Linux Audio

Check our new training course

Loading...
   1/* SPDX-License-Identifier: GPL-2.0-or-later */
   2/*
   3 * Device driver for the SYMBIOS/LSILOGIC 53C8XX and 53C1010 family 
   4 * of PCI-SCSI IO processors.
   5 *
   6 * Copyright (C) 1999-2001  Gerard Roudier <groudier@free.fr>
   7 *
   8 * This driver is derived from the Linux sym53c8xx driver.
   9 * Copyright (C) 1998-2000  Gerard Roudier
  10 *
  11 * The sym53c8xx driver is derived from the ncr53c8xx driver that had been 
  12 * a port of the FreeBSD ncr driver to Linux-1.2.13.
  13 *
  14 * The original ncr driver has been written for 386bsd and FreeBSD by
  15 *         Wolfgang Stanglmeier        <wolf@cologne.de>
  16 *         Stefan Esser                <se@mi.Uni-Koeln.de>
  17 * Copyright (C) 1994  Wolfgang Stanglmeier
  18 *
  19 * Other major contributions:
  20 *
  21 * NVRAM detection and reading.
  22 * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk>
  23 *
  24 *-----------------------------------------------------------------------------
  25 */
  26
  27#include <linux/gfp.h>
  28
  29#ifndef SYM_HIPD_H
  30#define SYM_HIPD_H
  31
  32/*
  33 *  Generic driver options.
  34 *
  35 *  They may be defined in platform specific headers, if they 
  36 *  are useful.
  37 *
  38 *    SYM_OPT_HANDLE_DEVICE_QUEUEING
  39 *        When this option is set, the driver will use a queue per 
  40 *        device and handle QUEUE FULL status requeuing internally.
  41 *
  42 *    SYM_OPT_LIMIT_COMMAND_REORDERING
  43 *        When this option is set, the driver tries to limit tagged 
  44 *        command reordering to some reasonable value.
  45 *        (set for Linux)
  46 */
  47#if 0
  48#define SYM_OPT_HANDLE_DEVICE_QUEUEING
  49#define SYM_OPT_LIMIT_COMMAND_REORDERING
  50#endif
  51
  52/*
  53 *  Active debugging tags and verbosity.
  54 *  Both DEBUG_FLAGS and sym_verbose can be redefined 
  55 *  by the platform specific code to something else.
  56 */
  57#define DEBUG_ALLOC	(0x0001)
  58#define DEBUG_PHASE	(0x0002)
  59#define DEBUG_POLL	(0x0004)
  60#define DEBUG_QUEUE	(0x0008)
  61#define DEBUG_RESULT	(0x0010)
  62#define DEBUG_SCATTER	(0x0020)
  63#define DEBUG_SCRIPT	(0x0040)
  64#define DEBUG_TINY	(0x0080)
  65#define DEBUG_TIMING	(0x0100)
  66#define DEBUG_NEGO	(0x0200)
  67#define DEBUG_TAGS	(0x0400)
  68#define DEBUG_POINTER	(0x0800)
  69
  70#ifndef DEBUG_FLAGS
  71#define DEBUG_FLAGS	(0x0000)
  72#endif
  73
  74#ifndef sym_verbose
  75#define sym_verbose	(np->verbose)
  76#endif
  77
  78/*
  79 *  These ones should have been already defined.
  80 */
  81#ifndef assert
  82#define	assert(expression) { \
  83	if (!(expression)) { \
  84		(void)panic( \
  85			"assertion \"%s\" failed: file \"%s\", line %d\n", \
  86			#expression, \
  87			__FILE__, __LINE__); \
  88	} \
  89}
  90#endif
  91
  92/*
  93 *  Number of tasks per device we want to handle.
  94 */
  95#if	SYM_CONF_MAX_TAG_ORDER > 8
  96#error	"more than 256 tags per logical unit not allowed."
  97#endif
  98#define	SYM_CONF_MAX_TASK	(1<<SYM_CONF_MAX_TAG_ORDER)
  99
 100/*
 101 *  Donnot use more tasks that we can handle.
 102 */
 103#ifndef	SYM_CONF_MAX_TAG
 104#define	SYM_CONF_MAX_TAG	SYM_CONF_MAX_TASK
 105#endif
 106#if	SYM_CONF_MAX_TAG > SYM_CONF_MAX_TASK
 107#undef	SYM_CONF_MAX_TAG
 108#define	SYM_CONF_MAX_TAG	SYM_CONF_MAX_TASK
 109#endif
 110
 111/*
 112 *    This one means 'NO TAG for this job'
 113 */
 114#define NO_TAG	(256)
 115
 116/*
 117 *  Number of SCSI targets.
 118 */
 119#if	SYM_CONF_MAX_TARGET > 16
 120#error	"more than 16 targets not allowed."
 121#endif
 122
 123/*
 124 *  Number of logical units per target.
 125 */
 126#if	SYM_CONF_MAX_LUN > 64
 127#error	"more than 64 logical units per target not allowed."
 128#endif
 129
 130/*
 131 *    Asynchronous pre-scaler (ns). Shall be 40 for 
 132 *    the SCSI timings to be compliant.
 133 */
 134#define	SYM_CONF_MIN_ASYNC (40)
 135
 136
 137/*
 138 * MEMORY ALLOCATOR.
 139 */
 140
 141#define SYM_MEM_WARN	1	/* Warn on failed operations */
 142
 143#define SYM_MEM_PAGE_ORDER 0	/* 1 PAGE  maximum */
 144#define SYM_MEM_CLUSTER_SHIFT	(PAGE_SHIFT+SYM_MEM_PAGE_ORDER)
 145#define SYM_MEM_FREE_UNUSED	/* Free unused pages immediately */
 146/*
 147 *  Shortest memory chunk is (1<<SYM_MEM_SHIFT), currently 16.
 148 *  Actual allocations happen as SYM_MEM_CLUSTER_SIZE sized.
 149 *  (1 PAGE at a time is just fine).
 150 */
 151#define SYM_MEM_SHIFT	4
 152#define SYM_MEM_CLUSTER_SIZE	(1UL << SYM_MEM_CLUSTER_SHIFT)
 153#define SYM_MEM_CLUSTER_MASK	(SYM_MEM_CLUSTER_SIZE-1)
 154
 155/*
 156 *  Number of entries in the START and DONE queues.
 157 *
 158 *  We limit to 1 PAGE in order to succeed allocation of 
 159 *  these queues. Each entry is 8 bytes long (2 DWORDS).
 160 */
 161#ifdef	SYM_CONF_MAX_START
 162#define	SYM_CONF_MAX_QUEUE (SYM_CONF_MAX_START+2)
 163#else
 164#define	SYM_CONF_MAX_QUEUE (7*SYM_CONF_MAX_TASK+2)
 165#define	SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2)
 166#endif
 167
 168#if	SYM_CONF_MAX_QUEUE > SYM_MEM_CLUSTER_SIZE/8
 169#undef	SYM_CONF_MAX_QUEUE
 170#define	SYM_CONF_MAX_QUEUE (SYM_MEM_CLUSTER_SIZE/8)
 171#undef	SYM_CONF_MAX_START
 172#define	SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2)
 173#endif
 174
 175/*
 176 *  For this one, we want a short name :-)
 177 */
 178#define MAX_QUEUE	SYM_CONF_MAX_QUEUE
 179
 180/*
 181 *  Common definitions for both bus space based and legacy IO methods.
 182 */
 183
 184#define INB_OFF(np, o)		ioread8(np->s.ioaddr + (o))
 185#define INW_OFF(np, o)		ioread16(np->s.ioaddr + (o))
 186#define INL_OFF(np, o)		ioread32(np->s.ioaddr + (o))
 187
 188#define OUTB_OFF(np, o, val)	iowrite8((val), np->s.ioaddr + (o))
 189#define OUTW_OFF(np, o, val)	iowrite16((val), np->s.ioaddr + (o))
 190#define OUTL_OFF(np, o, val)	iowrite32((val), np->s.ioaddr + (o))
 191
 192#define INB(np, r)		INB_OFF(np, offsetof(struct sym_reg, r))
 193#define INW(np, r)		INW_OFF(np, offsetof(struct sym_reg, r))
 194#define INL(np, r)		INL_OFF(np, offsetof(struct sym_reg, r))
 195
 196#define OUTB(np, r, v)		OUTB_OFF(np, offsetof(struct sym_reg, r), (v))
 197#define OUTW(np, r, v)		OUTW_OFF(np, offsetof(struct sym_reg, r), (v))
 198#define OUTL(np, r, v)		OUTL_OFF(np, offsetof(struct sym_reg, r), (v))
 199
 200#define OUTONB(np, r, m)	OUTB(np, r, INB(np, r) | (m))
 201#define OUTOFFB(np, r, m)	OUTB(np, r, INB(np, r) & ~(m))
 202#define OUTONW(np, r, m)	OUTW(np, r, INW(np, r) | (m))
 203#define OUTOFFW(np, r, m)	OUTW(np, r, INW(np, r) & ~(m))
 204#define OUTONL(np, r, m)	OUTL(np, r, INL(np, r) | (m))
 205#define OUTOFFL(np, r, m)	OUTL(np, r, INL(np, r) & ~(m))
 206
 207/*
 208 *  We normally want the chip to have a consistent view
 209 *  of driver internal data structures when we restart it.
 210 *  Thus these macros.
 211 */
 212#define OUTL_DSP(np, v)				\
 213	do {					\
 214		MEMORY_WRITE_BARRIER();		\
 215		OUTL(np, nc_dsp, (v));		\
 216	} while (0)
 217
 218#define OUTONB_STD()				\
 219	do {					\
 220		MEMORY_WRITE_BARRIER();		\
 221		OUTONB(np, nc_dcntl, (STD|NOCOM));	\
 222	} while (0)
 223
 224/*
 225 *  Command control block states.
 226 */
 227#define HS_IDLE		(0)
 228#define HS_BUSY		(1)
 229#define HS_NEGOTIATE	(2)	/* sync/wide data transfer*/
 230#define HS_DISCONNECT	(3)	/* Disconnected by target */
 231#define HS_WAIT		(4)	/* waiting for resource	  */
 232
 233#define HS_DONEMASK	(0x80)
 234#define HS_COMPLETE	(4|HS_DONEMASK)
 235#define HS_SEL_TIMEOUT	(5|HS_DONEMASK)	/* Selection timeout      */
 236#define HS_UNEXPECTED	(6|HS_DONEMASK)	/* Unexpected disconnect  */
 237#define HS_COMP_ERR	(7|HS_DONEMASK)	/* Completed with error	  */
 238
 239/*
 240 *  Software Interrupt Codes
 241 */
 242#define	SIR_BAD_SCSI_STATUS	(1)
 243#define	SIR_SEL_ATN_NO_MSG_OUT	(2)
 244#define	SIR_MSG_RECEIVED	(3)
 245#define	SIR_MSG_WEIRD		(4)
 246#define	SIR_NEGO_FAILED		(5)
 247#define	SIR_NEGO_PROTO		(6)
 248#define	SIR_SCRIPT_STOPPED	(7)
 249#define	SIR_REJECT_TO_SEND	(8)
 250#define	SIR_SWIDE_OVERRUN	(9)
 251#define	SIR_SODL_UNDERRUN	(10)
 252#define	SIR_RESEL_NO_MSG_IN	(11)
 253#define	SIR_RESEL_NO_IDENTIFY	(12)
 254#define	SIR_RESEL_BAD_LUN	(13)
 255#define	SIR_TARGET_SELECTED	(14)
 256#define	SIR_RESEL_BAD_I_T_L	(15)
 257#define	SIR_RESEL_BAD_I_T_L_Q	(16)
 258#define	SIR_ABORT_SENT		(17)
 259#define	SIR_RESEL_ABORTED	(18)
 260#define	SIR_MSG_OUT_DONE	(19)
 261#define	SIR_COMPLETE_ERROR	(20)
 262#define	SIR_DATA_OVERRUN	(21)
 263#define	SIR_BAD_PHASE		(22)
 264#if	SYM_CONF_DMA_ADDRESSING_MODE == 2
 265#define	SIR_DMAP_DIRTY		(23)
 266#define	SIR_MAX			(23)
 267#else
 268#define	SIR_MAX			(22)
 269#endif
 270
 271/*
 272 *  Extended error bit codes.
 273 *  xerr_status field of struct sym_ccb.
 274 */
 275#define	XE_EXTRA_DATA	(1)	/* unexpected data phase	 */
 276#define	XE_BAD_PHASE	(1<<1)	/* illegal phase (4/5)		 */
 277#define	XE_PARITY_ERR	(1<<2)	/* unrecovered SCSI parity error */
 278#define	XE_SODL_UNRUN	(1<<3)	/* ODD transfer in DATA OUT phase */
 279#define	XE_SWIDE_OVRUN	(1<<4)	/* ODD transfer in DATA IN phase */
 280
 281/*
 282 *  Negotiation status.
 283 *  nego_status field of struct sym_ccb.
 284 */
 285#define NS_SYNC		(1)
 286#define NS_WIDE		(2)
 287#define NS_PPR		(3)
 288
 289/*
 290 *  A CCB hashed table is used to retrieve CCB address 
 291 *  from DSA value.
 292 */
 293#define CCB_HASH_SHIFT		8
 294#define CCB_HASH_SIZE		(1UL << CCB_HASH_SHIFT)
 295#define CCB_HASH_MASK		(CCB_HASH_SIZE-1)
 296#if 1
 297#define CCB_HASH_CODE(dsa)	\
 298	(((dsa) >> (_LGRU16_(sizeof(struct sym_ccb)))) & CCB_HASH_MASK)
 299#else
 300#define CCB_HASH_CODE(dsa)	(((dsa) >> 9) & CCB_HASH_MASK)
 301#endif
 302
 303#if	SYM_CONF_DMA_ADDRESSING_MODE == 2
 304/*
 305 *  We may want to use segment registers for 64 bit DMA.
 306 *  16 segments registers -> up to 64 GB addressable.
 307 */
 308#define SYM_DMAP_SHIFT	(4)
 309#define SYM_DMAP_SIZE	(1u<<SYM_DMAP_SHIFT)
 310#define SYM_DMAP_MASK	(SYM_DMAP_SIZE-1)
 311#endif
 312
 313/*
 314 *  Device flags.
 315 */
 316#define SYM_DISC_ENABLED	(1)
 317#define SYM_TAGS_ENABLED	(1<<1)
 318#define SYM_SCAN_BOOT_DISABLED	(1<<2)
 319#define SYM_SCAN_LUNS_DISABLED	(1<<3)
 320
 321/*
 322 *  Host adapter miscellaneous flags.
 323 */
 324#define SYM_AVOID_BUS_RESET	(1)
 325
 326/*
 327 *  Misc.
 328 */
 329#define SYM_SNOOP_TIMEOUT (10000000)
 330#define BUS_8_BIT	0
 331#define BUS_16_BIT	1
 332
 333/*
 334 *  Gather negotiable parameters value
 335 */
 336struct sym_trans {
 337	u8 period;
 338	u8 offset;
 339	unsigned int width:1;
 340	unsigned int iu:1;
 341	unsigned int dt:1;
 342	unsigned int qas:1;
 343	unsigned int check_nego:1;
 344	unsigned int renego:2;
 345};
 346
 347/*
 348 *  Global TCB HEADER.
 349 *
 350 *  Due to lack of indirect addressing on earlier NCR chips,
 351 *  this substructure is copied from the TCB to a global 
 352 *  address after selection.
 353 *  For SYMBIOS chips that support LOAD/STORE this copy is 
 354 *  not needed and thus not performed.
 355 */
 356struct sym_tcbh {
 357	/*
 358	 *  Scripts bus addresses of LUN table accessed from scripts.
 359	 *  LUN #0 is a special case, since multi-lun devices are rare, 
 360	 *  and we we want to speed-up the general case and not waste 
 361	 *  resources.
 362	 */
 363	u32	luntbl_sa;	/* bus address of this table	*/
 364	u32	lun0_sa;	/* bus address of LCB #0	*/
 365	/*
 366	 *  Actual SYNC/WIDE IO registers value for this target.
 367	 *  'sval', 'wval' and 'uval' are read from SCRIPTS and 
 368	 *  so have alignment constraints.
 369	 */
 370/*0*/	u_char	uval;		/* -> SCNTL4 register		*/
 371/*1*/	u_char	sval;		/* -> SXFER  io register	*/
 372/*2*/	u_char	filler1;
 373/*3*/	u_char	wval;		/* -> SCNTL3 io register	*/
 374};
 375
 376/*
 377 *  Target Control Block
 378 */
 379struct sym_tcb {
 380	/*
 381	 *  TCB header.
 382	 *  Assumed at offset 0.
 383	 */
 384/*0*/	struct sym_tcbh head;
 385
 386	/*
 387	 *  LUN table used by the SCRIPTS processor.
 388	 *  An array of bus addresses is used on reselection.
 389	 */
 390	u32	*luntbl;	/* LCBs bus address table	*/
 391	int	nlcb;		/* Number of valid LCBs (including LUN #0) */
 392
 393	/*
 394	 *  LUN table used by the C code.
 395	 */
 396	struct sym_lcb *lun0p;		/* LCB of LUN #0 (usual case)	*/
 397#if SYM_CONF_MAX_LUN > 1
 398	struct sym_lcb **lunmp;		/* Other LCBs [1..MAX_LUN]	*/
 399#endif
 400
 401#ifdef	SYM_HAVE_STCB
 402	/*
 403	 *  O/S specific data structure.
 404	 */
 405	struct sym_stcb s;
 406#endif
 407
 408	/* Transfer goal */
 409	struct sym_trans tgoal;
 410
 411	/* Last printed transfer speed */
 412	struct sym_trans tprint;
 413
 414	/*
 415	 * Keep track of the CCB used for the negotiation in order
 416	 * to ensure that only 1 negotiation is queued at a time.
 417	 */
 418	struct sym_ccb *  nego_cp;	/* CCB used for the nego		*/
 419
 420	/*
 421	 *  Set when we want to reset the device.
 422	 */
 423	u_char	to_reset;
 424
 425	/*
 426	 *  Other user settable limits and options.
 427	 *  These limits are read from the NVRAM if present.
 428	 */
 429	unsigned char	usrflags;
 430	unsigned char	usr_period;
 431	unsigned char	usr_width;
 432	unsigned short	usrtags;
 433	struct scsi_target *starget;
 434};
 435
 436/*
 437 *  Global LCB HEADER.
 438 *
 439 *  Due to lack of indirect addressing on earlier NCR chips,
 440 *  this substructure is copied from the LCB to a global 
 441 *  address after selection.
 442 *  For SYMBIOS chips that support LOAD/STORE this copy is 
 443 *  not needed and thus not performed.
 444 */
 445struct sym_lcbh {
 446	/*
 447	 *  SCRIPTS address jumped by SCRIPTS on reselection.
 448	 *  For not probed logical units, this address points to 
 449	 *  SCRIPTS that deal with bad LU handling (must be at 
 450	 *  offset zero of the LCB for that reason).
 451	 */
 452/*0*/	u32	resel_sa;
 453
 454	/*
 455	 *  Task (bus address of a CCB) read from SCRIPTS that points 
 456	 *  to the unique ITL nexus allowed to be disconnected.
 457	 */
 458	u32	itl_task_sa;
 459
 460	/*
 461	 *  Task table bus address (read from SCRIPTS).
 462	 */
 463	u32	itlq_tbl_sa;
 464};
 465
 466/*
 467 *  Logical Unit Control Block
 468 */
 469struct sym_lcb {
 470	/*
 471	 *  TCB header.
 472	 *  Assumed at offset 0.
 473	 */
 474/*0*/	struct sym_lcbh head;
 475
 476	/*
 477	 *  Task table read from SCRIPTS that contains pointers to 
 478	 *  ITLQ nexuses. The bus address read from SCRIPTS is 
 479	 *  inside the header.
 480	 */
 481	u32	*itlq_tbl;	/* Kernel virtual address	*/
 482
 483	/*
 484	 *  Busy CCBs management.
 485	 */
 486	u_short	busy_itlq;	/* Number of busy tagged CCBs	*/
 487	u_short	busy_itl;	/* Number of busy untagged CCBs	*/
 488
 489	/*
 490	 *  Circular tag allocation buffer.
 491	 */
 492	u_short	ia_tag;		/* Tag allocation index		*/
 493	u_short	if_tag;		/* Tag release index		*/
 494	u_char	*cb_tags;	/* Circular tags buffer		*/
 495
 496	/*
 497	 *  O/S specific data structure.
 498	 */
 499#ifdef	SYM_HAVE_SLCB
 500	struct sym_slcb s;
 501#endif
 502
 503#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
 504	/*
 505	 *  Optionnaly the driver can handle device queueing, 
 506	 *  and requeues internally command to redo.
 507	 */
 508	SYM_QUEHEAD waiting_ccbq;
 509	SYM_QUEHEAD started_ccbq;
 510	int	num_sgood;
 511	u_short	started_tags;
 512	u_short	started_no_tag;
 513	u_short	started_max;
 514	u_short	started_limit;
 515#endif
 516
 517#ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
 518	/*
 519	 *  Optionally the driver can try to prevent SCSI 
 520	 *  IOs from being reordered too much.
 521	 */
 522	u_char		tags_si;	/* Current index to tags sum	*/
 523	u_short		tags_sum[2];	/* Tags sum counters		*/
 524	u_short		tags_since;	/* # of tags since last switch	*/
 525#endif
 526
 527	/*
 528	 *  Set when we want to clear all tasks.
 529	 */
 530	u_char to_clear;
 531
 532	/*
 533	 *  Capabilities.
 534	 */
 535	u_char	user_flags;
 536	u_char	curr_flags;
 537};
 538
 539/*
 540 *  Action from SCRIPTS on a task.
 541 *  Is part of the CCB, but is also used separately to plug 
 542 *  error handling action to perform from SCRIPTS.
 543 */
 544struct sym_actscr {
 545	u32	start;		/* Jumped by SCRIPTS after selection	*/
 546	u32	restart;	/* Jumped by SCRIPTS on relection	*/
 547};
 548
 549/*
 550 *  Phase mismatch context.
 551 *
 552 *  It is part of the CCB and is used as parameters for the 
 553 *  DATA pointer. We need two contexts to handle correctly the 
 554 *  SAVED DATA POINTER.
 555 */
 556struct sym_pmc {
 557	struct	sym_tblmove sg;	/* Updated interrupted SG block	*/
 558	u32	ret;		/* SCRIPT return address	*/
 559};
 560
 561/*
 562 *  LUN control block lookup.
 563 *  We use a direct pointer for LUN #0, and a table of 
 564 *  pointers which is only allocated for devices that support 
 565 *  LUN(s) > 0.
 566 */
 567#if SYM_CONF_MAX_LUN <= 1
 568#define sym_lp(tp, lun) (!lun) ? (tp)->lun0p : NULL
 569#else
 570#define sym_lp(tp, lun) \
 571	(!lun) ? (tp)->lun0p : (tp)->lunmp ? (tp)->lunmp[((u8)lun)] : NULL
 572#endif
 573
 574/*
 575 *  Status are used by the host and the script processor.
 576 *
 577 *  The last four bytes (status[4]) are copied to the 
 578 *  scratchb register (declared as scr0..scr3) just after the 
 579 *  select/reselect, and copied back just after disconnecting.
 580 *  Inside the script the XX_REG are used.
 581 */
 582
 583/*
 584 *  Last four bytes (script)
 585 */
 586#define  HX_REG	scr0
 587#define  HX_PRT	nc_scr0
 588#define  HS_REG	scr1
 589#define  HS_PRT	nc_scr1
 590#define  SS_REG	scr2
 591#define  SS_PRT	nc_scr2
 592#define  HF_REG	scr3
 593#define  HF_PRT	nc_scr3
 594
 595/*
 596 *  Last four bytes (host)
 597 */
 598#define  host_xflags   phys.head.status[0]
 599#define  host_status   phys.head.status[1]
 600#define  ssss_status   phys.head.status[2]
 601#define  host_flags    phys.head.status[3]
 602
 603/*
 604 *  Host flags
 605 */
 606#define HF_IN_PM0	1u
 607#define HF_IN_PM1	(1u<<1)
 608#define HF_ACT_PM	(1u<<2)
 609#define HF_DP_SAVED	(1u<<3)
 610#define HF_SENSE	(1u<<4)
 611#define HF_EXT_ERR	(1u<<5)
 612#define HF_DATA_IN	(1u<<6)
 613#ifdef SYM_CONF_IARB_SUPPORT
 614#define HF_HINT_IARB	(1u<<7)
 615#endif
 616
 617/*
 618 *  More host flags
 619 */
 620#if	SYM_CONF_DMA_ADDRESSING_MODE == 2
 621#define	HX_DMAP_DIRTY	(1u<<7)
 622#endif
 623
 624/*
 625 *  Global CCB HEADER.
 626 *
 627 *  Due to lack of indirect addressing on earlier NCR chips,
 628 *  this substructure is copied from the ccb to a global 
 629 *  address after selection (or reselection) and copied back 
 630 *  before disconnect.
 631 *  For SYMBIOS chips that support LOAD/STORE this copy is 
 632 *  not needed and thus not performed.
 633 */
 634
 635struct sym_ccbh {
 636	/*
 637	 *  Start and restart SCRIPTS addresses (must be at 0).
 638	 */
 639/*0*/	struct sym_actscr go;
 640
 641	/*
 642	 *  SCRIPTS jump address that deal with data pointers.
 643	 *  'savep' points to the position in the script responsible 
 644	 *  for the actual transfer of data.
 645	 *  It's written on reception of a SAVE_DATA_POINTER message.
 646	 */
 647	u32	savep;		/* Jump address to saved data pointer	*/
 648	u32	lastp;		/* SCRIPTS address at end of data	*/
 649
 650	/*
 651	 *  Status fields.
 652	 */
 653	u8	status[4];
 654};
 655
 656/*
 657 *  GET/SET the value of the data pointer used by SCRIPTS.
 658 *
 659 *  We must distinguish between the LOAD/STORE-based SCRIPTS 
 660 *  that use directly the header in the CCB, and the NCR-GENERIC 
 661 *  SCRIPTS that use the copy of the header in the HCB.
 662 */
 663#if	SYM_CONF_GENERIC_SUPPORT
 664#define sym_set_script_dp(np, cp, dp)				\
 665	do {							\
 666		if (np->features & FE_LDSTR)			\
 667			cp->phys.head.lastp = cpu_to_scr(dp);	\
 668		else						\
 669			np->ccb_head.lastp = cpu_to_scr(dp);	\
 670	} while (0)
 671#define sym_get_script_dp(np, cp) 				\
 672	scr_to_cpu((np->features & FE_LDSTR) ?			\
 673		cp->phys.head.lastp : np->ccb_head.lastp)
 674#else
 675#define sym_set_script_dp(np, cp, dp)				\
 676	do {							\
 677		cp->phys.head.lastp = cpu_to_scr(dp);		\
 678	} while (0)
 679
 680#define sym_get_script_dp(np, cp) (cp->phys.head.lastp)
 681#endif
 682
 683/*
 684 *  Data Structure Block
 685 *
 686 *  During execution of a ccb by the script processor, the 
 687 *  DSA (data structure address) register points to this 
 688 *  substructure of the ccb.
 689 */
 690struct sym_dsb {
 691	/*
 692	 *  CCB header.
 693	 *  Also assumed at offset 0 of the sym_ccb structure.
 694	 */
 695/*0*/	struct sym_ccbh head;
 696
 697	/*
 698	 *  Phase mismatch contexts.
 699	 *  We need two to handle correctly the SAVED DATA POINTER.
 700	 *  MUST BOTH BE AT OFFSET < 256, due to using 8 bit arithmetic 
 701	 *  for address calculation from SCRIPTS.
 702	 */
 703	struct sym_pmc pm0;
 704	struct sym_pmc pm1;
 705
 706	/*
 707	 *  Table data for Script
 708	 */
 709	struct sym_tblsel  select;
 710	struct sym_tblmove smsg;
 711	struct sym_tblmove smsg_ext;
 712	struct sym_tblmove cmd;
 713	struct sym_tblmove sense;
 714	struct sym_tblmove wresid;
 715	struct sym_tblmove data [SYM_CONF_MAX_SG];
 716};
 717
 718/*
 719 *  Our Command Control Block
 720 */
 721struct sym_ccb {
 722	/*
 723	 *  This is the data structure which is pointed by the DSA 
 724	 *  register when it is executed by the script processor.
 725	 *  It must be the first entry.
 726	 */
 727	struct sym_dsb phys;
 728
 729	/*
 730	 *  Pointer to CAM ccb and related stuff.
 731	 */
 732	struct scsi_cmnd *cmd;	/* CAM scsiio ccb		*/
 733	u8	cdb_buf[16];	/* Copy of CDB			*/
 734#define	SYM_SNS_BBUF_LEN 32
 735	u8	sns_bbuf[SYM_SNS_BBUF_LEN]; /* Bounce buffer for sense data */
 736	int	data_len;	/* Total data length		*/
 737	int	segments;	/* Number of SG segments	*/
 738
 739	u8	order;		/* Tag type (if tagged command)	*/
 740	unsigned char odd_byte_adjustment;	/* odd-sized req on wide bus */
 741
 742	u_char	nego_status;	/* Negotiation status		*/
 743	u_char	xerr_status;	/* Extended error flags		*/
 744	u32	extra_bytes;	/* Extraneous bytes transferred	*/
 745
 746	/*
 747	 *  Message areas.
 748	 *  We prepare a message to be sent after selection.
 749	 *  We may use a second one if the command is rescheduled 
 750	 *  due to CHECK_CONDITION or COMMAND TERMINATED.
 751	 *  Contents are IDENTIFY and SIMPLE_TAG.
 752	 *  While negotiating sync or wide transfer,
 753	 *  a SDTR or WDTR message is appended.
 754	 */
 755	u_char	scsi_smsg [12];
 756	u_char	scsi_smsg2[12];
 757
 758	/*
 759	 *  Auto request sense related fields.
 760	 */
 761	u_char	sensecmd[6];	/* Request Sense command	*/
 762	u_char	sv_scsi_status;	/* Saved SCSI status 		*/
 763	u_char	sv_xerr_status;	/* Saved extended status	*/
 764	int	sv_resid;	/* Saved residual		*/
 765
 766	/*
 767	 *  Other fields.
 768	 */
 769	u32	ccb_ba;		/* BUS address of this CCB	*/
 770	u_short	tag;		/* Tag for this transfer	*/
 771				/*  NO_TAG means no tag		*/
 772	u_char	target;
 773	u_char	lun;
 774	struct sym_ccb *link_ccbh;	/* Host adapter CCB hash chain	*/
 775	SYM_QUEHEAD link_ccbq;	/* Link to free/busy CCB queue	*/
 776	u32	startp;		/* Initial data pointer		*/
 777	u32	goalp;		/* Expected last data pointer	*/
 778	int	ext_sg;		/* Extreme data pointer, used	*/
 779	int	ext_ofs;	/*  to calculate the residual.	*/
 780#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
 781	SYM_QUEHEAD link2_ccbq;	/* Link for device queueing	*/
 782	u_char	started;	/* CCB queued to the squeue	*/
 783#endif
 784	u_char	to_abort;	/* Want this IO to be aborted	*/
 785#ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
 786	u_char	tags_si;	/* Lun tags sum index (0,1)	*/
 787#endif
 788};
 789
 790#define CCB_BA(cp,lbl)	cpu_to_scr(cp->ccb_ba + offsetof(struct sym_ccb, lbl))
 791
 792typedef struct device *m_pool_ident_t;
 793
 794/*
 795 *  Host Control Block
 796 */
 797struct sym_hcb {
 798	/*
 799	 *  Global headers.
 800	 *  Due to poorness of addressing capabilities, earlier 
 801	 *  chips (810, 815, 825) copy part of the data structures 
 802	 *  (CCB, TCB and LCB) in fixed areas.
 803	 */
 804#if	SYM_CONF_GENERIC_SUPPORT
 805	struct sym_ccbh	ccb_head;
 806	struct sym_tcbh	tcb_head;
 807	struct sym_lcbh	lcb_head;
 808#endif
 809	/*
 810	 *  Idle task and invalid task actions and 
 811	 *  their bus addresses.
 812	 */
 813	struct sym_actscr idletask, notask, bad_itl, bad_itlq;
 814	u32 idletask_ba, notask_ba, bad_itl_ba, bad_itlq_ba;
 815
 816	/*
 817	 *  Dummy lun table to protect us against target 
 818	 *  returning bad lun number on reselection.
 819	 */
 820	u32	*badluntbl;	/* Table physical address	*/
 821	u32	badlun_sa;	/* SCRIPT handler BUS address	*/
 822
 823	/*
 824	 *  Bus address of this host control block.
 825	 */
 826	u32	hcb_ba;
 827
 828	/*
 829	 *  Bit 32-63 of the on-chip RAM bus address in LE format.
 830	 *  The START_RAM64 script loads the MMRS and MMWS from this 
 831	 *  field.
 832	 */
 833	u32	scr_ram_seg;
 834
 835	/*
 836	 *  Initial value of some IO register bits.
 837	 *  These values are assumed to have been set by BIOS, and may 
 838	 *  be used to probe adapter implementation differences.
 839	 */
 840	u_char	sv_scntl0, sv_scntl3, sv_dmode, sv_dcntl, sv_ctest3, sv_ctest4,
 841		sv_ctest5, sv_gpcntl, sv_stest2, sv_stest4, sv_scntl4,
 842		sv_stest1;
 843
 844	/*
 845	 *  Actual initial value of IO register bits used by the 
 846	 *  driver. They are loaded at initialisation according to  
 847	 *  features that are to be enabled/disabled.
 848	 */
 849	u_char	rv_scntl0, rv_scntl3, rv_dmode, rv_dcntl, rv_ctest3, rv_ctest4, 
 850		rv_ctest5, rv_stest2, rv_ccntl0, rv_ccntl1, rv_scntl4;
 851
 852	/*
 853	 *  Target data.
 854	 */
 855	struct sym_tcb	target[SYM_CONF_MAX_TARGET];
 856
 857	/*
 858	 *  Target control block bus address array used by the SCRIPT 
 859	 *  on reselection.
 860	 */
 861	u32		*targtbl;
 862	u32		targtbl_ba;
 863
 864	/*
 865	 *  DMA pool handle for this HBA.
 866	 */
 867	m_pool_ident_t	bus_dmat;
 868
 869	/*
 870	 *  O/S specific data structure
 871	 */
 872	struct sym_shcb s;
 873
 874	/*
 875	 *  Physical bus addresses of the chip.
 876	 */
 877	u32		mmio_ba;	/* MMIO 32 bit BUS address	*/
 878	u32		ram_ba;		/* RAM 32 bit BUS address	*/
 879
 880	/*
 881	 *  SCRIPTS virtual and physical bus addresses.
 882	 *  'script'  is loaded in the on-chip RAM if present.
 883	 *  'scripth' stays in main memory for all chips except the 
 884	 *  53C895A, 53C896 and 53C1010 that provide 8K on-chip RAM.
 885	 */
 886	u_char		*scripta0;	/* Copy of scripts A, B, Z	*/
 887	u_char		*scriptb0;
 888	u_char		*scriptz0;
 889	u32		scripta_ba;	/* Actual scripts A, B, Z	*/
 890	u32		scriptb_ba;	/* 32 bit bus addresses.	*/
 891	u32		scriptz_ba;
 892	u_short		scripta_sz;	/* Actual size of script A, B, Z*/
 893	u_short		scriptb_sz;
 894	u_short		scriptz_sz;
 895
 896	/*
 897	 *  Bus addresses, setup and patch methods for 
 898	 *  the selected firmware.
 899	 */
 900	struct sym_fwa_ba fwa_bas;	/* Useful SCRIPTA bus addresses	*/
 901	struct sym_fwb_ba fwb_bas;	/* Useful SCRIPTB bus addresses	*/
 902	struct sym_fwz_ba fwz_bas;	/* Useful SCRIPTZ bus addresses	*/
 903	void		(*fw_setup)(struct sym_hcb *np, struct sym_fw *fw);
 904	void		(*fw_patch)(struct Scsi_Host *);
 905	char		*fw_name;
 906
 907	/*
 908	 *  General controller parameters and configuration.
 909	 */
 910	u_int	features;	/* Chip features map		*/
 911	u_char	myaddr;		/* SCSI id of the adapter	*/
 912	u_char	maxburst;	/* log base 2 of dwords burst	*/
 913	u_char	maxwide;	/* Maximum transfer width	*/
 914	u_char	minsync;	/* Min sync period factor (ST)	*/
 915	u_char	maxsync;	/* Max sync period factor (ST)	*/
 916	u_char	maxoffs;	/* Max scsi offset        (ST)	*/
 917	u_char	minsync_dt;	/* Min sync period factor (DT)	*/
 918	u_char	maxsync_dt;	/* Max sync period factor (DT)	*/
 919	u_char	maxoffs_dt;	/* Max scsi offset        (DT)	*/
 920	u_char	multiplier;	/* Clock multiplier (1,2,4)	*/
 921	u_char	clock_divn;	/* Number of clock divisors	*/
 922	u32	clock_khz;	/* SCSI clock frequency in KHz	*/
 923	u32	pciclk_khz;	/* Estimated PCI clock  in KHz	*/
 924	/*
 925	 *  Start queue management.
 926	 *  It is filled up by the host processor and accessed by the 
 927	 *  SCRIPTS processor in order to start SCSI commands.
 928	 */
 929	volatile		/* Prevent code optimizations	*/
 930	u32	*squeue;	/* Start queue virtual address	*/
 931	u32	squeue_ba;	/* Start queue BUS address	*/
 932	u_short	squeueput;	/* Next free slot of the queue	*/
 933	u_short	actccbs;	/* Number of allocated CCBs	*/
 934
 935	/*
 936	 *  Command completion queue.
 937	 *  It is the same size as the start queue to avoid overflow.
 938	 */
 939	u_short	dqueueget;	/* Next position to scan	*/
 940	volatile		/* Prevent code optimizations	*/
 941	u32	*dqueue;	/* Completion (done) queue	*/
 942	u32	dqueue_ba;	/* Done queue BUS address	*/
 943
 944	/*
 945	 *  Miscellaneous buffers accessed by the scripts-processor.
 946	 *  They shall be DWORD aligned, because they may be read or 
 947	 *  written with a script command.
 948	 */
 949	u_char		msgout[8];	/* Buffer for MESSAGE OUT 	*/
 950	u_char		msgin [8];	/* Buffer for MESSAGE IN	*/
 951	u32		lastmsg;	/* Last SCSI message sent	*/
 952	u32		scratch;	/* Scratch for SCSI receive	*/
 953					/* Also used for cache test 	*/
 954	/*
 955	 *  Miscellaneous configuration and status parameters.
 956	 */
 957	u_char		usrflags;	/* Miscellaneous user flags	*/
 958	u_char		scsi_mode;	/* Current SCSI BUS mode	*/
 959	u_char		verbose;	/* Verbosity for this controller*/
 960
 961	/*
 962	 *  CCB lists and queue.
 963	 */
 964	struct sym_ccb **ccbh;			/* CCBs hashed by DSA value	*/
 965					/* CCB_HASH_SIZE lists of CCBs	*/
 966	SYM_QUEHEAD	free_ccbq;	/* Queue of available CCBs	*/
 967	SYM_QUEHEAD	busy_ccbq;	/* Queue of busy CCBs		*/
 968
 969	/*
 970	 *  During error handling and/or recovery,
 971	 *  active CCBs that are to be completed with 
 972	 *  error or requeued are moved from the busy_ccbq
 973	 *  to the comp_ccbq prior to completion.
 974	 */
 975	SYM_QUEHEAD	comp_ccbq;
 976
 977#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
 978	SYM_QUEHEAD	dummy_ccbq;
 979#endif
 980
 981	/*
 982	 *  IMMEDIATE ARBITRATION (IARB) control.
 983	 *
 984	 *  We keep track in 'last_cp' of the last CCB that has been 
 985	 *  queued to the SCRIPTS processor and clear 'last_cp' when 
 986	 *  this CCB completes. If last_cp is not zero at the moment 
 987	 *  we queue a new CCB, we set a flag in 'last_cp' that is 
 988	 *  used by the SCRIPTS as a hint for setting IARB.
 989	 *  We donnot set more than 'iarb_max' consecutive hints for 
 990	 *  IARB in order to leave devices a chance to reselect.
 991	 *  By the way, any non zero value of 'iarb_max' is unfair. :)
 992	 */
 993#ifdef SYM_CONF_IARB_SUPPORT
 994	u_short		iarb_max;	/* Max. # consecutive IARB hints*/
 995	u_short		iarb_count;	/* Actual # of these hints	*/
 996	struct sym_ccb *	last_cp;
 997#endif
 998
 999	/*
1000	 *  Command abort handling.
1001	 *  We need to synchronize tightly with the SCRIPTS 
1002	 *  processor in order to handle things correctly.
1003	 */
1004	u_char		abrt_msg[4];	/* Message to send buffer	*/
1005	struct sym_tblmove abrt_tbl;	/* Table for the MOV of it 	*/
1006	struct sym_tblsel  abrt_sel;	/* Sync params for selection	*/
1007	u_char		istat_sem;	/* Tells the chip to stop (SEM)	*/
1008
1009	/*
1010	 *  64 bit DMA handling.
1011	 */
1012#if	SYM_CONF_DMA_ADDRESSING_MODE != 0
1013	u_char	use_dac;		/* Use PCI DAC cycles		*/
1014#if	SYM_CONF_DMA_ADDRESSING_MODE == 2
1015	u_char	dmap_dirty;		/* Dma segments registers dirty	*/
1016	u32	dmap_bah[SYM_DMAP_SIZE];/* Segment registers map	*/
1017#endif
1018#endif
1019};
1020
1021#if SYM_CONF_DMA_ADDRESSING_MODE == 0
1022#define use_dac(np)	0
1023#define set_dac(np)	do { } while (0)
1024#else
1025#define use_dac(np)	(np)->use_dac
1026#define set_dac(np)	(np)->use_dac = 1
1027#endif
1028
1029#define HCB_BA(np, lbl)	(np->hcb_ba + offsetof(struct sym_hcb, lbl))
1030
1031
1032/*
1033 *  FIRMWARES (sym_fw.c)
1034 */
1035struct sym_fw * sym_find_firmware(struct sym_chip *chip);
1036void sym_fw_bind_script(struct sym_hcb *np, u32 *start, int len);
1037
1038/*
1039 *  Driver methods called from O/S specific code.
1040 */
1041char *sym_driver_name(void);
1042void sym_print_xerr(struct scsi_cmnd *cmd, int x_status);
1043int sym_reset_scsi_bus(struct sym_hcb *np, int enab_int);
1044struct sym_chip *sym_lookup_chip_table(u_short device_id, u_char revision);
1045#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
1046void sym_start_next_ccbs(struct sym_hcb *np, struct sym_lcb *lp, int maxn);
1047#else
1048void sym_put_start_queue(struct sym_hcb *np, struct sym_ccb *cp);
1049#endif
1050void sym_start_up(struct Scsi_Host *, int reason);
1051irqreturn_t sym_interrupt(struct Scsi_Host *);
1052int sym_clear_tasks(struct sym_hcb *np, int cam_status, int target, int lun, int task);
1053struct sym_ccb *sym_get_ccb(struct sym_hcb *np, struct scsi_cmnd *cmd, u_char tag_order);
1054void sym_free_ccb(struct sym_hcb *np, struct sym_ccb *cp);
1055struct sym_lcb *sym_alloc_lcb(struct sym_hcb *np, u_char tn, u_char ln);
1056int sym_free_lcb(struct sym_hcb *np, u_char tn, u_char ln);
1057int sym_queue_scsiio(struct sym_hcb *np, struct scsi_cmnd *csio, struct sym_ccb *cp);
1058int sym_abort_scsiio(struct sym_hcb *np, struct scsi_cmnd *ccb, int timed_out);
1059int sym_reset_scsi_target(struct sym_hcb *np, int target);
1060void sym_hcb_free(struct sym_hcb *np);
1061int sym_hcb_attach(struct Scsi_Host *shost, struct sym_fw *fw, struct sym_nvram *nvram);
1062
1063/*
1064 *  Build a scatter/gather entry.
1065 *
1066 *  For 64 bit systems, we use the 8 upper bits of the size field 
1067 *  to provide bus address bits 32-39 to the SCRIPTS processor.
1068 *  This allows the 895A, 896, 1010 to address up to 1 TB of memory.
1069 */
1070
1071#if   SYM_CONF_DMA_ADDRESSING_MODE == 0
1072#define DMA_DAC_MASK	DMA_BIT_MASK(32)
1073#define sym_build_sge(np, data, badd, len)	\
1074do {						\
1075	(data)->addr = cpu_to_scr(badd);	\
1076	(data)->size = cpu_to_scr(len);		\
1077} while (0)
1078#elif SYM_CONF_DMA_ADDRESSING_MODE == 1
1079#define DMA_DAC_MASK	DMA_BIT_MASK(40)
1080#define sym_build_sge(np, data, badd, len)				\
1081do {									\
1082	(data)->addr = cpu_to_scr(badd);				\
1083	(data)->size = cpu_to_scr((((badd) >> 8) & 0xff000000) + len);	\
1084} while (0)
1085#elif SYM_CONF_DMA_ADDRESSING_MODE == 2
1086#define DMA_DAC_MASK	DMA_BIT_MASK(64)
1087int sym_lookup_dmap(struct sym_hcb *np, u32 h, int s);
1088static inline void
1089sym_build_sge(struct sym_hcb *np, struct sym_tblmove *data, u64 badd, int len)
1090{
1091	u32 h = (badd>>32);
1092	int s = (h&SYM_DMAP_MASK);
1093
1094	if (h != np->dmap_bah[s])
1095		goto bad;
1096good:
1097	(data)->addr = cpu_to_scr(badd);
1098	(data)->size = cpu_to_scr((s<<24) + len);
1099	return;
1100bad:
1101	s = sym_lookup_dmap(np, h, s);
1102	goto good;
1103}
1104#else
1105#error "Unsupported DMA addressing mode"
1106#endif
1107
1108/*
1109 *  MEMORY ALLOCATOR.
1110 */
1111
1112#define sym_get_mem_cluster()	\
1113	(void *) __get_free_pages(GFP_ATOMIC, SYM_MEM_PAGE_ORDER)
1114#define sym_free_mem_cluster(p)	\
1115	free_pages((unsigned long)p, SYM_MEM_PAGE_ORDER)
1116
1117/*
1118 *  Link between free memory chunks of a given size.
1119 */
1120typedef struct sym_m_link {
1121	struct sym_m_link *next;
1122} *m_link_p;
1123
1124/*
1125 *  Virtual to bus physical translation for a given cluster.
1126 *  Such a structure is only useful with DMA abstraction.
1127 */
1128typedef struct sym_m_vtob {	/* Virtual to Bus address translation */
1129	struct sym_m_vtob *next;
1130	void *vaddr;		/* Virtual address */
1131	dma_addr_t baddr;	/* Bus physical address */
1132} *m_vtob_p;
1133
1134/* Hash this stuff a bit to speed up translations */
1135#define VTOB_HASH_SHIFT		5
1136#define VTOB_HASH_SIZE		(1UL << VTOB_HASH_SHIFT)
1137#define VTOB_HASH_MASK		(VTOB_HASH_SIZE-1)
1138#define VTOB_HASH_CODE(m)	\
1139	((((unsigned long)(m)) >> SYM_MEM_CLUSTER_SHIFT) & VTOB_HASH_MASK)
1140
1141/*
1142 *  Memory pool of a given kind.
1143 *  Ideally, we want to use:
1144 *  1) 1 pool for memory we donnot need to involve in DMA.
1145 *  2) The same pool for controllers that require same DMA 
1146 *     constraints and features.
1147 *     The OS specific m_pool_id_t thing and the sym_m_pool_match() 
1148 *     method are expected to tell the driver about.
1149 */
1150typedef struct sym_m_pool {
1151	m_pool_ident_t	dev_dmat;	/* Identifies the pool (see above) */
1152	void * (*get_mem_cluster)(struct sym_m_pool *);
1153#ifdef	SYM_MEM_FREE_UNUSED
1154	void (*free_mem_cluster)(struct sym_m_pool *, void *);
1155#endif
1156#define M_GET_MEM_CLUSTER()		mp->get_mem_cluster(mp)
1157#define M_FREE_MEM_CLUSTER(p)		mp->free_mem_cluster(mp, p)
1158	int nump;
1159	m_vtob_p vtob[VTOB_HASH_SIZE];
1160	struct sym_m_pool *next;
1161	struct sym_m_link h[SYM_MEM_CLUSTER_SHIFT - SYM_MEM_SHIFT + 1];
1162} *m_pool_p;
1163
1164/*
1165 *  Alloc, free and translate addresses to bus physical 
1166 *  for DMAable memory.
1167 */
1168void *__sym_calloc_dma(m_pool_ident_t dev_dmat, int size, char *name);
1169void __sym_mfree_dma(m_pool_ident_t dev_dmat, void *m, int size, char *name);
1170dma_addr_t __vtobus(m_pool_ident_t dev_dmat, void *m);
1171
1172/*
1173 * Verbs used by the driver code for DMAable memory handling.
1174 * The _uvptv_ macro avoids a nasty warning about pointer to volatile 
1175 * being discarded.
1176 */
1177#define _uvptv_(p) ((void *)((u_long)(p)))
1178
1179#define _sym_calloc_dma(np, l, n)	__sym_calloc_dma(np->bus_dmat, l, n)
1180#define _sym_mfree_dma(np, p, l, n)	\
1181			__sym_mfree_dma(np->bus_dmat, _uvptv_(p), l, n)
1182#define sym_calloc_dma(l, n)		_sym_calloc_dma(np, l, n)
1183#define sym_mfree_dma(p, l, n)		_sym_mfree_dma(np, p, l, n)
1184#define vtobus(p)			__vtobus(np->bus_dmat, _uvptv_(p))
1185
1186/*
1187 *  We have to provide the driver memory allocator with methods for 
1188 *  it to maintain virtual to bus physical address translations.
1189 */
1190
1191#define sym_m_pool_match(mp_id1, mp_id2)	(mp_id1 == mp_id2)
1192
1193static inline void *sym_m_get_dma_mem_cluster(m_pool_p mp, m_vtob_p vbp)
1194{
1195	void *vaddr = NULL;
1196	dma_addr_t baddr = 0;
1197
1198	vaddr = dma_alloc_coherent(mp->dev_dmat, SYM_MEM_CLUSTER_SIZE, &baddr,
1199			GFP_ATOMIC);
1200	if (vaddr) {
1201		vbp->vaddr = vaddr;
1202		vbp->baddr = baddr;
1203	}
1204	return vaddr;
1205}
1206
1207static inline void sym_m_free_dma_mem_cluster(m_pool_p mp, m_vtob_p vbp)
1208{
1209	dma_free_coherent(mp->dev_dmat, SYM_MEM_CLUSTER_SIZE, vbp->vaddr,
1210			vbp->baddr);
1211}
1212
1213#endif /* SYM_HIPD_H */