Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 | // SPDX-License-Identifier: GPL-2.0-only /* * * Copyright © 2012 John Crispin <john@phrozen.org> * Copyright © 2016 Hauke Mehrtens <hauke@hauke-m.de> */ #include <linux/mtd/rawnand.h> #include <linux/of.h> #include <linux/platform_device.h> #include <lantiq_soc.h> /* nand registers */ #define EBU_ADDSEL1 0x24 #define EBU_NAND_CON 0xB0 #define EBU_NAND_WAIT 0xB4 #define NAND_WAIT_RD BIT(0) /* NAND flash status output */ #define NAND_WAIT_WR_C BIT(3) /* NAND Write/Read complete */ #define EBU_NAND_ECC0 0xB8 #define EBU_NAND_ECC_AC 0xBC /* * nand commands * The pins of the NAND chip are selected based on the address bits of the * "register" read and write. There are no special registers, but an * address range and the lower address bits are used to activate the * correct line. For example when the bit (1 << 2) is set in the address * the ALE pin will be activated. */ #define NAND_CMD_ALE BIT(2) /* address latch enable */ #define NAND_CMD_CLE BIT(3) /* command latch enable */ #define NAND_CMD_CS BIT(4) /* chip select */ #define NAND_CMD_SE BIT(5) /* spare area access latch */ #define NAND_CMD_WP BIT(6) /* write protect */ #define NAND_WRITE_CMD (NAND_CMD_CS | NAND_CMD_CLE) #define NAND_WRITE_ADDR (NAND_CMD_CS | NAND_CMD_ALE) #define NAND_WRITE_DATA (NAND_CMD_CS) #define NAND_READ_DATA (NAND_CMD_CS) /* we need to tel the ebu which addr we mapped the nand to */ #define ADDSEL1_MASK(x) (x << 4) #define ADDSEL1_REGEN 1 /* we need to tell the EBU that we have nand attached and set it up properly */ #define BUSCON1_SETUP (1 << 22) #define BUSCON1_BCGEN_RES (0x3 << 12) #define BUSCON1_WAITWRC2 (2 << 8) #define BUSCON1_WAITRDC2 (2 << 6) #define BUSCON1_HOLDC1 (1 << 4) #define BUSCON1_RECOVC1 (1 << 2) #define BUSCON1_CMULT4 1 #define NAND_CON_CE (1 << 20) #define NAND_CON_OUT_CS1 (1 << 10) #define NAND_CON_IN_CS1 (1 << 8) #define NAND_CON_PRE_P (1 << 7) #define NAND_CON_WP_P (1 << 6) #define NAND_CON_SE_P (1 << 5) #define NAND_CON_CS_P (1 << 4) #define NAND_CON_CSMUX (1 << 1) #define NAND_CON_NANDM 1 struct xway_nand_data { struct nand_controller controller; struct nand_chip chip; unsigned long csflags; void __iomem *nandaddr; }; static u8 xway_readb(struct mtd_info *mtd, int op) { struct nand_chip *chip = mtd_to_nand(mtd); struct xway_nand_data *data = nand_get_controller_data(chip); return readb(data->nandaddr + op); } static void xway_writeb(struct mtd_info *mtd, int op, u8 value) { struct nand_chip *chip = mtd_to_nand(mtd); struct xway_nand_data *data = nand_get_controller_data(chip); writeb(value, data->nandaddr + op); } static void xway_select_chip(struct nand_chip *chip, int select) { struct xway_nand_data *data = nand_get_controller_data(chip); switch (select) { case -1: ltq_ebu_w32_mask(NAND_CON_CE, 0, EBU_NAND_CON); ltq_ebu_w32_mask(NAND_CON_NANDM, 0, EBU_NAND_CON); spin_unlock_irqrestore(&ebu_lock, data->csflags); break; case 0: spin_lock_irqsave(&ebu_lock, data->csflags); ltq_ebu_w32_mask(0, NAND_CON_NANDM, EBU_NAND_CON); ltq_ebu_w32_mask(0, NAND_CON_CE, EBU_NAND_CON); break; default: BUG(); } } static void xway_cmd_ctrl(struct nand_chip *chip, int cmd, unsigned int ctrl) { struct mtd_info *mtd = nand_to_mtd(chip); if (cmd == NAND_CMD_NONE) return; if (ctrl & NAND_CLE) xway_writeb(mtd, NAND_WRITE_CMD, cmd); else if (ctrl & NAND_ALE) xway_writeb(mtd, NAND_WRITE_ADDR, cmd); while ((ltq_ebu_r32(EBU_NAND_WAIT) & NAND_WAIT_WR_C) == 0) ; } static int xway_dev_ready(struct nand_chip *chip) { return ltq_ebu_r32(EBU_NAND_WAIT) & NAND_WAIT_RD; } static unsigned char xway_read_byte(struct nand_chip *chip) { return xway_readb(nand_to_mtd(chip), NAND_READ_DATA); } static void xway_read_buf(struct nand_chip *chip, u_char *buf, int len) { int i; for (i = 0; i < len; i++) buf[i] = xway_readb(nand_to_mtd(chip), NAND_WRITE_DATA); } static void xway_write_buf(struct nand_chip *chip, const u_char *buf, int len) { int i; for (i = 0; i < len; i++) xway_writeb(nand_to_mtd(chip), NAND_WRITE_DATA, buf[i]); } static int xway_attach_chip(struct nand_chip *chip) { if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_SOFT && chip->ecc.algo == NAND_ECC_ALGO_UNKNOWN) chip->ecc.algo = NAND_ECC_ALGO_HAMMING; return 0; } static const struct nand_controller_ops xway_nand_ops = { .attach_chip = xway_attach_chip, }; /* * Probe for the NAND device. */ static int xway_nand_probe(struct platform_device *pdev) { struct xway_nand_data *data; struct mtd_info *mtd; int err; u32 cs; u32 cs_flag = 0; /* Allocate memory for the device structure (and zero it) */ data = devm_kzalloc(&pdev->dev, sizeof(struct xway_nand_data), GFP_KERNEL); if (!data) return -ENOMEM; data->nandaddr = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(data->nandaddr)) return PTR_ERR(data->nandaddr); nand_set_flash_node(&data->chip, pdev->dev.of_node); mtd = nand_to_mtd(&data->chip); mtd->dev.parent = &pdev->dev; data->chip.legacy.cmd_ctrl = xway_cmd_ctrl; data->chip.legacy.dev_ready = xway_dev_ready; data->chip.legacy.select_chip = xway_select_chip; data->chip.legacy.write_buf = xway_write_buf; data->chip.legacy.read_buf = xway_read_buf; data->chip.legacy.read_byte = xway_read_byte; data->chip.legacy.chip_delay = 30; nand_controller_init(&data->controller); data->controller.ops = &xway_nand_ops; data->chip.controller = &data->controller; platform_set_drvdata(pdev, data); nand_set_controller_data(&data->chip, data); /* load our CS from the DT. Either we find a valid 1 or default to 0 */ err = of_property_read_u32(pdev->dev.of_node, "lantiq,cs", &cs); if (!err && cs == 1) cs_flag = NAND_CON_IN_CS1 | NAND_CON_OUT_CS1; /* setup the EBU to run in NAND mode on our base addr */ ltq_ebu_w32(CPHYSADDR(data->nandaddr) | ADDSEL1_MASK(3) | ADDSEL1_REGEN, EBU_ADDSEL1); ltq_ebu_w32(BUSCON1_SETUP | BUSCON1_BCGEN_RES | BUSCON1_WAITWRC2 | BUSCON1_WAITRDC2 | BUSCON1_HOLDC1 | BUSCON1_RECOVC1 | BUSCON1_CMULT4, LTQ_EBU_BUSCON1); ltq_ebu_w32(NAND_CON_NANDM | NAND_CON_CSMUX | NAND_CON_CS_P | NAND_CON_SE_P | NAND_CON_WP_P | NAND_CON_PRE_P | cs_flag, EBU_NAND_CON); /* * This driver assumes that the default ECC engine should be TYPE_SOFT. * Set ->engine_type before registering the NAND devices in order to * provide a driver specific default value. */ data->chip.ecc.engine_type = NAND_ECC_ENGINE_TYPE_SOFT; /* Scan to find existence of the device */ err = nand_scan(&data->chip, 1); if (err) return err; err = mtd_device_register(mtd, NULL, 0); if (err) nand_cleanup(&data->chip); return err; } /* * Remove a NAND device. */ static void xway_nand_remove(struct platform_device *pdev) { struct xway_nand_data *data = platform_get_drvdata(pdev); struct nand_chip *chip = &data->chip; int ret; ret = mtd_device_unregister(nand_to_mtd(chip)); WARN_ON(ret); nand_cleanup(chip); } static const struct of_device_id xway_nand_match[] = { { .compatible = "lantiq,nand-xway" }, {}, }; static struct platform_driver xway_nand_driver = { .probe = xway_nand_probe, .remove_new = xway_nand_remove, .driver = { .name = "lantiq,nand-xway", .of_match_table = xway_nand_match, }, }; builtin_platform_driver(xway_nand_driver); |