Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 | // SPDX-License-Identifier: (GPL-2.0 OR MIT) /* Google virtual Ethernet (gve) driver * * Copyright (C) 2015-2021 Google, Inc. */ #include "gve.h" #include "gve_adminq.h" #include "gve_utils.h" #include <linux/ip.h> #include <linux/tcp.h> #include <linux/vmalloc.h> #include <linux/skbuff.h> #include <net/xdp_sock_drv.h> static inline void gve_tx_put_doorbell(struct gve_priv *priv, struct gve_queue_resources *q_resources, u32 val) { iowrite32be(val, &priv->db_bar2[be32_to_cpu(q_resources->db_index)]); } void gve_xdp_tx_flush(struct gve_priv *priv, u32 xdp_qid) { u32 tx_qid = gve_xdp_tx_queue_id(priv, xdp_qid); struct gve_tx_ring *tx = &priv->tx[tx_qid]; gve_tx_put_doorbell(priv, tx->q_resources, tx->req); } /* gvnic can only transmit from a Registered Segment. * We copy skb payloads into the registered segment before writing Tx * descriptors and ringing the Tx doorbell. * * gve_tx_fifo_* manages the Registered Segment as a FIFO - clients must * free allocations in the order they were allocated. */ static int gve_tx_fifo_init(struct gve_priv *priv, struct gve_tx_fifo *fifo) { fifo->base = vmap(fifo->qpl->pages, fifo->qpl->num_entries, VM_MAP, PAGE_KERNEL); if (unlikely(!fifo->base)) { netif_err(priv, drv, priv->dev, "Failed to vmap fifo, qpl_id = %d\n", fifo->qpl->id); return -ENOMEM; } fifo->size = fifo->qpl->num_entries * PAGE_SIZE; atomic_set(&fifo->available, fifo->size); fifo->head = 0; return 0; } static void gve_tx_fifo_release(struct gve_priv *priv, struct gve_tx_fifo *fifo) { WARN(atomic_read(&fifo->available) != fifo->size, "Releasing non-empty fifo"); vunmap(fifo->base); } static int gve_tx_fifo_pad_alloc_one_frag(struct gve_tx_fifo *fifo, size_t bytes) { return (fifo->head + bytes < fifo->size) ? 0 : fifo->size - fifo->head; } static bool gve_tx_fifo_can_alloc(struct gve_tx_fifo *fifo, size_t bytes) { return (atomic_read(&fifo->available) <= bytes) ? false : true; } /* gve_tx_alloc_fifo - Allocate fragment(s) from Tx FIFO * @fifo: FIFO to allocate from * @bytes: Allocation size * @iov: Scatter-gather elements to fill with allocation fragment base/len * * Returns number of valid elements in iov[] or negative on error. * * Allocations from a given FIFO must be externally synchronized but concurrent * allocation and frees are allowed. */ static int gve_tx_alloc_fifo(struct gve_tx_fifo *fifo, size_t bytes, struct gve_tx_iovec iov[2]) { size_t overflow, padding; u32 aligned_head; int nfrags = 0; if (!bytes) return 0; /* This check happens before we know how much padding is needed to * align to a cacheline boundary for the payload, but that is fine, * because the FIFO head always start aligned, and the FIFO's boundaries * are aligned, so if there is space for the data, there is space for * the padding to the next alignment. */ WARN(!gve_tx_fifo_can_alloc(fifo, bytes), "Reached %s when there's not enough space in the fifo", __func__); nfrags++; iov[0].iov_offset = fifo->head; iov[0].iov_len = bytes; fifo->head += bytes; if (fifo->head > fifo->size) { /* If the allocation did not fit in the tail fragment of the * FIFO, also use the head fragment. */ nfrags++; overflow = fifo->head - fifo->size; iov[0].iov_len -= overflow; iov[1].iov_offset = 0; /* Start of fifo*/ iov[1].iov_len = overflow; fifo->head = overflow; } /* Re-align to a cacheline boundary */ aligned_head = L1_CACHE_ALIGN(fifo->head); padding = aligned_head - fifo->head; iov[nfrags - 1].iov_padding = padding; atomic_sub(bytes + padding, &fifo->available); fifo->head = aligned_head; if (fifo->head == fifo->size) fifo->head = 0; return nfrags; } /* gve_tx_free_fifo - Return space to Tx FIFO * @fifo: FIFO to return fragments to * @bytes: Bytes to free */ static void gve_tx_free_fifo(struct gve_tx_fifo *fifo, size_t bytes) { atomic_add(bytes, &fifo->available); } static size_t gve_tx_clear_buffer_state(struct gve_tx_buffer_state *info) { size_t space_freed = 0; int i; for (i = 0; i < ARRAY_SIZE(info->iov); i++) { space_freed += info->iov[i].iov_len + info->iov[i].iov_padding; info->iov[i].iov_len = 0; info->iov[i].iov_padding = 0; } return space_freed; } static int gve_clean_xdp_done(struct gve_priv *priv, struct gve_tx_ring *tx, u32 to_do) { struct gve_tx_buffer_state *info; u32 clean_end = tx->done + to_do; u64 pkts = 0, bytes = 0; size_t space_freed = 0; u32 xsk_complete = 0; u32 idx; for (; tx->done < clean_end; tx->done++) { idx = tx->done & tx->mask; info = &tx->info[idx]; if (unlikely(!info->xdp.size)) continue; bytes += info->xdp.size; pkts++; xsk_complete += info->xdp.is_xsk; info->xdp.size = 0; if (info->xdp_frame) { xdp_return_frame(info->xdp_frame); info->xdp_frame = NULL; } space_freed += gve_tx_clear_buffer_state(info); } gve_tx_free_fifo(&tx->tx_fifo, space_freed); if (xsk_complete > 0 && tx->xsk_pool) xsk_tx_completed(tx->xsk_pool, xsk_complete); u64_stats_update_begin(&tx->statss); tx->bytes_done += bytes; tx->pkt_done += pkts; u64_stats_update_end(&tx->statss); return pkts; } static int gve_clean_tx_done(struct gve_priv *priv, struct gve_tx_ring *tx, u32 to_do, bool try_to_wake); void gve_tx_stop_ring_gqi(struct gve_priv *priv, int idx) { int ntfy_idx = gve_tx_idx_to_ntfy(priv, idx); struct gve_tx_ring *tx = &priv->tx[idx]; if (!gve_tx_was_added_to_block(priv, idx)) return; gve_remove_napi(priv, ntfy_idx); gve_clean_tx_done(priv, tx, priv->tx_desc_cnt, false); netdev_tx_reset_queue(tx->netdev_txq); gve_tx_remove_from_block(priv, idx); } static void gve_tx_free_ring_gqi(struct gve_priv *priv, struct gve_tx_ring *tx, struct gve_tx_alloc_rings_cfg *cfg) { struct device *hdev = &priv->pdev->dev; int idx = tx->q_num; size_t bytes; u32 slots; slots = tx->mask + 1; dma_free_coherent(hdev, sizeof(*tx->q_resources), tx->q_resources, tx->q_resources_bus); tx->q_resources = NULL; if (!tx->raw_addressing) { gve_tx_fifo_release(priv, &tx->tx_fifo); gve_unassign_qpl(cfg->qpl_cfg, tx->tx_fifo.qpl->id); tx->tx_fifo.qpl = NULL; } bytes = sizeof(*tx->desc) * slots; dma_free_coherent(hdev, bytes, tx->desc, tx->bus); tx->desc = NULL; vfree(tx->info); tx->info = NULL; netif_dbg(priv, drv, priv->dev, "freed tx queue %d\n", idx); } void gve_tx_start_ring_gqi(struct gve_priv *priv, int idx) { int ntfy_idx = gve_tx_idx_to_ntfy(priv, idx); struct gve_tx_ring *tx = &priv->tx[idx]; gve_tx_add_to_block(priv, idx); tx->netdev_txq = netdev_get_tx_queue(priv->dev, idx); gve_add_napi(priv, ntfy_idx, gve_napi_poll); } static int gve_tx_alloc_ring_gqi(struct gve_priv *priv, struct gve_tx_alloc_rings_cfg *cfg, struct gve_tx_ring *tx, int idx) { struct device *hdev = &priv->pdev->dev; size_t bytes; /* Make sure everything is zeroed to start */ memset(tx, 0, sizeof(*tx)); spin_lock_init(&tx->clean_lock); spin_lock_init(&tx->xdp_lock); tx->q_num = idx; tx->mask = cfg->ring_size - 1; /* alloc metadata */ tx->info = vcalloc(cfg->ring_size, sizeof(*tx->info)); if (!tx->info) return -ENOMEM; /* alloc tx queue */ bytes = sizeof(*tx->desc) * cfg->ring_size; tx->desc = dma_alloc_coherent(hdev, bytes, &tx->bus, GFP_KERNEL); if (!tx->desc) goto abort_with_info; tx->raw_addressing = cfg->raw_addressing; tx->dev = hdev; if (!tx->raw_addressing) { tx->tx_fifo.qpl = gve_assign_tx_qpl(cfg, idx); if (!tx->tx_fifo.qpl) goto abort_with_desc; /* map Tx FIFO */ if (gve_tx_fifo_init(priv, &tx->tx_fifo)) goto abort_with_qpl; } tx->q_resources = dma_alloc_coherent(hdev, sizeof(*tx->q_resources), &tx->q_resources_bus, GFP_KERNEL); if (!tx->q_resources) goto abort_with_fifo; return 0; abort_with_fifo: if (!tx->raw_addressing) gve_tx_fifo_release(priv, &tx->tx_fifo); abort_with_qpl: if (!tx->raw_addressing) gve_unassign_qpl(cfg->qpl_cfg, tx->tx_fifo.qpl->id); abort_with_desc: dma_free_coherent(hdev, bytes, tx->desc, tx->bus); tx->desc = NULL; abort_with_info: vfree(tx->info); tx->info = NULL; return -ENOMEM; } int gve_tx_alloc_rings_gqi(struct gve_priv *priv, struct gve_tx_alloc_rings_cfg *cfg) { struct gve_tx_ring *tx = cfg->tx; int err = 0; int i, j; if (!cfg->raw_addressing && !cfg->qpls) { netif_err(priv, drv, priv->dev, "Cannot alloc QPL ring before allocing QPLs\n"); return -EINVAL; } if (cfg->start_idx + cfg->num_rings > cfg->qcfg->max_queues) { netif_err(priv, drv, priv->dev, "Cannot alloc more than the max num of Tx rings\n"); return -EINVAL; } if (cfg->start_idx == 0) { tx = kvcalloc(cfg->qcfg->max_queues, sizeof(struct gve_tx_ring), GFP_KERNEL); if (!tx) return -ENOMEM; } else if (!tx) { netif_err(priv, drv, priv->dev, "Cannot alloc tx rings from a nonzero start idx without tx array\n"); return -EINVAL; } for (i = cfg->start_idx; i < cfg->start_idx + cfg->num_rings; i++) { err = gve_tx_alloc_ring_gqi(priv, cfg, &tx[i], i); if (err) { netif_err(priv, drv, priv->dev, "Failed to alloc tx ring=%d: err=%d\n", i, err); goto cleanup; } } cfg->tx = tx; return 0; cleanup: for (j = 0; j < i; j++) gve_tx_free_ring_gqi(priv, &tx[j], cfg); if (cfg->start_idx == 0) kvfree(tx); return err; } void gve_tx_free_rings_gqi(struct gve_priv *priv, struct gve_tx_alloc_rings_cfg *cfg) { struct gve_tx_ring *tx = cfg->tx; int i; if (!tx) return; for (i = cfg->start_idx; i < cfg->start_idx + cfg->num_rings; i++) gve_tx_free_ring_gqi(priv, &tx[i], cfg); if (cfg->start_idx == 0) { kvfree(tx); cfg->tx = NULL; } } /* gve_tx_avail - Calculates the number of slots available in the ring * @tx: tx ring to check * * Returns the number of slots available * * The capacity of the queue is mask + 1. We don't need to reserve an entry. **/ static inline u32 gve_tx_avail(struct gve_tx_ring *tx) { return tx->mask + 1 - (tx->req - tx->done); } static inline int gve_skb_fifo_bytes_required(struct gve_tx_ring *tx, struct sk_buff *skb) { int pad_bytes, align_hdr_pad; int bytes; int hlen; hlen = skb_is_gso(skb) ? skb_checksum_start_offset(skb) + tcp_hdrlen(skb) : min_t(int, GVE_GQ_TX_MIN_PKT_DESC_BYTES, skb->len); pad_bytes = gve_tx_fifo_pad_alloc_one_frag(&tx->tx_fifo, hlen); /* We need to take into account the header alignment padding. */ align_hdr_pad = L1_CACHE_ALIGN(hlen) - hlen; bytes = align_hdr_pad + pad_bytes + skb->len; return bytes; } /* The most descriptors we could need is MAX_SKB_FRAGS + 4 : * 1 for each skb frag * 1 for the skb linear portion * 1 for when tcp hdr needs to be in separate descriptor * 1 if the payload wraps to the beginning of the FIFO * 1 for metadata descriptor */ #define MAX_TX_DESC_NEEDED (MAX_SKB_FRAGS + 4) static void gve_tx_unmap_buf(struct device *dev, struct gve_tx_buffer_state *info) { if (info->skb) { dma_unmap_single(dev, dma_unmap_addr(info, dma), dma_unmap_len(info, len), DMA_TO_DEVICE); dma_unmap_len_set(info, len, 0); } else { dma_unmap_page(dev, dma_unmap_addr(info, dma), dma_unmap_len(info, len), DMA_TO_DEVICE); dma_unmap_len_set(info, len, 0); } } /* Check if sufficient resources (descriptor ring space, FIFO space) are * available to transmit the given number of bytes. */ static inline bool gve_can_tx(struct gve_tx_ring *tx, int bytes_required) { bool can_alloc = true; if (!tx->raw_addressing) can_alloc = gve_tx_fifo_can_alloc(&tx->tx_fifo, bytes_required); return (gve_tx_avail(tx) >= MAX_TX_DESC_NEEDED && can_alloc); } static_assert(NAPI_POLL_WEIGHT >= MAX_TX_DESC_NEEDED); /* Stops the queue if the skb cannot be transmitted. */ static int gve_maybe_stop_tx(struct gve_priv *priv, struct gve_tx_ring *tx, struct sk_buff *skb) { int bytes_required = 0; u32 nic_done; u32 to_do; int ret; if (!tx->raw_addressing) bytes_required = gve_skb_fifo_bytes_required(tx, skb); if (likely(gve_can_tx(tx, bytes_required))) return 0; ret = -EBUSY; spin_lock(&tx->clean_lock); nic_done = gve_tx_load_event_counter(priv, tx); to_do = nic_done - tx->done; /* Only try to clean if there is hope for TX */ if (to_do + gve_tx_avail(tx) >= MAX_TX_DESC_NEEDED) { if (to_do > 0) { to_do = min_t(u32, to_do, NAPI_POLL_WEIGHT); gve_clean_tx_done(priv, tx, to_do, false); } if (likely(gve_can_tx(tx, bytes_required))) ret = 0; } if (ret) { /* No space, so stop the queue */ tx->stop_queue++; netif_tx_stop_queue(tx->netdev_txq); } spin_unlock(&tx->clean_lock); return ret; } static void gve_tx_fill_pkt_desc(union gve_tx_desc *pkt_desc, u16 csum_offset, u8 ip_summed, bool is_gso, int l4_hdr_offset, u32 desc_cnt, u16 hlen, u64 addr, u16 pkt_len) { /* l4_hdr_offset and csum_offset are in units of 16-bit words */ if (is_gso) { pkt_desc->pkt.type_flags = GVE_TXD_TSO | GVE_TXF_L4CSUM; pkt_desc->pkt.l4_csum_offset = csum_offset >> 1; pkt_desc->pkt.l4_hdr_offset = l4_hdr_offset >> 1; } else if (likely(ip_summed == CHECKSUM_PARTIAL)) { pkt_desc->pkt.type_flags = GVE_TXD_STD | GVE_TXF_L4CSUM; pkt_desc->pkt.l4_csum_offset = csum_offset >> 1; pkt_desc->pkt.l4_hdr_offset = l4_hdr_offset >> 1; } else { pkt_desc->pkt.type_flags = GVE_TXD_STD; pkt_desc->pkt.l4_csum_offset = 0; pkt_desc->pkt.l4_hdr_offset = 0; } pkt_desc->pkt.desc_cnt = desc_cnt; pkt_desc->pkt.len = cpu_to_be16(pkt_len); pkt_desc->pkt.seg_len = cpu_to_be16(hlen); pkt_desc->pkt.seg_addr = cpu_to_be64(addr); } static void gve_tx_fill_mtd_desc(union gve_tx_desc *mtd_desc, struct sk_buff *skb) { BUILD_BUG_ON(sizeof(mtd_desc->mtd) != sizeof(mtd_desc->pkt)); mtd_desc->mtd.type_flags = GVE_TXD_MTD | GVE_MTD_SUBTYPE_PATH; mtd_desc->mtd.path_state = GVE_MTD_PATH_STATE_DEFAULT | GVE_MTD_PATH_HASH_L4; mtd_desc->mtd.path_hash = cpu_to_be32(skb->hash); mtd_desc->mtd.reserved0 = 0; mtd_desc->mtd.reserved1 = 0; } static void gve_tx_fill_seg_desc(union gve_tx_desc *seg_desc, u16 l3_offset, u16 gso_size, bool is_gso_v6, bool is_gso, u16 len, u64 addr) { seg_desc->seg.type_flags = GVE_TXD_SEG; if (is_gso) { if (is_gso_v6) seg_desc->seg.type_flags |= GVE_TXSF_IPV6; seg_desc->seg.l3_offset = l3_offset >> 1; seg_desc->seg.mss = cpu_to_be16(gso_size); } seg_desc->seg.seg_len = cpu_to_be16(len); seg_desc->seg.seg_addr = cpu_to_be64(addr); } static void gve_dma_sync_for_device(struct device *dev, dma_addr_t *page_buses, u64 iov_offset, u64 iov_len) { u64 last_page = (iov_offset + iov_len - 1) / PAGE_SIZE; u64 first_page = iov_offset / PAGE_SIZE; u64 page; for (page = first_page; page <= last_page; page++) dma_sync_single_for_device(dev, page_buses[page], PAGE_SIZE, DMA_TO_DEVICE); } static int gve_tx_add_skb_copy(struct gve_priv *priv, struct gve_tx_ring *tx, struct sk_buff *skb) { int pad_bytes, hlen, hdr_nfrags, payload_nfrags, l4_hdr_offset; union gve_tx_desc *pkt_desc, *seg_desc; struct gve_tx_buffer_state *info; int mtd_desc_nr = !!skb->l4_hash; bool is_gso = skb_is_gso(skb); u32 idx = tx->req & tx->mask; int payload_iov = 2; int copy_offset; u32 next_idx; int i; info = &tx->info[idx]; pkt_desc = &tx->desc[idx]; l4_hdr_offset = skb_checksum_start_offset(skb); /* If the skb is gso, then we want the tcp header alone in the first segment * otherwise we want the minimum required by the gVNIC spec. */ hlen = is_gso ? l4_hdr_offset + tcp_hdrlen(skb) : min_t(int, GVE_GQ_TX_MIN_PKT_DESC_BYTES, skb->len); info->skb = skb; /* We don't want to split the header, so if necessary, pad to the end * of the fifo and then put the header at the beginning of the fifo. */ pad_bytes = gve_tx_fifo_pad_alloc_one_frag(&tx->tx_fifo, hlen); hdr_nfrags = gve_tx_alloc_fifo(&tx->tx_fifo, hlen + pad_bytes, &info->iov[0]); WARN(!hdr_nfrags, "hdr_nfrags should never be 0!"); payload_nfrags = gve_tx_alloc_fifo(&tx->tx_fifo, skb->len - hlen, &info->iov[payload_iov]); gve_tx_fill_pkt_desc(pkt_desc, skb->csum_offset, skb->ip_summed, is_gso, l4_hdr_offset, 1 + mtd_desc_nr + payload_nfrags, hlen, info->iov[hdr_nfrags - 1].iov_offset, skb->len); skb_copy_bits(skb, 0, tx->tx_fifo.base + info->iov[hdr_nfrags - 1].iov_offset, hlen); gve_dma_sync_for_device(&priv->pdev->dev, tx->tx_fifo.qpl->page_buses, info->iov[hdr_nfrags - 1].iov_offset, info->iov[hdr_nfrags - 1].iov_len); copy_offset = hlen; if (mtd_desc_nr) { next_idx = (tx->req + 1) & tx->mask; gve_tx_fill_mtd_desc(&tx->desc[next_idx], skb); } for (i = payload_iov; i < payload_nfrags + payload_iov; i++) { next_idx = (tx->req + 1 + mtd_desc_nr + i - payload_iov) & tx->mask; seg_desc = &tx->desc[next_idx]; gve_tx_fill_seg_desc(seg_desc, skb_network_offset(skb), skb_shinfo(skb)->gso_size, skb_is_gso_v6(skb), is_gso, info->iov[i].iov_len, info->iov[i].iov_offset); skb_copy_bits(skb, copy_offset, tx->tx_fifo.base + info->iov[i].iov_offset, info->iov[i].iov_len); gve_dma_sync_for_device(&priv->pdev->dev, tx->tx_fifo.qpl->page_buses, info->iov[i].iov_offset, info->iov[i].iov_len); copy_offset += info->iov[i].iov_len; } return 1 + mtd_desc_nr + payload_nfrags; } static int gve_tx_add_skb_no_copy(struct gve_priv *priv, struct gve_tx_ring *tx, struct sk_buff *skb) { const struct skb_shared_info *shinfo = skb_shinfo(skb); int hlen, num_descriptors, l4_hdr_offset; union gve_tx_desc *pkt_desc, *mtd_desc, *seg_desc; struct gve_tx_buffer_state *info; int mtd_desc_nr = !!skb->l4_hash; bool is_gso = skb_is_gso(skb); u32 idx = tx->req & tx->mask; u64 addr; u32 len; int i; info = &tx->info[idx]; pkt_desc = &tx->desc[idx]; l4_hdr_offset = skb_checksum_start_offset(skb); /* If the skb is gso, then we want only up to the tcp header in the first segment * to efficiently replicate on each segment otherwise we want the linear portion * of the skb (which will contain the checksum because skb->csum_start and * skb->csum_offset are given relative to skb->head) in the first segment. */ hlen = is_gso ? l4_hdr_offset + tcp_hdrlen(skb) : skb_headlen(skb); len = skb_headlen(skb); info->skb = skb; addr = dma_map_single(tx->dev, skb->data, len, DMA_TO_DEVICE); if (unlikely(dma_mapping_error(tx->dev, addr))) { tx->dma_mapping_error++; goto drop; } dma_unmap_len_set(info, len, len); dma_unmap_addr_set(info, dma, addr); num_descriptors = 1 + shinfo->nr_frags; if (hlen < len) num_descriptors++; if (mtd_desc_nr) num_descriptors++; gve_tx_fill_pkt_desc(pkt_desc, skb->csum_offset, skb->ip_summed, is_gso, l4_hdr_offset, num_descriptors, hlen, addr, skb->len); if (mtd_desc_nr) { idx = (idx + 1) & tx->mask; mtd_desc = &tx->desc[idx]; gve_tx_fill_mtd_desc(mtd_desc, skb); } if (hlen < len) { /* For gso the rest of the linear portion of the skb needs to * be in its own descriptor. */ len -= hlen; addr += hlen; idx = (idx + 1) & tx->mask; seg_desc = &tx->desc[idx]; gve_tx_fill_seg_desc(seg_desc, skb_network_offset(skb), skb_shinfo(skb)->gso_size, skb_is_gso_v6(skb), is_gso, len, addr); } for (i = 0; i < shinfo->nr_frags; i++) { const skb_frag_t *frag = &shinfo->frags[i]; idx = (idx + 1) & tx->mask; seg_desc = &tx->desc[idx]; len = skb_frag_size(frag); addr = skb_frag_dma_map(tx->dev, frag, 0, len, DMA_TO_DEVICE); if (unlikely(dma_mapping_error(tx->dev, addr))) { tx->dma_mapping_error++; goto unmap_drop; } tx->info[idx].skb = NULL; dma_unmap_len_set(&tx->info[idx], len, len); dma_unmap_addr_set(&tx->info[idx], dma, addr); gve_tx_fill_seg_desc(seg_desc, skb_network_offset(skb), skb_shinfo(skb)->gso_size, skb_is_gso_v6(skb), is_gso, len, addr); } return num_descriptors; unmap_drop: i += num_descriptors - shinfo->nr_frags; while (i--) { /* Skip metadata descriptor, if set */ if (i == 1 && mtd_desc_nr == 1) continue; idx--; gve_tx_unmap_buf(tx->dev, &tx->info[idx & tx->mask]); } drop: tx->dropped_pkt++; return 0; } netdev_tx_t gve_tx(struct sk_buff *skb, struct net_device *dev) { struct gve_priv *priv = netdev_priv(dev); struct gve_tx_ring *tx; int nsegs; WARN(skb_get_queue_mapping(skb) >= priv->tx_cfg.num_queues, "skb queue index out of range"); tx = &priv->tx[skb_get_queue_mapping(skb)]; if (unlikely(gve_maybe_stop_tx(priv, tx, skb))) { /* We need to ring the txq doorbell -- we have stopped the Tx * queue for want of resources, but prior calls to gve_tx() * may have added descriptors without ringing the doorbell. */ gve_tx_put_doorbell(priv, tx->q_resources, tx->req); return NETDEV_TX_BUSY; } if (tx->raw_addressing) nsegs = gve_tx_add_skb_no_copy(priv, tx, skb); else nsegs = gve_tx_add_skb_copy(priv, tx, skb); /* If the packet is getting sent, we need to update the skb */ if (nsegs) { netdev_tx_sent_queue(tx->netdev_txq, skb->len); skb_tx_timestamp(skb); tx->req += nsegs; } else { dev_kfree_skb_any(skb); } if (!netif_xmit_stopped(tx->netdev_txq) && netdev_xmit_more()) return NETDEV_TX_OK; /* Give packets to NIC. Even if this packet failed to send the doorbell * might need to be rung because of xmit_more. */ gve_tx_put_doorbell(priv, tx->q_resources, tx->req); return NETDEV_TX_OK; } static int gve_tx_fill_xdp(struct gve_priv *priv, struct gve_tx_ring *tx, void *data, int len, void *frame_p, bool is_xsk) { int pad, nfrags, ndescs, iovi, offset; struct gve_tx_buffer_state *info; u32 reqi = tx->req; pad = gve_tx_fifo_pad_alloc_one_frag(&tx->tx_fifo, len); if (pad >= GVE_GQ_TX_MIN_PKT_DESC_BYTES) pad = 0; info = &tx->info[reqi & tx->mask]; info->xdp_frame = frame_p; info->xdp.size = len; info->xdp.is_xsk = is_xsk; nfrags = gve_tx_alloc_fifo(&tx->tx_fifo, pad + len, &info->iov[0]); iovi = pad > 0; ndescs = nfrags - iovi; offset = 0; while (iovi < nfrags) { if (!offset) gve_tx_fill_pkt_desc(&tx->desc[reqi & tx->mask], 0, CHECKSUM_NONE, false, 0, ndescs, info->iov[iovi].iov_len, info->iov[iovi].iov_offset, len); else gve_tx_fill_seg_desc(&tx->desc[reqi & tx->mask], 0, 0, false, false, info->iov[iovi].iov_len, info->iov[iovi].iov_offset); memcpy(tx->tx_fifo.base + info->iov[iovi].iov_offset, data + offset, info->iov[iovi].iov_len); gve_dma_sync_for_device(&priv->pdev->dev, tx->tx_fifo.qpl->page_buses, info->iov[iovi].iov_offset, info->iov[iovi].iov_len); offset += info->iov[iovi].iov_len; iovi++; reqi++; } return ndescs; } int gve_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames, u32 flags) { struct gve_priv *priv = netdev_priv(dev); struct gve_tx_ring *tx; int i, err = 0, qid; if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) return -EINVAL; qid = gve_xdp_tx_queue_id(priv, smp_processor_id() % priv->num_xdp_queues); tx = &priv->tx[qid]; spin_lock(&tx->xdp_lock); for (i = 0; i < n; i++) { err = gve_xdp_xmit_one(priv, tx, frames[i]->data, frames[i]->len, frames[i]); if (err) break; } if (flags & XDP_XMIT_FLUSH) gve_tx_put_doorbell(priv, tx->q_resources, tx->req); spin_unlock(&tx->xdp_lock); u64_stats_update_begin(&tx->statss); tx->xdp_xmit += n; tx->xdp_xmit_errors += n - i; u64_stats_update_end(&tx->statss); return i ? i : err; } int gve_xdp_xmit_one(struct gve_priv *priv, struct gve_tx_ring *tx, void *data, int len, void *frame_p) { int nsegs; if (!gve_can_tx(tx, len + GVE_GQ_TX_MIN_PKT_DESC_BYTES - 1)) return -EBUSY; nsegs = gve_tx_fill_xdp(priv, tx, data, len, frame_p, false); tx->req += nsegs; return 0; } #define GVE_TX_START_THRESH 4096 static int gve_clean_tx_done(struct gve_priv *priv, struct gve_tx_ring *tx, u32 to_do, bool try_to_wake) { struct gve_tx_buffer_state *info; u64 pkts = 0, bytes = 0; size_t space_freed = 0; struct sk_buff *skb; u32 idx; int j; for (j = 0; j < to_do; j++) { idx = tx->done & tx->mask; netif_info(priv, tx_done, priv->dev, "[%d] %s: idx=%d (req=%u done=%u)\n", tx->q_num, __func__, idx, tx->req, tx->done); info = &tx->info[idx]; skb = info->skb; /* Unmap the buffer */ if (tx->raw_addressing) gve_tx_unmap_buf(tx->dev, info); tx->done++; /* Mark as free */ if (skb) { info->skb = NULL; bytes += skb->len; pkts++; dev_consume_skb_any(skb); if (tx->raw_addressing) continue; space_freed += gve_tx_clear_buffer_state(info); } } if (!tx->raw_addressing) gve_tx_free_fifo(&tx->tx_fifo, space_freed); u64_stats_update_begin(&tx->statss); tx->bytes_done += bytes; tx->pkt_done += pkts; u64_stats_update_end(&tx->statss); netdev_tx_completed_queue(tx->netdev_txq, pkts, bytes); /* start the queue if we've stopped it */ #ifndef CONFIG_BQL /* Make sure that the doorbells are synced */ smp_mb(); #endif if (try_to_wake && netif_tx_queue_stopped(tx->netdev_txq) && likely(gve_can_tx(tx, GVE_TX_START_THRESH))) { tx->wake_queue++; netif_tx_wake_queue(tx->netdev_txq); } return pkts; } u32 gve_tx_load_event_counter(struct gve_priv *priv, struct gve_tx_ring *tx) { u32 counter_index = be32_to_cpu(tx->q_resources->counter_index); __be32 counter = READ_ONCE(priv->counter_array[counter_index]); return be32_to_cpu(counter); } static int gve_xsk_tx(struct gve_priv *priv, struct gve_tx_ring *tx, int budget) { struct xdp_desc desc; int sent = 0, nsegs; void *data; spin_lock(&tx->xdp_lock); while (sent < budget) { if (!gve_can_tx(tx, GVE_TX_START_THRESH)) goto out; if (!xsk_tx_peek_desc(tx->xsk_pool, &desc)) { tx->xdp_xsk_done = tx->xdp_xsk_wakeup; goto out; } data = xsk_buff_raw_get_data(tx->xsk_pool, desc.addr); nsegs = gve_tx_fill_xdp(priv, tx, data, desc.len, NULL, true); tx->req += nsegs; sent++; } out: if (sent > 0) { gve_tx_put_doorbell(priv, tx->q_resources, tx->req); xsk_tx_release(tx->xsk_pool); } spin_unlock(&tx->xdp_lock); return sent; } bool gve_xdp_poll(struct gve_notify_block *block, int budget) { struct gve_priv *priv = block->priv; struct gve_tx_ring *tx = block->tx; u32 nic_done; bool repoll; u32 to_do; /* Find out how much work there is to be done */ nic_done = gve_tx_load_event_counter(priv, tx); to_do = min_t(u32, (nic_done - tx->done), budget); gve_clean_xdp_done(priv, tx, to_do); repoll = nic_done != tx->done; if (tx->xsk_pool) { int sent = gve_xsk_tx(priv, tx, budget); u64_stats_update_begin(&tx->statss); tx->xdp_xsk_sent += sent; u64_stats_update_end(&tx->statss); repoll |= (sent == budget); if (xsk_uses_need_wakeup(tx->xsk_pool)) xsk_set_tx_need_wakeup(tx->xsk_pool); } /* If we still have work we want to repoll */ return repoll; } bool gve_tx_poll(struct gve_notify_block *block, int budget) { struct gve_priv *priv = block->priv; struct gve_tx_ring *tx = block->tx; u32 nic_done; u32 to_do; /* If budget is 0, do all the work */ if (budget == 0) budget = INT_MAX; /* In TX path, it may try to clean completed pkts in order to xmit, * to avoid cleaning conflict, use spin_lock(), it yields better * concurrency between xmit/clean than netif's lock. */ spin_lock(&tx->clean_lock); /* Find out how much work there is to be done */ nic_done = gve_tx_load_event_counter(priv, tx); to_do = min_t(u32, (nic_done - tx->done), budget); gve_clean_tx_done(priv, tx, to_do, true); spin_unlock(&tx->clean_lock); /* If we still have work we want to repoll */ return nic_done != tx->done; } bool gve_tx_clean_pending(struct gve_priv *priv, struct gve_tx_ring *tx) { u32 nic_done = gve_tx_load_event_counter(priv, tx); return nic_done != tx->done; } |