Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 | // SPDX-License-Identifier: GPL-2.0-or-later /* * AMD Address Translation Library * * umc.c : Unified Memory Controller (UMC) topology helpers * * Copyright (c) 2023, Advanced Micro Devices, Inc. * All Rights Reserved. * * Author: Yazen Ghannam <Yazen.Ghannam@amd.com> */ #include "internal.h" /* * MI300 has a fixed, model-specific mapping between a UMC instance and * its related Data Fabric Coherent Station instance. * * The MCA_IPID_UMC[InstanceId] field holds a unique identifier for the * UMC instance within a Node. Use this to find the appropriate Coherent * Station ID. * * Redundant bits were removed from the map below. */ static const u16 umc_coh_st_map[32] = { 0x393, 0x293, 0x193, 0x093, 0x392, 0x292, 0x192, 0x092, 0x391, 0x291, 0x191, 0x091, 0x390, 0x290, 0x190, 0x090, 0x793, 0x693, 0x593, 0x493, 0x792, 0x692, 0x592, 0x492, 0x791, 0x691, 0x591, 0x491, 0x790, 0x690, 0x590, 0x490, }; #define UMC_ID_MI300 GENMASK(23, 12) static u8 get_coh_st_inst_id_mi300(struct atl_err *err) { u16 umc_id = FIELD_GET(UMC_ID_MI300, err->ipid); u8 i; for (i = 0; i < ARRAY_SIZE(umc_coh_st_map); i++) { if (umc_id == umc_coh_st_map[i]) break; } WARN_ON_ONCE(i >= ARRAY_SIZE(umc_coh_st_map)); return i; } /* XOR the bits in @val. */ static u16 bitwise_xor_bits(u16 val) { u16 tmp = 0; u8 i; for (i = 0; i < 16; i++) tmp ^= (val >> i) & 0x1; return tmp; } struct xor_bits { bool xor_enable; u16 col_xor; u32 row_xor; }; #define NUM_BANK_BITS 4 static struct { /* UMC::CH::AddrHashBank */ struct xor_bits bank[NUM_BANK_BITS]; /* UMC::CH::AddrHashPC */ struct xor_bits pc; /* UMC::CH::AddrHashPC2 */ u8 bank_xor; } addr_hash; #define MI300_UMC_CH_BASE 0x90000 #define MI300_ADDR_HASH_BANK0 (MI300_UMC_CH_BASE + 0xC8) #define MI300_ADDR_HASH_PC (MI300_UMC_CH_BASE + 0xE0) #define MI300_ADDR_HASH_PC2 (MI300_UMC_CH_BASE + 0xE4) #define ADDR_HASH_XOR_EN BIT(0) #define ADDR_HASH_COL_XOR GENMASK(13, 1) #define ADDR_HASH_ROW_XOR GENMASK(31, 14) #define ADDR_HASH_BANK_XOR GENMASK(5, 0) /* * Read UMC::CH::AddrHash{Bank,PC,PC2} registers to get XOR bits used * for hashing. Do this during module init, since the values will not * change during run time. * * These registers are instantiated for each UMC across each AMD Node. * However, they should be identically programmed due to the fixed hardware * design of MI300 systems. So read the values from Node 0 UMC 0 and keep a * single global structure for simplicity. */ int get_addr_hash_mi300(void) { u32 temp; int ret; u8 i; for (i = 0; i < NUM_BANK_BITS; i++) { ret = amd_smn_read(0, MI300_ADDR_HASH_BANK0 + (i * 4), &temp); if (ret) return ret; addr_hash.bank[i].xor_enable = FIELD_GET(ADDR_HASH_XOR_EN, temp); addr_hash.bank[i].col_xor = FIELD_GET(ADDR_HASH_COL_XOR, temp); addr_hash.bank[i].row_xor = FIELD_GET(ADDR_HASH_ROW_XOR, temp); } ret = amd_smn_read(0, MI300_ADDR_HASH_PC, &temp); if (ret) return ret; addr_hash.pc.xor_enable = FIELD_GET(ADDR_HASH_XOR_EN, temp); addr_hash.pc.col_xor = FIELD_GET(ADDR_HASH_COL_XOR, temp); addr_hash.pc.row_xor = FIELD_GET(ADDR_HASH_ROW_XOR, temp); ret = amd_smn_read(0, MI300_ADDR_HASH_PC2, &temp); if (ret) return ret; addr_hash.bank_xor = FIELD_GET(ADDR_HASH_BANK_XOR, temp); return 0; } /* * MI300 systems report a DRAM address in MCA_ADDR for DRAM ECC errors. This must * be converted to the intermediate normalized address (NA) before translating to a * system physical address. * * The DRAM address includes bank, row, and column. Also included are bits for * pseudochannel (PC) and stack ID (SID). * * Abbreviations: (S)tack ID, (P)seudochannel, (R)ow, (B)ank, (C)olumn, (Z)ero * * The MCA address format is as follows: * MCA_ADDR[27:0] = {S[1:0], P[0], R[14:0], B[3:0], C[4:0], Z[0]} * * The normalized address format is fixed in hardware and is as follows: * NA[30:0] = {S[1:0], R[13:0], C4, B[1:0], B[3:2], C[3:2], P, C[1:0], Z[4:0]} * * Additionally, the PC and Bank bits may be hashed. This must be accounted for before * reconstructing the normalized address. */ #define MI300_UMC_MCA_COL GENMASK(5, 1) #define MI300_UMC_MCA_BANK GENMASK(9, 6) #define MI300_UMC_MCA_ROW GENMASK(24, 10) #define MI300_UMC_MCA_PC BIT(25) #define MI300_UMC_MCA_SID GENMASK(27, 26) #define MI300_NA_COL_1_0 GENMASK(6, 5) #define MI300_NA_PC BIT(7) #define MI300_NA_COL_3_2 GENMASK(9, 8) #define MI300_NA_BANK_3_2 GENMASK(11, 10) #define MI300_NA_BANK_1_0 GENMASK(13, 12) #define MI300_NA_COL_4 BIT(14) #define MI300_NA_ROW GENMASK(28, 15) #define MI300_NA_SID GENMASK(30, 29) static unsigned long convert_dram_to_norm_addr_mi300(unsigned long addr) { u16 i, col, row, bank, pc, sid, temp; col = FIELD_GET(MI300_UMC_MCA_COL, addr); bank = FIELD_GET(MI300_UMC_MCA_BANK, addr); row = FIELD_GET(MI300_UMC_MCA_ROW, addr); pc = FIELD_GET(MI300_UMC_MCA_PC, addr); sid = FIELD_GET(MI300_UMC_MCA_SID, addr); /* Calculate hash for each Bank bit. */ for (i = 0; i < NUM_BANK_BITS; i++) { if (!addr_hash.bank[i].xor_enable) continue; temp = bitwise_xor_bits(col & addr_hash.bank[i].col_xor); temp ^= bitwise_xor_bits(row & addr_hash.bank[i].row_xor); bank ^= temp << i; } /* Calculate hash for PC bit. */ if (addr_hash.pc.xor_enable) { /* Bits SID[1:0] act as Bank[6:5] for PC hash, so apply them here. */ bank |= sid << 5; temp = bitwise_xor_bits(col & addr_hash.pc.col_xor); temp ^= bitwise_xor_bits(row & addr_hash.pc.row_xor); temp ^= bitwise_xor_bits(bank & addr_hash.bank_xor); pc ^= temp; /* Drop SID bits for the sake of debug printing later. */ bank &= 0x1F; } /* Reconstruct the normalized address starting with NA[4:0] = 0 */ addr = 0; /* NA[6:5] = Column[1:0] */ temp = col & 0x3; addr |= FIELD_PREP(MI300_NA_COL_1_0, temp); /* NA[7] = PC */ addr |= FIELD_PREP(MI300_NA_PC, pc); /* NA[9:8] = Column[3:2] */ temp = (col >> 2) & 0x3; addr |= FIELD_PREP(MI300_NA_COL_3_2, temp); /* NA[11:10] = Bank[3:2] */ temp = (bank >> 2) & 0x3; addr |= FIELD_PREP(MI300_NA_BANK_3_2, temp); /* NA[13:12] = Bank[1:0] */ temp = bank & 0x3; addr |= FIELD_PREP(MI300_NA_BANK_1_0, temp); /* NA[14] = Column[4] */ temp = (col >> 4) & 0x1; addr |= FIELD_PREP(MI300_NA_COL_4, temp); /* NA[28:15] = Row[13:0] */ addr |= FIELD_PREP(MI300_NA_ROW, row); /* NA[30:29] = SID[1:0] */ addr |= FIELD_PREP(MI300_NA_SID, sid); pr_debug("Addr=0x%016lx", addr); pr_debug("Bank=%u Row=%u Column=%u PC=%u SID=%u", bank, row, col, pc, sid); return addr; } /* * When a DRAM ECC error occurs on MI300 systems, it is recommended to retire * all memory within that DRAM row. This applies to the memory with a DRAM * bank. * * To find the memory addresses, loop through permutations of the DRAM column * bits and find the System Physical address of each. The column bits are used * to calculate the intermediate Normalized address, so all permutations should * be checked. * * See amd_atl::convert_dram_to_norm_addr_mi300() for MI300 address formats. */ #define MI300_NUM_COL BIT(HWEIGHT(MI300_UMC_MCA_COL)) static void retire_row_mi300(struct atl_err *a_err) { unsigned long addr; struct page *p; u8 col; for (col = 0; col < MI300_NUM_COL; col++) { a_err->addr &= ~MI300_UMC_MCA_COL; a_err->addr |= FIELD_PREP(MI300_UMC_MCA_COL, col); addr = amd_convert_umc_mca_addr_to_sys_addr(a_err); if (IS_ERR_VALUE(addr)) continue; addr = PHYS_PFN(addr); /* * Skip invalid or already poisoned pages to avoid unnecessary * error messages from memory_failure(). */ p = pfn_to_online_page(addr); if (!p) continue; if (PageHWPoison(p)) continue; memory_failure(addr, 0); } } void amd_retire_dram_row(struct atl_err *a_err) { if (df_cfg.rev == DF4p5 && df_cfg.flags.heterogeneous) return retire_row_mi300(a_err); } EXPORT_SYMBOL_GPL(amd_retire_dram_row); static unsigned long get_addr(unsigned long addr) { if (df_cfg.rev == DF4p5 && df_cfg.flags.heterogeneous) return convert_dram_to_norm_addr_mi300(addr); return addr; } #define MCA_IPID_INST_ID_HI GENMASK_ULL(47, 44) static u8 get_die_id(struct atl_err *err) { /* * AMD Node ID is provided in MCA_IPID[InstanceIdHi], and this * needs to be divided by 4 to get the internal Die ID. */ if (df_cfg.rev == DF4p5 && df_cfg.flags.heterogeneous) { u8 node_id = FIELD_GET(MCA_IPID_INST_ID_HI, err->ipid); return node_id >> 2; } /* * For CPUs, this is the AMD Node ID modulo the number * of AMD Nodes per socket. */ return topology_amd_node_id(err->cpu) % topology_amd_nodes_per_pkg(); } #define UMC_CHANNEL_NUM GENMASK(31, 20) static u8 get_coh_st_inst_id(struct atl_err *err) { if (df_cfg.rev == DF4p5 && df_cfg.flags.heterogeneous) return get_coh_st_inst_id_mi300(err); return FIELD_GET(UMC_CHANNEL_NUM, err->ipid); } unsigned long convert_umc_mca_addr_to_sys_addr(struct atl_err *err) { u8 socket_id = topology_physical_package_id(err->cpu); u8 coh_st_inst_id = get_coh_st_inst_id(err); unsigned long addr = get_addr(err->addr); u8 die_id = get_die_id(err); pr_debug("socket_id=0x%x die_id=0x%x coh_st_inst_id=0x%x addr=0x%016lx", socket_id, die_id, coh_st_inst_id, addr); return norm_to_sys_addr(socket_id, die_id, coh_st_inst_id, addr); } |