Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 | // SPDX-License-Identifier: GPL-2.0+ /* * Generic Error-Correcting Code (ECC) engine * * Copyright (C) 2019 Macronix * Author: * Miquèl RAYNAL <miquel.raynal@bootlin.com> * * * This file describes the abstraction of any NAND ECC engine. It has been * designed to fit most cases, including parallel NANDs and SPI-NANDs. * * There are three main situations where instantiating this ECC engine makes * sense: * - external: The ECC engine is outside the NAND pipeline, typically this * is a software ECC engine, or an hardware engine that is * outside the NAND controller pipeline. * - pipelined: The ECC engine is inside the NAND pipeline, ie. on the * controller's side. This is the case of most of the raw NAND * controllers. In the pipeline case, the ECC bytes are * generated/data corrected on the fly when a page is * written/read. * - ondie: The ECC engine is inside the NAND pipeline, on the chip's side. * Some NAND chips can correct themselves the data. * * Besides the initial setup and final cleanups, the interfaces are rather * simple: * - prepare: Prepare an I/O request. Enable/disable the ECC engine based on * the I/O request type. In case of software correction or external * engine, this step may involve to derive the ECC bytes and place * them in the OOB area before a write. * - finish: Finish an I/O request. Correct the data in case of a read * request and report the number of corrected bits/uncorrectable * errors. Most likely empty for write operations, unless you have * hardware specific stuff to do, like shutting down the engine to * save power. * * The I/O request should be enclosed in a prepare()/finish() pair of calls * and will behave differently depending on the requested I/O type: * - raw: Correction disabled * - ecc: Correction enabled * * The request direction is impacting the logic as well: * - read: Load data from the NAND chip * - write: Store data in the NAND chip * * Mixing all this combinations together gives the following behavior. * Those are just examples, drivers are free to add custom steps in their * prepare/finish hook. * * [external ECC engine] * - external + prepare + raw + read: do nothing * - external + finish + raw + read: do nothing * - external + prepare + raw + write: do nothing * - external + finish + raw + write: do nothing * - external + prepare + ecc + read: do nothing * - external + finish + ecc + read: calculate expected ECC bytes, extract * ECC bytes from OOB buffer, correct * and report any bitflip/error * - external + prepare + ecc + write: calculate ECC bytes and store them at * the right place in the OOB buffer based * on the OOB layout * - external + finish + ecc + write: do nothing * * [pipelined ECC engine] * - pipelined + prepare + raw + read: disable the controller's ECC engine if * activated * - pipelined + finish + raw + read: do nothing * - pipelined + prepare + raw + write: disable the controller's ECC engine if * activated * - pipelined + finish + raw + write: do nothing * - pipelined + prepare + ecc + read: enable the controller's ECC engine if * deactivated * - pipelined + finish + ecc + read: check the status, report any * error/bitflip * - pipelined + prepare + ecc + write: enable the controller's ECC engine if * deactivated * - pipelined + finish + ecc + write: do nothing * * [ondie ECC engine] * - ondie + prepare + raw + read: send commands to disable the on-chip ECC * engine if activated * - ondie + finish + raw + read: do nothing * - ondie + prepare + raw + write: send commands to disable the on-chip ECC * engine if activated * - ondie + finish + raw + write: do nothing * - ondie + prepare + ecc + read: send commands to enable the on-chip ECC * engine if deactivated * - ondie + finish + ecc + read: send commands to check the status, report * any error/bitflip * - ondie + prepare + ecc + write: send commands to enable the on-chip ECC * engine if deactivated * - ondie + finish + ecc + write: do nothing */ #include <linux/module.h> #include <linux/mtd/nand.h> #include <linux/platform_device.h> #include <linux/slab.h> #include <linux/of.h> #include <linux/of_platform.h> static LIST_HEAD(on_host_hw_engines); static DEFINE_MUTEX(on_host_hw_engines_mutex); /** * nand_ecc_init_ctx - Init the ECC engine context * @nand: the NAND device * * On success, the caller is responsible of calling @nand_ecc_cleanup_ctx(). */ int nand_ecc_init_ctx(struct nand_device *nand) { if (!nand->ecc.engine || !nand->ecc.engine->ops->init_ctx) return 0; return nand->ecc.engine->ops->init_ctx(nand); } EXPORT_SYMBOL(nand_ecc_init_ctx); /** * nand_ecc_cleanup_ctx - Cleanup the ECC engine context * @nand: the NAND device */ void nand_ecc_cleanup_ctx(struct nand_device *nand) { if (nand->ecc.engine && nand->ecc.engine->ops->cleanup_ctx) nand->ecc.engine->ops->cleanup_ctx(nand); } EXPORT_SYMBOL(nand_ecc_cleanup_ctx); /** * nand_ecc_prepare_io_req - Prepare an I/O request * @nand: the NAND device * @req: the I/O request */ int nand_ecc_prepare_io_req(struct nand_device *nand, struct nand_page_io_req *req) { if (!nand->ecc.engine || !nand->ecc.engine->ops->prepare_io_req) return 0; return nand->ecc.engine->ops->prepare_io_req(nand, req); } EXPORT_SYMBOL(nand_ecc_prepare_io_req); /** * nand_ecc_finish_io_req - Finish an I/O request * @nand: the NAND device * @req: the I/O request */ int nand_ecc_finish_io_req(struct nand_device *nand, struct nand_page_io_req *req) { if (!nand->ecc.engine || !nand->ecc.engine->ops->finish_io_req) return 0; return nand->ecc.engine->ops->finish_io_req(nand, req); } EXPORT_SYMBOL(nand_ecc_finish_io_req); /* Define default OOB placement schemes for large and small page devices */ static int nand_ooblayout_ecc_sp(struct mtd_info *mtd, int section, struct mtd_oob_region *oobregion) { struct nand_device *nand = mtd_to_nanddev(mtd); unsigned int total_ecc_bytes = nand->ecc.ctx.total; if (section > 1) return -ERANGE; if (!section) { oobregion->offset = 0; if (mtd->oobsize == 16) oobregion->length = 4; else oobregion->length = 3; } else { if (mtd->oobsize == 8) return -ERANGE; oobregion->offset = 6; oobregion->length = total_ecc_bytes - 4; } return 0; } static int nand_ooblayout_free_sp(struct mtd_info *mtd, int section, struct mtd_oob_region *oobregion) { if (section > 1) return -ERANGE; if (mtd->oobsize == 16) { if (section) return -ERANGE; oobregion->length = 8; oobregion->offset = 8; } else { oobregion->length = 2; if (!section) oobregion->offset = 3; else oobregion->offset = 6; } return 0; } static const struct mtd_ooblayout_ops nand_ooblayout_sp_ops = { .ecc = nand_ooblayout_ecc_sp, .free = nand_ooblayout_free_sp, }; const struct mtd_ooblayout_ops *nand_get_small_page_ooblayout(void) { return &nand_ooblayout_sp_ops; } EXPORT_SYMBOL_GPL(nand_get_small_page_ooblayout); static int nand_ooblayout_ecc_lp(struct mtd_info *mtd, int section, struct mtd_oob_region *oobregion) { struct nand_device *nand = mtd_to_nanddev(mtd); unsigned int total_ecc_bytes = nand->ecc.ctx.total; if (section || !total_ecc_bytes) return -ERANGE; oobregion->length = total_ecc_bytes; oobregion->offset = mtd->oobsize - oobregion->length; return 0; } static int nand_ooblayout_free_lp(struct mtd_info *mtd, int section, struct mtd_oob_region *oobregion) { struct nand_device *nand = mtd_to_nanddev(mtd); unsigned int total_ecc_bytes = nand->ecc.ctx.total; if (section) return -ERANGE; oobregion->length = mtd->oobsize - total_ecc_bytes - 2; oobregion->offset = 2; return 0; } static const struct mtd_ooblayout_ops nand_ooblayout_lp_ops = { .ecc = nand_ooblayout_ecc_lp, .free = nand_ooblayout_free_lp, }; const struct mtd_ooblayout_ops *nand_get_large_page_ooblayout(void) { return &nand_ooblayout_lp_ops; } EXPORT_SYMBOL_GPL(nand_get_large_page_ooblayout); /* * Support the old "large page" layout used for 1-bit Hamming ECC where ECC * are placed at a fixed offset. */ static int nand_ooblayout_ecc_lp_hamming(struct mtd_info *mtd, int section, struct mtd_oob_region *oobregion) { struct nand_device *nand = mtd_to_nanddev(mtd); unsigned int total_ecc_bytes = nand->ecc.ctx.total; if (section) return -ERANGE; switch (mtd->oobsize) { case 64: oobregion->offset = 40; break; case 128: oobregion->offset = 80; break; default: return -EINVAL; } oobregion->length = total_ecc_bytes; if (oobregion->offset + oobregion->length > mtd->oobsize) return -ERANGE; return 0; } static int nand_ooblayout_free_lp_hamming(struct mtd_info *mtd, int section, struct mtd_oob_region *oobregion) { struct nand_device *nand = mtd_to_nanddev(mtd); unsigned int total_ecc_bytes = nand->ecc.ctx.total; int ecc_offset = 0; if (section < 0 || section > 1) return -ERANGE; switch (mtd->oobsize) { case 64: ecc_offset = 40; break; case 128: ecc_offset = 80; break; default: return -EINVAL; } if (section == 0) { oobregion->offset = 2; oobregion->length = ecc_offset - 2; } else { oobregion->offset = ecc_offset + total_ecc_bytes; oobregion->length = mtd->oobsize - oobregion->offset; } return 0; } static const struct mtd_ooblayout_ops nand_ooblayout_lp_hamming_ops = { .ecc = nand_ooblayout_ecc_lp_hamming, .free = nand_ooblayout_free_lp_hamming, }; const struct mtd_ooblayout_ops *nand_get_large_page_hamming_ooblayout(void) { return &nand_ooblayout_lp_hamming_ops; } EXPORT_SYMBOL_GPL(nand_get_large_page_hamming_ooblayout); static enum nand_ecc_engine_type of_get_nand_ecc_engine_type(struct device_node *np) { struct device_node *eng_np; if (of_property_read_bool(np, "nand-no-ecc-engine")) return NAND_ECC_ENGINE_TYPE_NONE; if (of_property_read_bool(np, "nand-use-soft-ecc-engine")) return NAND_ECC_ENGINE_TYPE_SOFT; eng_np = of_parse_phandle(np, "nand-ecc-engine", 0); of_node_put(eng_np); if (eng_np) { if (eng_np == np) return NAND_ECC_ENGINE_TYPE_ON_DIE; else return NAND_ECC_ENGINE_TYPE_ON_HOST; } return NAND_ECC_ENGINE_TYPE_INVALID; } static const char * const nand_ecc_placement[] = { [NAND_ECC_PLACEMENT_OOB] = "oob", [NAND_ECC_PLACEMENT_INTERLEAVED] = "interleaved", }; static enum nand_ecc_placement of_get_nand_ecc_placement(struct device_node *np) { enum nand_ecc_placement placement; const char *pm; int err; err = of_property_read_string(np, "nand-ecc-placement", &pm); if (!err) { for (placement = NAND_ECC_PLACEMENT_OOB; placement < ARRAY_SIZE(nand_ecc_placement); placement++) { if (!strcasecmp(pm, nand_ecc_placement[placement])) return placement; } } return NAND_ECC_PLACEMENT_UNKNOWN; } static const char * const nand_ecc_algos[] = { [NAND_ECC_ALGO_HAMMING] = "hamming", [NAND_ECC_ALGO_BCH] = "bch", [NAND_ECC_ALGO_RS] = "rs", }; static enum nand_ecc_algo of_get_nand_ecc_algo(struct device_node *np) { enum nand_ecc_algo ecc_algo; const char *pm; int err; err = of_property_read_string(np, "nand-ecc-algo", &pm); if (!err) { for (ecc_algo = NAND_ECC_ALGO_HAMMING; ecc_algo < ARRAY_SIZE(nand_ecc_algos); ecc_algo++) { if (!strcasecmp(pm, nand_ecc_algos[ecc_algo])) return ecc_algo; } } return NAND_ECC_ALGO_UNKNOWN; } static int of_get_nand_ecc_step_size(struct device_node *np) { int ret; u32 val; ret = of_property_read_u32(np, "nand-ecc-step-size", &val); return ret ? ret : val; } static int of_get_nand_ecc_strength(struct device_node *np) { int ret; u32 val; ret = of_property_read_u32(np, "nand-ecc-strength", &val); return ret ? ret : val; } void of_get_nand_ecc_user_config(struct nand_device *nand) { struct device_node *dn = nanddev_get_of_node(nand); int strength, size; nand->ecc.user_conf.engine_type = of_get_nand_ecc_engine_type(dn); nand->ecc.user_conf.algo = of_get_nand_ecc_algo(dn); nand->ecc.user_conf.placement = of_get_nand_ecc_placement(dn); strength = of_get_nand_ecc_strength(dn); if (strength >= 0) nand->ecc.user_conf.strength = strength; size = of_get_nand_ecc_step_size(dn); if (size >= 0) nand->ecc.user_conf.step_size = size; if (of_property_read_bool(dn, "nand-ecc-maximize")) nand->ecc.user_conf.flags |= NAND_ECC_MAXIMIZE_STRENGTH; } EXPORT_SYMBOL(of_get_nand_ecc_user_config); /** * nand_ecc_is_strong_enough - Check if the chip configuration meets the * datasheet requirements. * * @nand: Device to check * * If our configuration corrects A bits per B bytes and the minimum * required correction level is X bits per Y bytes, then we must ensure * both of the following are true: * * (1) A / B >= X / Y * (2) A >= X * * Requirement (1) ensures we can correct for the required bitflip density. * Requirement (2) ensures we can correct even when all bitflips are clumped * in the same sector. */ bool nand_ecc_is_strong_enough(struct nand_device *nand) { const struct nand_ecc_props *reqs = nanddev_get_ecc_requirements(nand); const struct nand_ecc_props *conf = nanddev_get_ecc_conf(nand); struct mtd_info *mtd = nanddev_to_mtd(nand); int corr, ds_corr; if (conf->step_size == 0 || reqs->step_size == 0) /* Not enough information */ return true; /* * We get the number of corrected bits per page to compare * the correction density. */ corr = (mtd->writesize * conf->strength) / conf->step_size; ds_corr = (mtd->writesize * reqs->strength) / reqs->step_size; return corr >= ds_corr && conf->strength >= reqs->strength; } EXPORT_SYMBOL(nand_ecc_is_strong_enough); /* ECC engine driver internal helpers */ int nand_ecc_init_req_tweaking(struct nand_ecc_req_tweak_ctx *ctx, struct nand_device *nand) { unsigned int total_buffer_size; ctx->nand = nand; /* Let the user decide the exact length of each buffer */ if (!ctx->page_buffer_size) ctx->page_buffer_size = nanddev_page_size(nand); if (!ctx->oob_buffer_size) ctx->oob_buffer_size = nanddev_per_page_oobsize(nand); total_buffer_size = ctx->page_buffer_size + ctx->oob_buffer_size; ctx->spare_databuf = kzalloc(total_buffer_size, GFP_KERNEL); if (!ctx->spare_databuf) return -ENOMEM; ctx->spare_oobbuf = ctx->spare_databuf + ctx->page_buffer_size; return 0; } EXPORT_SYMBOL_GPL(nand_ecc_init_req_tweaking); void nand_ecc_cleanup_req_tweaking(struct nand_ecc_req_tweak_ctx *ctx) { kfree(ctx->spare_databuf); } EXPORT_SYMBOL_GPL(nand_ecc_cleanup_req_tweaking); /* * Ensure data and OOB area is fully read/written otherwise the correction might * not work as expected. */ void nand_ecc_tweak_req(struct nand_ecc_req_tweak_ctx *ctx, struct nand_page_io_req *req) { struct nand_device *nand = ctx->nand; struct nand_page_io_req *orig, *tweak; /* Save the original request */ ctx->orig_req = *req; ctx->bounce_data = false; ctx->bounce_oob = false; orig = &ctx->orig_req; tweak = req; /* Ensure the request covers the entire page */ if (orig->datalen < nanddev_page_size(nand)) { ctx->bounce_data = true; tweak->dataoffs = 0; tweak->datalen = nanddev_page_size(nand); tweak->databuf.in = ctx->spare_databuf; memset(tweak->databuf.in, 0xFF, ctx->page_buffer_size); } if (orig->ooblen < nanddev_per_page_oobsize(nand)) { ctx->bounce_oob = true; tweak->ooboffs = 0; tweak->ooblen = nanddev_per_page_oobsize(nand); tweak->oobbuf.in = ctx->spare_oobbuf; memset(tweak->oobbuf.in, 0xFF, ctx->oob_buffer_size); } /* Copy the data that must be writen in the bounce buffers, if needed */ if (orig->type == NAND_PAGE_WRITE) { if (ctx->bounce_data) memcpy((void *)tweak->databuf.out + orig->dataoffs, orig->databuf.out, orig->datalen); if (ctx->bounce_oob) memcpy((void *)tweak->oobbuf.out + orig->ooboffs, orig->oobbuf.out, orig->ooblen); } } EXPORT_SYMBOL_GPL(nand_ecc_tweak_req); void nand_ecc_restore_req(struct nand_ecc_req_tweak_ctx *ctx, struct nand_page_io_req *req) { struct nand_page_io_req *orig, *tweak; orig = &ctx->orig_req; tweak = req; /* Restore the data read from the bounce buffers, if needed */ if (orig->type == NAND_PAGE_READ) { if (ctx->bounce_data) memcpy(orig->databuf.in, tweak->databuf.in + orig->dataoffs, orig->datalen); if (ctx->bounce_oob) memcpy(orig->oobbuf.in, tweak->oobbuf.in + orig->ooboffs, orig->ooblen); } /* Ensure the original request is restored */ *req = *orig; } EXPORT_SYMBOL_GPL(nand_ecc_restore_req); struct nand_ecc_engine *nand_ecc_get_sw_engine(struct nand_device *nand) { unsigned int algo = nand->ecc.user_conf.algo; if (algo == NAND_ECC_ALGO_UNKNOWN) algo = nand->ecc.defaults.algo; switch (algo) { case NAND_ECC_ALGO_HAMMING: return nand_ecc_sw_hamming_get_engine(); case NAND_ECC_ALGO_BCH: return nand_ecc_sw_bch_get_engine(); default: break; } return NULL; } EXPORT_SYMBOL(nand_ecc_get_sw_engine); struct nand_ecc_engine *nand_ecc_get_on_die_hw_engine(struct nand_device *nand) { return nand->ecc.ondie_engine; } EXPORT_SYMBOL(nand_ecc_get_on_die_hw_engine); int nand_ecc_register_on_host_hw_engine(struct nand_ecc_engine *engine) { struct nand_ecc_engine *item; if (!engine) return -EINVAL; /* Prevent multiple registrations of one engine */ list_for_each_entry(item, &on_host_hw_engines, node) if (item == engine) return 0; mutex_lock(&on_host_hw_engines_mutex); list_add_tail(&engine->node, &on_host_hw_engines); mutex_unlock(&on_host_hw_engines_mutex); return 0; } EXPORT_SYMBOL(nand_ecc_register_on_host_hw_engine); int nand_ecc_unregister_on_host_hw_engine(struct nand_ecc_engine *engine) { if (!engine) return -EINVAL; mutex_lock(&on_host_hw_engines_mutex); list_del(&engine->node); mutex_unlock(&on_host_hw_engines_mutex); return 0; } EXPORT_SYMBOL(nand_ecc_unregister_on_host_hw_engine); static struct nand_ecc_engine *nand_ecc_match_on_host_hw_engine(struct device *dev) { struct nand_ecc_engine *item; list_for_each_entry(item, &on_host_hw_engines, node) if (item->dev == dev) return item; return NULL; } struct nand_ecc_engine *nand_ecc_get_on_host_hw_engine(struct nand_device *nand) { struct nand_ecc_engine *engine = NULL; struct device *dev = &nand->mtd.dev; struct platform_device *pdev; struct device_node *np; if (list_empty(&on_host_hw_engines)) return NULL; /* Check for an explicit nand-ecc-engine property */ np = of_parse_phandle(dev->of_node, "nand-ecc-engine", 0); if (np) { pdev = of_find_device_by_node(np); if (!pdev) return ERR_PTR(-EPROBE_DEFER); engine = nand_ecc_match_on_host_hw_engine(&pdev->dev); platform_device_put(pdev); of_node_put(np); if (!engine) return ERR_PTR(-EPROBE_DEFER); } if (engine) get_device(engine->dev); return engine; } EXPORT_SYMBOL(nand_ecc_get_on_host_hw_engine); void nand_ecc_put_on_host_hw_engine(struct nand_device *nand) { put_device(nand->ecc.engine->dev); } EXPORT_SYMBOL(nand_ecc_put_on_host_hw_engine); /* * In the case of a pipelined engine, the device registering the ECC * engine is not necessarily the ECC engine itself but may be a host controller. * It is then useful to provide a helper to retrieve the right device object * which actually represents the ECC engine. */ struct device *nand_ecc_get_engine_dev(struct device *host) { struct platform_device *ecc_pdev; struct device_node *np; /* * If the device node contains this property, it means we need to follow * it in order to get the right ECC engine device we are looking for. */ np = of_parse_phandle(host->of_node, "nand-ecc-engine", 0); if (!np) return host; ecc_pdev = of_find_device_by_node(np); if (!ecc_pdev) { of_node_put(np); return NULL; } platform_device_put(ecc_pdev); of_node_put(np); return &ecc_pdev->dev; } MODULE_LICENSE("GPL"); MODULE_AUTHOR("Miquel Raynal <miquel.raynal@bootlin.com>"); MODULE_DESCRIPTION("Generic ECC engine"); |