Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 | // SPDX-License-Identifier: GPL-2.0-or-later /* * AMD Address Translation Library * * map.c : Functions to read and decode DRAM address maps * * Copyright (c) 2023, Advanced Micro Devices, Inc. * All Rights Reserved. * * Author: Yazen Ghannam <Yazen.Ghannam@amd.com> */ #include "internal.h" static int df2_get_intlv_mode(struct addr_ctx *ctx) { ctx->map.intlv_mode = FIELD_GET(DF2_INTLV_NUM_CHAN, ctx->map.base); if (ctx->map.intlv_mode == 8) ctx->map.intlv_mode = DF2_2CHAN_HASH; if (ctx->map.intlv_mode != NONE && ctx->map.intlv_mode != NOHASH_2CHAN && ctx->map.intlv_mode != DF2_2CHAN_HASH) return -EINVAL; return 0; } static int df3_get_intlv_mode(struct addr_ctx *ctx) { ctx->map.intlv_mode = FIELD_GET(DF3_INTLV_NUM_CHAN, ctx->map.base); return 0; } static int df3p5_get_intlv_mode(struct addr_ctx *ctx) { ctx->map.intlv_mode = FIELD_GET(DF3p5_INTLV_NUM_CHAN, ctx->map.base); if (ctx->map.intlv_mode == DF3_6CHAN) return -EINVAL; return 0; } static int df4_get_intlv_mode(struct addr_ctx *ctx) { ctx->map.intlv_mode = FIELD_GET(DF4_INTLV_NUM_CHAN, ctx->map.intlv); if (ctx->map.intlv_mode == DF3_COD4_2CHAN_HASH || ctx->map.intlv_mode == DF3_COD2_4CHAN_HASH || ctx->map.intlv_mode == DF3_COD1_8CHAN_HASH || ctx->map.intlv_mode == DF3_6CHAN) return -EINVAL; return 0; } static int df4p5_get_intlv_mode(struct addr_ctx *ctx) { ctx->map.intlv_mode = FIELD_GET(DF4p5_INTLV_NUM_CHAN, ctx->map.intlv); if (ctx->map.intlv_mode <= NOHASH_32CHAN) return 0; if (ctx->map.intlv_mode >= MI3_HASH_8CHAN && ctx->map.intlv_mode <= MI3_HASH_32CHAN) return 0; /* * Modes matching the ranges above are returned as-is. * * All other modes are "fixed up" by adding 20h to make a unique value. */ ctx->map.intlv_mode += 0x20; return 0; } static int get_intlv_mode(struct addr_ctx *ctx) { int ret; switch (df_cfg.rev) { case DF2: ret = df2_get_intlv_mode(ctx); break; case DF3: ret = df3_get_intlv_mode(ctx); break; case DF3p5: ret = df3p5_get_intlv_mode(ctx); break; case DF4: ret = df4_get_intlv_mode(ctx); break; case DF4p5: ret = df4p5_get_intlv_mode(ctx); break; default: ret = -EINVAL; } if (ret) atl_debug_on_bad_df_rev(); return ret; } static u64 get_hi_addr_offset(u32 reg_dram_offset) { u8 shift = DF_DRAM_BASE_LIMIT_LSB; u64 hi_addr_offset; switch (df_cfg.rev) { case DF2: hi_addr_offset = FIELD_GET(DF2_HI_ADDR_OFFSET, reg_dram_offset); break; case DF3: case DF3p5: hi_addr_offset = FIELD_GET(DF3_HI_ADDR_OFFSET, reg_dram_offset); break; case DF4: case DF4p5: hi_addr_offset = FIELD_GET(DF4_HI_ADDR_OFFSET, reg_dram_offset); break; default: hi_addr_offset = 0; atl_debug_on_bad_df_rev(); } if (df_cfg.rev == DF4p5 && df_cfg.flags.heterogeneous) shift = MI300_DRAM_LIMIT_LSB; return hi_addr_offset << shift; } /* * Returns: 0 if offset is disabled. * 1 if offset is enabled. * -EINVAL on error. */ static int get_dram_offset(struct addr_ctx *ctx, u64 *norm_offset) { u32 reg_dram_offset; u8 map_num; /* Should not be called for map 0. */ if (!ctx->map.num) { atl_debug(ctx, "Trying to find DRAM offset for map 0"); return -EINVAL; } /* * DramOffset registers don't exist for map 0, so the base register * actually refers to map 1. * Adjust the map_num for the register offsets. */ map_num = ctx->map.num - 1; if (df_cfg.rev >= DF4) { /* Read D18F7x140 (DramOffset) */ if (df_indirect_read_instance(ctx->node_id, 7, 0x140 + (4 * map_num), ctx->inst_id, ®_dram_offset)) return -EINVAL; } else { /* Read D18F0x1B4 (DramOffset) */ if (df_indirect_read_instance(ctx->node_id, 0, 0x1B4 + (4 * map_num), ctx->inst_id, ®_dram_offset)) return -EINVAL; } if (!FIELD_GET(DF_HI_ADDR_OFFSET_EN, reg_dram_offset)) return 0; *norm_offset = get_hi_addr_offset(reg_dram_offset); return 1; } static int df3_6ch_get_dram_addr_map(struct addr_ctx *ctx) { u16 dst_fabric_id = FIELD_GET(DF3_DST_FABRIC_ID, ctx->map.limit); u8 i, j, shift = 4, mask = 0xF; u32 reg, offset = 0x60; u16 dst_node_id; /* Get Socket 1 register. */ if (dst_fabric_id & df_cfg.socket_id_mask) offset = 0x68; /* Read D18F0x06{0,8} (DF::Skt0CsTargetRemap0)/(DF::Skt0CsTargetRemap1) */ if (df_indirect_read_broadcast(ctx->node_id, 0, offset, ®)) return -EINVAL; /* Save 8 remap entries. */ for (i = 0, j = 0; i < 8; i++, j++) ctx->map.remap_array[i] = (reg >> (j * shift)) & mask; dst_node_id = dst_fabric_id & df_cfg.node_id_mask; dst_node_id >>= df_cfg.node_id_shift; /* Read D18F2x090 (DF::Np2ChannelConfig) */ if (df_indirect_read_broadcast(dst_node_id, 2, 0x90, ®)) return -EINVAL; ctx->map.np2_bits = FIELD_GET(DF_LOG2_ADDR_64K_SPACE0, reg); return 0; } static int df2_get_dram_addr_map(struct addr_ctx *ctx) { /* Read D18F0x110 (DramBaseAddress). */ if (df_indirect_read_instance(ctx->node_id, 0, 0x110 + (8 * ctx->map.num), ctx->inst_id, &ctx->map.base)) return -EINVAL; /* Read D18F0x114 (DramLimitAddress). */ if (df_indirect_read_instance(ctx->node_id, 0, 0x114 + (8 * ctx->map.num), ctx->inst_id, &ctx->map.limit)) return -EINVAL; return 0; } static int df3_get_dram_addr_map(struct addr_ctx *ctx) { if (df2_get_dram_addr_map(ctx)) return -EINVAL; /* Read D18F0x3F8 (DfGlobalCtl). */ if (df_indirect_read_instance(ctx->node_id, 0, 0x3F8, ctx->inst_id, &ctx->map.ctl)) return -EINVAL; return 0; } static int df4_get_dram_addr_map(struct addr_ctx *ctx) { u8 remap_sel, i, j, shift = 4, mask = 0xF; u32 remap_reg; /* Read D18F7xE00 (DramBaseAddress). */ if (df_indirect_read_instance(ctx->node_id, 7, 0xE00 + (16 * ctx->map.num), ctx->inst_id, &ctx->map.base)) return -EINVAL; /* Read D18F7xE04 (DramLimitAddress). */ if (df_indirect_read_instance(ctx->node_id, 7, 0xE04 + (16 * ctx->map.num), ctx->inst_id, &ctx->map.limit)) return -EINVAL; /* Read D18F7xE08 (DramAddressCtl). */ if (df_indirect_read_instance(ctx->node_id, 7, 0xE08 + (16 * ctx->map.num), ctx->inst_id, &ctx->map.ctl)) return -EINVAL; /* Read D18F7xE0C (DramAddressIntlv). */ if (df_indirect_read_instance(ctx->node_id, 7, 0xE0C + (16 * ctx->map.num), ctx->inst_id, &ctx->map.intlv)) return -EINVAL; /* Check if Remap Enable bit is valid. */ if (!FIELD_GET(DF4_REMAP_EN, ctx->map.ctl)) return 0; /* Fill with bogus values, because '0' is a valid value. */ memset(&ctx->map.remap_array, 0xFF, sizeof(ctx->map.remap_array)); /* Get Remap registers. */ remap_sel = FIELD_GET(DF4_REMAP_SEL, ctx->map.ctl); /* Read D18F7x180 (CsTargetRemap0A). */ if (df_indirect_read_instance(ctx->node_id, 7, 0x180 + (8 * remap_sel), ctx->inst_id, &remap_reg)) return -EINVAL; /* Save first 8 remap entries. */ for (i = 0, j = 0; i < 8; i++, j++) ctx->map.remap_array[i] = (remap_reg >> (j * shift)) & mask; /* Read D18F7x184 (CsTargetRemap0B). */ if (df_indirect_read_instance(ctx->node_id, 7, 0x184 + (8 * remap_sel), ctx->inst_id, &remap_reg)) return -EINVAL; /* Save next 8 remap entries. */ for (i = 8, j = 0; i < 16; i++, j++) ctx->map.remap_array[i] = (remap_reg >> (j * shift)) & mask; return 0; } static int df4p5_get_dram_addr_map(struct addr_ctx *ctx) { u8 remap_sel, i, j, shift = 5, mask = 0x1F; u32 remap_reg; /* Read D18F7x200 (DramBaseAddress). */ if (df_indirect_read_instance(ctx->node_id, 7, 0x200 + (16 * ctx->map.num), ctx->inst_id, &ctx->map.base)) return -EINVAL; /* Read D18F7x204 (DramLimitAddress). */ if (df_indirect_read_instance(ctx->node_id, 7, 0x204 + (16 * ctx->map.num), ctx->inst_id, &ctx->map.limit)) return -EINVAL; /* Read D18F7x208 (DramAddressCtl). */ if (df_indirect_read_instance(ctx->node_id, 7, 0x208 + (16 * ctx->map.num), ctx->inst_id, &ctx->map.ctl)) return -EINVAL; /* Read D18F7x20C (DramAddressIntlv). */ if (df_indirect_read_instance(ctx->node_id, 7, 0x20C + (16 * ctx->map.num), ctx->inst_id, &ctx->map.intlv)) return -EINVAL; /* Check if Remap Enable bit is valid. */ if (!FIELD_GET(DF4_REMAP_EN, ctx->map.ctl)) return 0; /* Fill with bogus values, because '0' is a valid value. */ memset(&ctx->map.remap_array, 0xFF, sizeof(ctx->map.remap_array)); /* Get Remap registers. */ remap_sel = FIELD_GET(DF4p5_REMAP_SEL, ctx->map.ctl); /* Read D18F7x180 (CsTargetRemap0A). */ if (df_indirect_read_instance(ctx->node_id, 7, 0x180 + (24 * remap_sel), ctx->inst_id, &remap_reg)) return -EINVAL; /* Save first 6 remap entries. */ for (i = 0, j = 0; i < 6; i++, j++) ctx->map.remap_array[i] = (remap_reg >> (j * shift)) & mask; /* Read D18F7x184 (CsTargetRemap0B). */ if (df_indirect_read_instance(ctx->node_id, 7, 0x184 + (24 * remap_sel), ctx->inst_id, &remap_reg)) return -EINVAL; /* Save next 6 remap entries. */ for (i = 6, j = 0; i < 12; i++, j++) ctx->map.remap_array[i] = (remap_reg >> (j * shift)) & mask; /* Read D18F7x188 (CsTargetRemap0C). */ if (df_indirect_read_instance(ctx->node_id, 7, 0x188 + (24 * remap_sel), ctx->inst_id, &remap_reg)) return -EINVAL; /* Save next 6 remap entries. */ for (i = 12, j = 0; i < 18; i++, j++) ctx->map.remap_array[i] = (remap_reg >> (j * shift)) & mask; return 0; } static int get_dram_addr_map(struct addr_ctx *ctx) { switch (df_cfg.rev) { case DF2: return df2_get_dram_addr_map(ctx); case DF3: case DF3p5: return df3_get_dram_addr_map(ctx); case DF4: return df4_get_dram_addr_map(ctx); case DF4p5: return df4p5_get_dram_addr_map(ctx); default: atl_debug_on_bad_df_rev(); return -EINVAL; } } static int get_coh_st_fabric_id(struct addr_ctx *ctx) { u32 reg; /* * On MI300 systems, the Coherent Station Fabric ID is derived * later. And it does not depend on the register value. */ if (df_cfg.rev == DF4p5 && df_cfg.flags.heterogeneous) return 0; /* Read D18F0x50 (FabricBlockInstanceInformation3). */ if (df_indirect_read_instance(ctx->node_id, 0, 0x50, ctx->inst_id, ®)) return -EINVAL; if (df_cfg.rev < DF4p5) ctx->coh_st_fabric_id = FIELD_GET(DF2_COH_ST_FABRIC_ID, reg); else ctx->coh_st_fabric_id = FIELD_GET(DF4p5_COH_ST_FABRIC_ID, reg); return 0; } static int find_normalized_offset(struct addr_ctx *ctx, u64 *norm_offset) { u64 last_offset = 0; int ret; for (ctx->map.num = 1; ctx->map.num < df_cfg.num_coh_st_maps; ctx->map.num++) { ret = get_dram_offset(ctx, norm_offset); if (ret < 0) return ret; /* Continue search if this map's offset is not enabled. */ if (!ret) continue; /* Enabled offsets should never be 0. */ if (*norm_offset == 0) { atl_debug(ctx, "Enabled map %u offset is 0", ctx->map.num); return -EINVAL; } /* Offsets should always increase from one map to the next. */ if (*norm_offset <= last_offset) { atl_debug(ctx, "Map %u offset (0x%016llx) <= previous (0x%016llx)", ctx->map.num, *norm_offset, last_offset); return -EINVAL; } /* Match if this map's offset is less than the current calculated address. */ if (ctx->ret_addr >= *norm_offset) break; last_offset = *norm_offset; } /* * Finished search without finding a match. * Reset to map 0 and no offset. */ if (ctx->map.num >= df_cfg.num_coh_st_maps) { ctx->map.num = 0; *norm_offset = 0; } return 0; } static bool valid_map(struct addr_ctx *ctx) { if (df_cfg.rev >= DF4) return FIELD_GET(DF_ADDR_RANGE_VAL, ctx->map.ctl); else return FIELD_GET(DF_ADDR_RANGE_VAL, ctx->map.base); } static int get_address_map_common(struct addr_ctx *ctx) { u64 norm_offset = 0; if (get_coh_st_fabric_id(ctx)) return -EINVAL; if (find_normalized_offset(ctx, &norm_offset)) return -EINVAL; if (get_dram_addr_map(ctx)) return -EINVAL; if (!valid_map(ctx)) return -EINVAL; ctx->ret_addr -= norm_offset; return 0; } static u8 get_num_intlv_chan(struct addr_ctx *ctx) { switch (ctx->map.intlv_mode) { case NONE: return 1; case NOHASH_2CHAN: case DF2_2CHAN_HASH: case DF3_COD4_2CHAN_HASH: case DF4_NPS4_2CHAN_HASH: case DF4p5_NPS4_2CHAN_1K_HASH: case DF4p5_NPS4_2CHAN_2K_HASH: return 2; case DF4_NPS4_3CHAN_HASH: case DF4p5_NPS4_3CHAN_1K_HASH: case DF4p5_NPS4_3CHAN_2K_HASH: return 3; case NOHASH_4CHAN: case DF3_COD2_4CHAN_HASH: case DF4_NPS2_4CHAN_HASH: case DF4p5_NPS2_4CHAN_1K_HASH: case DF4p5_NPS2_4CHAN_2K_HASH: return 4; case DF4_NPS2_5CHAN_HASH: case DF4p5_NPS2_5CHAN_1K_HASH: case DF4p5_NPS2_5CHAN_2K_HASH: return 5; case DF3_6CHAN: case DF4_NPS2_6CHAN_HASH: case DF4p5_NPS2_6CHAN_1K_HASH: case DF4p5_NPS2_6CHAN_2K_HASH: return 6; case NOHASH_8CHAN: case DF3_COD1_8CHAN_HASH: case DF4_NPS1_8CHAN_HASH: case MI3_HASH_8CHAN: case DF4p5_NPS1_8CHAN_1K_HASH: case DF4p5_NPS1_8CHAN_2K_HASH: return 8; case DF4_NPS1_10CHAN_HASH: case DF4p5_NPS1_10CHAN_1K_HASH: case DF4p5_NPS1_10CHAN_2K_HASH: return 10; case DF4_NPS1_12CHAN_HASH: case DF4p5_NPS1_12CHAN_1K_HASH: case DF4p5_NPS1_12CHAN_2K_HASH: return 12; case NOHASH_16CHAN: case MI3_HASH_16CHAN: case DF4p5_NPS1_16CHAN_1K_HASH: case DF4p5_NPS1_16CHAN_2K_HASH: return 16; case DF4p5_NPS0_24CHAN_1K_HASH: case DF4p5_NPS0_24CHAN_2K_HASH: return 24; case NOHASH_32CHAN: case MI3_HASH_32CHAN: return 32; default: atl_debug_on_bad_intlv_mode(ctx); return 0; } } static void calculate_intlv_bits(struct addr_ctx *ctx) { ctx->map.num_intlv_chan = get_num_intlv_chan(ctx); ctx->map.total_intlv_chan = ctx->map.num_intlv_chan; ctx->map.total_intlv_chan *= ctx->map.num_intlv_dies; ctx->map.total_intlv_chan *= ctx->map.num_intlv_sockets; /* * Get the number of bits needed to cover this many channels. * order_base_2() rounds up automatically. */ ctx->map.total_intlv_bits = order_base_2(ctx->map.total_intlv_chan); } static u8 get_intlv_bit_pos(struct addr_ctx *ctx) { u8 addr_sel = 0; switch (df_cfg.rev) { case DF2: addr_sel = FIELD_GET(DF2_INTLV_ADDR_SEL, ctx->map.base); break; case DF3: case DF3p5: addr_sel = FIELD_GET(DF3_INTLV_ADDR_SEL, ctx->map.base); break; case DF4: case DF4p5: addr_sel = FIELD_GET(DF4_INTLV_ADDR_SEL, ctx->map.intlv); break; default: atl_debug_on_bad_df_rev(); break; } /* Add '8' to get the 'interleave bit position'. */ return addr_sel + 8; } static u8 get_num_intlv_dies(struct addr_ctx *ctx) { u8 dies = 0; switch (df_cfg.rev) { case DF2: dies = FIELD_GET(DF2_INTLV_NUM_DIES, ctx->map.limit); break; case DF3: dies = FIELD_GET(DF3_INTLV_NUM_DIES, ctx->map.base); break; case DF3p5: dies = FIELD_GET(DF3p5_INTLV_NUM_DIES, ctx->map.base); break; case DF4: case DF4p5: dies = FIELD_GET(DF4_INTLV_NUM_DIES, ctx->map.intlv); break; default: atl_debug_on_bad_df_rev(); break; } /* Register value is log2, e.g. 0 -> 1 die, 1 -> 2 dies, etc. */ return 1 << dies; } static u8 get_num_intlv_sockets(struct addr_ctx *ctx) { u8 sockets = 0; switch (df_cfg.rev) { case DF2: sockets = FIELD_GET(DF2_INTLV_NUM_SOCKETS, ctx->map.limit); break; case DF3: case DF3p5: sockets = FIELD_GET(DF2_INTLV_NUM_SOCKETS, ctx->map.base); break; case DF4: case DF4p5: sockets = FIELD_GET(DF4_INTLV_NUM_SOCKETS, ctx->map.intlv); break; default: atl_debug_on_bad_df_rev(); break; } /* Register value is log2, e.g. 0 -> 1 sockets, 1 -> 2 sockets, etc. */ return 1 << sockets; } static int get_global_map_data(struct addr_ctx *ctx) { if (get_intlv_mode(ctx)) return -EINVAL; if (ctx->map.intlv_mode == DF3_6CHAN && df3_6ch_get_dram_addr_map(ctx)) return -EINVAL; ctx->map.intlv_bit_pos = get_intlv_bit_pos(ctx); ctx->map.num_intlv_dies = get_num_intlv_dies(ctx); ctx->map.num_intlv_sockets = get_num_intlv_sockets(ctx); calculate_intlv_bits(ctx); return 0; } static void dump_address_map(struct dram_addr_map *map) { u8 i; pr_debug("intlv_mode=0x%x", map->intlv_mode); pr_debug("num=0x%x", map->num); pr_debug("base=0x%x", map->base); pr_debug("limit=0x%x", map->limit); pr_debug("ctl=0x%x", map->ctl); pr_debug("intlv=0x%x", map->intlv); for (i = 0; i < MAX_COH_ST_CHANNELS; i++) pr_debug("remap_array[%u]=0x%x", i, map->remap_array[i]); pr_debug("intlv_bit_pos=%u", map->intlv_bit_pos); pr_debug("num_intlv_chan=%u", map->num_intlv_chan); pr_debug("num_intlv_dies=%u", map->num_intlv_dies); pr_debug("num_intlv_sockets=%u", map->num_intlv_sockets); pr_debug("total_intlv_chan=%u", map->total_intlv_chan); pr_debug("total_intlv_bits=%u", map->total_intlv_bits); } int get_address_map(struct addr_ctx *ctx) { int ret; ret = get_address_map_common(ctx); if (ret) return ret; ret = get_global_map_data(ctx); if (ret) return ret; dump_address_map(&ctx->map); return ret; } |