Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 | // SPDX-License-Identifier: GPL-2.0 /* Author: Dan Scally <djrscally@gmail.com> */ #include <linux/acpi.h> #include <linux/clkdev.h> #include <linux/clk-provider.h> #include <linux/device.h> #include <linux/dmi.h> #include <linux/gpio/consumer.h> #include <linux/regulator/driver.h> #include <linux/slab.h> #include "common.h" /* * 82c0d13a-78c5-4244-9bb1-eb8b539a8d11 * This _DSM GUID allows controlling the sensor clk when it is not controlled * through a GPIO. */ static const guid_t img_clk_guid = GUID_INIT(0x82c0d13a, 0x78c5, 0x4244, 0x9b, 0xb1, 0xeb, 0x8b, 0x53, 0x9a, 0x8d, 0x11); static void skl_int3472_enable_clk(struct int3472_clock *clk, int enable) { struct int3472_discrete_device *int3472 = to_int3472_device(clk); union acpi_object args[3]; union acpi_object argv4; if (clk->ena_gpio) { gpiod_set_value_cansleep(clk->ena_gpio, enable); return; } args[0].integer.type = ACPI_TYPE_INTEGER; args[0].integer.value = clk->imgclk_index; args[1].integer.type = ACPI_TYPE_INTEGER; args[1].integer.value = enable; args[2].integer.type = ACPI_TYPE_INTEGER; args[2].integer.value = 1; argv4.type = ACPI_TYPE_PACKAGE; argv4.package.count = 3; argv4.package.elements = args; acpi_evaluate_dsm(acpi_device_handle(int3472->adev), &img_clk_guid, 0, 1, &argv4); } /* * The regulators have to have .ops to be valid, but the only ops we actually * support are .enable and .disable which are handled via .ena_gpiod. Pass an * empty struct to clear the check without lying about capabilities. */ static const struct regulator_ops int3472_gpio_regulator_ops; static int skl_int3472_clk_prepare(struct clk_hw *hw) { skl_int3472_enable_clk(to_int3472_clk(hw), 1); return 0; } static void skl_int3472_clk_unprepare(struct clk_hw *hw) { skl_int3472_enable_clk(to_int3472_clk(hw), 0); } static int skl_int3472_clk_enable(struct clk_hw *hw) { /* * We're just turning a GPIO on to enable the clock, which operation * has the potential to sleep. Given .enable() cannot sleep, but * .prepare() can, we toggle the GPIO in .prepare() instead. Thus, * nothing to do here. */ return 0; } static void skl_int3472_clk_disable(struct clk_hw *hw) { /* Likewise, nothing to do here... */ } static unsigned int skl_int3472_get_clk_frequency(struct int3472_discrete_device *int3472) { union acpi_object *obj; unsigned int freq; obj = skl_int3472_get_acpi_buffer(int3472->sensor, "SSDB"); if (IS_ERR(obj)) return 0; /* report rate as 0 on error */ if (obj->buffer.length < CIO2_SENSOR_SSDB_MCLKSPEED_OFFSET + sizeof(u32)) { dev_err(int3472->dev, "The buffer is too small\n"); kfree(obj); return 0; } freq = *(u32 *)(obj->buffer.pointer + CIO2_SENSOR_SSDB_MCLKSPEED_OFFSET); kfree(obj); return freq; } static unsigned long skl_int3472_clk_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct int3472_clock *clk = to_int3472_clk(hw); return clk->frequency; } static const struct clk_ops skl_int3472_clock_ops = { .prepare = skl_int3472_clk_prepare, .unprepare = skl_int3472_clk_unprepare, .enable = skl_int3472_clk_enable, .disable = skl_int3472_clk_disable, .recalc_rate = skl_int3472_clk_recalc_rate, }; int skl_int3472_register_dsm_clock(struct int3472_discrete_device *int3472) { struct acpi_device *adev = int3472->adev; struct clk_init_data init = { .ops = &skl_int3472_clock_ops, .flags = CLK_GET_RATE_NOCACHE, }; int ret; if (int3472->clock.cl) return 0; /* A GPIO controlled clk has already been registered */ if (!acpi_check_dsm(adev->handle, &img_clk_guid, 0, BIT(1))) return 0; /* DSM clock control is not available */ init.name = kasprintf(GFP_KERNEL, "%s-clk", acpi_dev_name(adev)); if (!init.name) return -ENOMEM; int3472->clock.frequency = skl_int3472_get_clk_frequency(int3472); int3472->clock.clk_hw.init = &init; int3472->clock.clk = clk_register(&adev->dev, &int3472->clock.clk_hw); if (IS_ERR(int3472->clock.clk)) { ret = PTR_ERR(int3472->clock.clk); goto out_free_init_name; } int3472->clock.cl = clkdev_create(int3472->clock.clk, NULL, int3472->sensor_name); if (!int3472->clock.cl) { ret = -ENOMEM; goto err_unregister_clk; } kfree(init.name); return 0; err_unregister_clk: clk_unregister(int3472->clock.clk); out_free_init_name: kfree(init.name); return ret; } int skl_int3472_register_gpio_clock(struct int3472_discrete_device *int3472, struct gpio_desc *gpio) { struct clk_init_data init = { .ops = &skl_int3472_clock_ops, .flags = CLK_GET_RATE_NOCACHE, }; int ret; if (int3472->clock.cl) return -EBUSY; int3472->clock.ena_gpio = gpio; init.name = kasprintf(GFP_KERNEL, "%s-clk", acpi_dev_name(int3472->adev)); if (!init.name) return -ENOMEM; int3472->clock.frequency = skl_int3472_get_clk_frequency(int3472); int3472->clock.clk_hw.init = &init; int3472->clock.clk = clk_register(&int3472->adev->dev, &int3472->clock.clk_hw); if (IS_ERR(int3472->clock.clk)) { ret = PTR_ERR(int3472->clock.clk); goto out_free_init_name; } int3472->clock.cl = clkdev_create(int3472->clock.clk, NULL, int3472->sensor_name); if (!int3472->clock.cl) { ret = -ENOMEM; goto err_unregister_clk; } kfree(init.name); return 0; err_unregister_clk: clk_unregister(int3472->clock.clk); out_free_init_name: kfree(init.name); return ret; } void skl_int3472_unregister_clock(struct int3472_discrete_device *int3472) { if (!int3472->clock.cl) return; clkdev_drop(int3472->clock.cl); clk_unregister(int3472->clock.clk); } /* * The INT3472 device is going to be the only supplier of a regulator for * the sensor device. But unlike the clk framework the regulator framework * does not allow matching by consumer-device-name only. * * Ideally all sensor drivers would use "avdd" as supply-id. But for drivers * where this cannot be changed because another supply-id is already used in * e.g. DeviceTree files an alias for the other supply-id can be added here. * * Do not forget to update GPIO_REGULATOR_SUPPLY_MAP_COUNT when changing this. */ static const char * const skl_int3472_regulator_map_supplies[] = { "avdd", "AVDD", }; static_assert(ARRAY_SIZE(skl_int3472_regulator_map_supplies) == GPIO_REGULATOR_SUPPLY_MAP_COUNT); /* * On some models there is a single GPIO regulator which is shared between * sensors and only listed in the ACPI resources of one sensor. * This DMI table contains the name of the second sensor. This is used to add * entries for the second sensor to the supply_map. */ static const struct dmi_system_id skl_int3472_regulator_second_sensor[] = { { /* Lenovo Miix 510-12IKB */ .matches = { DMI_MATCH(DMI_SYS_VENDOR, "LENOVO"), DMI_MATCH(DMI_PRODUCT_VERSION, "MIIX 510-12IKB"), }, .driver_data = "i2c-OVTI2680:00", }, { } }; int skl_int3472_register_regulator(struct int3472_discrete_device *int3472, struct gpio_desc *gpio) { struct regulator_init_data init_data = { }; struct regulator_config cfg = { }; const char *second_sensor = NULL; const struct dmi_system_id *id; int i, j; id = dmi_first_match(skl_int3472_regulator_second_sensor); if (id) second_sensor = id->driver_data; for (i = 0, j = 0; i < ARRAY_SIZE(skl_int3472_regulator_map_supplies); i++) { int3472->regulator.supply_map[j].supply = skl_int3472_regulator_map_supplies[i]; int3472->regulator.supply_map[j].dev_name = int3472->sensor_name; j++; if (second_sensor) { int3472->regulator.supply_map[j].supply = skl_int3472_regulator_map_supplies[i]; int3472->regulator.supply_map[j].dev_name = second_sensor; j++; } } init_data.constraints.valid_ops_mask = REGULATOR_CHANGE_STATUS; init_data.consumer_supplies = int3472->regulator.supply_map; init_data.num_consumer_supplies = j; snprintf(int3472->regulator.regulator_name, sizeof(int3472->regulator.regulator_name), "%s-regulator", acpi_dev_name(int3472->adev)); snprintf(int3472->regulator.supply_name, GPIO_REGULATOR_SUPPLY_NAME_LENGTH, "supply-0"); int3472->regulator.rdesc = INT3472_REGULATOR( int3472->regulator.regulator_name, int3472->regulator.supply_name, &int3472_gpio_regulator_ops); int3472->regulator.gpio = gpio; cfg.dev = &int3472->adev->dev; cfg.init_data = &init_data; cfg.ena_gpiod = int3472->regulator.gpio; int3472->regulator.rdev = regulator_register(int3472->dev, &int3472->regulator.rdesc, &cfg); return PTR_ERR_OR_ZERO(int3472->regulator.rdev); } void skl_int3472_unregister_regulator(struct int3472_discrete_device *int3472) { regulator_unregister(int3472->regulator.rdev); } |