * to PROCHOT. 10C offset is large enough to ignore. It is * already dropped from the high threshold temperature. */ if (temp > 10) return; state->baseline_temp = temp; state->last_interrupt_time = now; schedule_delayed_work_on(this_cpu, &state->therm_work, THERM_THROT_POLL_INTERVAL); } else if (old_event && state->last_interrupt_time) { unsigned long throttle_time; throttle_time = jiffies_delta_to_msecs(now - state->last_interrupt_time); if (throttle_time > state->max_time_ms) state->max_time_ms = throttle_time; state->total_time_ms += throttle_time; state->last_interrupt_time = 0; } } static int thresh_event_valid(int level, int event) { struct _thermal_state *state; unsigned int this_cpu = smp_processor_id(); struct thermal_state *pstate = &per_cpu(thermal_state, this_cpu); u64 now = get_jiffies_64(); if (level == PACKAGE_LEVEL) state = (event == 0) ? &pstate->pkg_thresh0 : &pstate->pkg_thresh1; else state = (event == 0) ? &pstate->core_thresh0 : &pstate->core_thresh1; if (time_before64(now, state->next_check)) return 0; state->next_check = now + CHECK_INTERVAL; return 1; } static bool int_pln_enable; static int __init int_pln_enable_setup(char *s) { int_pln_enable = true; return 1; } __setup("int_pln_enable", int_pln_enable_setup); #ifdef CONFIG_SYSFS /* Add/Remove thermal_throttle interface for CPU device: */ static int thermal_throttle_add_dev(struct device *dev, unsigned int cpu) { int err; struct cpuinfo_x86 *c = &cpu_data(cpu); err = sysfs_create_group(&dev->kobj, &thermal_attr_group); if (err) return err; if (cpu_has(c, X86_FEATURE_PLN) && int_pln_enable) { err = sysfs_add_file_to_group(&dev->kobj, &dev_attr_core_power_limit_count.attr, thermal_attr_group.name); if (err) goto del_group; } if (cpu_has(c, X86_FEATURE_PTS)) { err = sysfs_add_file_to_group(&dev->kobj, &dev_attr_package_throttle_count.attr, thermal_attr_group.name); if (err) goto del_group; err = sysfs_add_file_to_group(&dev->kobj, &dev_attr_package_throttle_max_time_ms.attr, thermal_attr_group.name); if (err) goto del_group; err = sysfs_add_file_to_group(&dev->kobj, &dev_attr_package_throttle_total_time_ms.attr, thermal_attr_group.name); if (err) goto del_group; if (cpu_has(c, X86_FEATURE_PLN) && int_pln_enable) { err = sysfs_add_file_to_group(&dev->kobj, &dev_attr_package_power_limit_count.attr, thermal_attr_group.name); if (err) goto del_group; } } return 0; del_group: sysfs_remove_group(&dev->kobj, &thermal_attr_group); return err; } static void thermal_throttle_remove_dev(struct device *dev) { sysfs_remove_group(&dev->kobj, &thermal_attr_group); } /* Get notified when a cpu comes on/off. Be hotplug friendly. */ static int thermal_throttle_online(unsigned int cpu) { struct thermal_state *state = &per_cpu(thermal_state, cpu); struct device *dev = get_cpu_device(cpu); u32 l; state->package_throttle.level = PACKAGE_LEVEL; state->core_throttle.level = CORE_LEVEL; INIT_DELAYED_WORK(&state->package_throttle.therm_work, throttle_active_work); INIT_DELAYED_WORK(&state->core_throttle.therm_work, throttle_active_work); /* * The first CPU coming online will enable the HFI. Usually this causes * hardware to issue an HFI thermal interrupt. Such interrupt will reach * the CPU once we enable the thermal vector in the local APIC. */ intel_hfi_online(cpu); /* Unmask the thermal vector after the above workqueues are initialized. */ l = apic_read(APIC_LVTTHMR); apic_write(APIC_LVTTHMR, l & ~APIC_LVT_MASKED); return thermal_throttle_add_dev(dev, cpu); } static int thermal_throttle_offline(unsigned int cpu) { struct thermal_state *state = &per_cpu(thermal_state, cpu); struct device *dev = get_cpu_device(cpu); u32 l; /* Mask the thermal vector before draining evtl. pending work */ l = apic_read(APIC_LVTTHMR); apic_write(APIC_LVTTHMR, l | APIC_LVT_MASKED); intel_hfi_offline(cpu); cancel_delayed_work_sync(&state->package_throttle.therm_work); cancel_delayed_work_sync(&state->core_throttle.therm_work); state->package_throttle.rate_control_active = false; state->core_throttle.rate_control_active = false; thermal_throttle_remove_dev(dev); return 0; } static __init int thermal_throttle_init_device(void) { int ret; if (!atomic_read(&therm_throt_en)) return 0; intel_hfi_init(); ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/therm:online", thermal_throttle_online, thermal_throttle_offline); return ret < 0 ? ret : 0; } device_initcall(thermal_throttle_init_device); #endif /* CONFIG_SYSFS */ static void notify_package_thresholds(__u64 msr_val) { bool notify_thres_0 = false; bool notify_thres_1 = false; if (!platform_thermal_package_notify) return; /* lower threshold check */ if (msr_val & THERM_LOG_THRESHOLD0) notify_thres_0 = true; /* higher threshold check */ if (msr_val & THERM_LOG_THRESHOLD1) notify_thres_1 = true; if (!notify_thres_0 && !notify_thres_1) return; if (platform_thermal_package_rate_control && platform_thermal_package_rate_control()) { /* Rate control is implemented in callback */ platform_thermal_package_notify(msr_val); return; } /* lower threshold reached */ if (notify_thres_0 && thresh_event_valid(PACKAGE_LEVEL, 0)) platform_thermal_package_notify(msr_val); /* higher threshold reached */ if (notify_thres_1 && thresh_event_valid(PACKAGE_LEVEL, 1)) platform_thermal_package_notify(msr_val); } static void notify_thresholds(__u64 msr_val) { /* check whether the interrupt handler is defined; * otherwise simply return */ if (!platform_thermal_notify) return; /* lower threshold reached */ if ((msr_val & THERM_LOG_THRESHOLD0) && thresh_event_valid(CORE_LEVEL, 0)) platform_thermal_notify(msr_val); /* higher threshold reached */ if ((msr_val & THERM_LOG_THRESHOLD1) && thresh_event_valid(CORE_LEVEL, 1)) platform_thermal_notify(msr_val); } void __weak notify_hwp_interrupt(void) { wrmsrl_safe(MSR_HWP_STATUS, 0); } /* Thermal transition interrupt handler */ void intel_thermal_interrupt(void) { __u64 msr_val; if (static_cpu_has(X86_FEATURE_HWP)) notify_hwp_interrupt(); rdmsrl(MSR_IA32_THERM_STATUS, msr_val); /* Check for violation of core thermal thresholds*/ notify_thresholds(msr_val); therm_throt_process(msr_val & THERM_STATUS_PROCHOT, THERMAL_THROTTLING_EVENT, CORE_LEVEL); if (this_cpu_has(X86_FEATURE_PLN) && int_pln_enable) therm_throt_process(msr_val & THERM_STATUS_POWER_LIMIT, POWER_LIMIT_EVENT, CORE_LEVEL); if (this_cpu_has(X86_FEATURE_PTS)) { rdmsrl(MSR_IA32_PACKAGE_THERM_STATUS, msr_val); /* check violations of package thermal thresholds */ notify_package_thresholds(msr_val); therm_throt_process(msr_val & PACKAGE_THERM_STATUS_PROCHOT, THERMAL_THROTTLING_EVENT, PACKAGE_LEVEL); if (this_cpu_has(X86_FEATURE_PLN) && int_pln_enable) therm_throt_process(msr_val & PACKAGE_THERM_STATUS_POWER_LIMIT, POWER_LIMIT_EVENT, PACKAGE_LEVEL); if (this_cpu_has(X86_FEATURE_HFI)) intel_hfi_process_event(msr_val & PACKAGE_THERM_STATUS_HFI_UPDATED); } } /* Thermal monitoring depends on APIC, ACPI and clock modulation */ static int intel_thermal_supported(struct cpuinfo_x86 *c) { if (!boot_cpu_has(X86_FEATURE_APIC)) return 0; if (!cpu_has(c, X86_FEATURE_ACPI) || !cpu_has(c, X86_FEATURE_ACC)) return 0; return 1; } bool x86_thermal_enabled(void) { return atomic_read(&therm_throt_en); } void __init therm_lvt_init(void) { /* * This function is only called on boot CPU. Save the init thermal * LVT value on BSP and use that value to restore APs' thermal LVT * entry BIOS programmed later */ if (intel_thermal_supported(&boot_cpu_data)) lvtthmr_init = apic_read(APIC_LVTTHMR); } void intel_init_thermal(struct cpuinfo_x86 *c) { unsigned int cpu = smp_processor_id(); int tm2 = 0; u32 l, h; if (!intel_thermal_supported(c)) return; /* * First check if its enabled already, in which case there might * be some SMM goo which handles it, so we can't even put a handler * since it might be delivered via SMI already: */ rdmsr(MSR_IA32_MISC_ENABLE, l, h); h = lvtthmr_init; /* * The initial value of thermal LVT entries on all APs always reads * 0x10000 because APs are woken up by BSP issuing INIT-SIPI-SIPI * sequence to them and LVT registers are reset to 0s except for * the mask bits which are set to 1s when APs receive INIT IPI. * If BIOS takes over the thermal interrupt and sets its interrupt * delivery mode to SMI (not fixed), it restores the value that the * BIOS has programmed on AP based on BSP's info we saved since BIOS * is always setting the same value for all threads/cores. */ if ((h & APIC_DM_FIXED_MASK) != APIC_DM_FIXED) apic_write(APIC_LVTTHMR, lvtthmr_init); if ((l & MSR_IA32_MISC_ENABLE_TM1) && (h & APIC_DM_SMI)) { if (system_state == SYSTEM_BOOTING) pr_debug("CPU%d: Thermal monitoring handled by SMI\n", cpu); return; } /* early Pentium M models use different method for enabling TM2 */ if (cpu_has(c, X86_FEATURE_TM2)) { if (c->x86 == 6 && (c->x86_model == 9 || c->x86_model == 13)) { rdmsr(MSR_THERM2_CTL, l, h); if (l & MSR_THERM2_CTL_TM_SELECT) tm2 = 1; } else if (l & MSR_IA32_MISC_ENABLE_TM2) tm2 = 1; } /* We'll mask the thermal vector in the lapic till we're ready: */ h = THERMAL_APIC_VECTOR | APIC_DM_FIXED | APIC_LVT_MASKED; apic_write(APIC_LVTTHMR, h); thermal_intr_init_core_clear_mask(); thermal_intr_init_pkg_clear_mask(); rdmsr(MSR_IA32_THERM_INTERRUPT, l, h); if (cpu_has(c, X86_FEATURE_PLN) && !int_pln_enable) wrmsr(MSR_IA32_THERM_INTERRUPT, (l | (THERM_INT_LOW_ENABLE | THERM_INT_HIGH_ENABLE)) & ~THERM_INT_PLN_ENABLE, h); else if (cpu_has(c, X86_FEATURE_PLN) && int_pln_enable) wrmsr(MSR_IA32_THERM_INTERRUPT, l | (THERM_INT_LOW_ENABLE | THERM_INT_HIGH_ENABLE | THERM_INT_PLN_ENABLE), h); else wrmsr(MSR_IA32_THERM_INTERRUPT, l | (THERM_INT_LOW_ENABLE | THERM_INT_HIGH_ENABLE), h); if (cpu_has(c, X86_FEATURE_PTS)) { rdmsr(MSR_IA32_PACKAGE_THERM_INTERRUPT, l, h); if (cpu_has(c, X86_FEATURE_PLN) && !int_pln_enable) wrmsr(MSR_IA32_PACKAGE_THERM_INTERRUPT, (l | (PACKAGE_THERM_INT_LOW_ENABLE | PACKAGE_THERM_INT_HIGH_ENABLE)) & ~PACKAGE_THERM_INT_PLN_ENABLE, h); else if (cpu_has(c, X86_FEATURE_PLN) && int_pln_enable) wrmsr(MSR_IA32_PACKAGE_THERM_INTERRUPT, l | (PACKAGE_THERM_INT_LOW_ENABLE | PACKAGE_THERM_INT_HIGH_ENABLE | PACKAGE_THERM_INT_PLN_ENABLE), h); else wrmsr(MSR_IA32_PACKAGE_THERM_INTERRUPT, l | (PACKAGE_THERM_INT_LOW_ENABLE | PACKAGE_THERM_INT_HIGH_ENABLE), h); if (cpu_has(c, X86_FEATURE_HFI)) { rdmsr(MSR_IA32_PACKAGE_THERM_INTERRUPT, l, h); wrmsr(MSR_IA32_PACKAGE_THERM_INTERRUPT, l | PACKAGE_THERM_INT_HFI_ENABLE, h); } } rdmsr(MSR_IA32_MISC_ENABLE, l, h); wrmsr(MSR_IA32_MISC_ENABLE, l | MSR_IA32_MISC_ENABLE_TM1, h); pr_info_once("CPU0: Thermal monitoring enabled (%s)\n", tm2 ? "TM2" : "TM1"); /* enable thermal throttle processing */ atomic_set(&therm_throt_en, 1); } |