Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 | // SPDX-License-Identifier: GPL-2.0-or-later /* * This file contains an ECC algorithm that detects and corrects 1 bit * errors in a 256 byte block of data. * * Copyright © 2008 Koninklijke Philips Electronics NV. * Author: Frans Meulenbroeks * * Completely replaces the previous ECC implementation which was written by: * Steven J. Hill (sjhill@realitydiluted.com) * Thomas Gleixner (tglx@linutronix.de) * * Information on how this algorithm works and how it was developed * can be found in Documentation/driver-api/mtd/nand_ecc.rst */ #include <linux/types.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/mtd/nand.h> #include <linux/mtd/nand-ecc-sw-hamming.h> #include <linux/slab.h> #include <asm/byteorder.h> /* * invparity is a 256 byte table that contains the odd parity * for each byte. So if the number of bits in a byte is even, * the array element is 1, and when the number of bits is odd * the array eleemnt is 0. */ static const char invparity[256] = { 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1 }; /* * bitsperbyte contains the number of bits per byte * this is only used for testing and repairing parity * (a precalculated value slightly improves performance) */ static const char bitsperbyte[256] = { 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8, }; /* * addressbits is a lookup table to filter out the bits from the xor-ed * ECC data that identify the faulty location. * this is only used for repairing parity * see the comments in nand_ecc_sw_hamming_correct for more details */ static const char addressbits[256] = { 0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x01, 0x01, 0x02, 0x02, 0x03, 0x03, 0x02, 0x02, 0x03, 0x03, 0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x01, 0x01, 0x02, 0x02, 0x03, 0x03, 0x02, 0x02, 0x03, 0x03, 0x04, 0x04, 0x05, 0x05, 0x04, 0x04, 0x05, 0x05, 0x06, 0x06, 0x07, 0x07, 0x06, 0x06, 0x07, 0x07, 0x04, 0x04, 0x05, 0x05, 0x04, 0x04, 0x05, 0x05, 0x06, 0x06, 0x07, 0x07, 0x06, 0x06, 0x07, 0x07, 0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x01, 0x01, 0x02, 0x02, 0x03, 0x03, 0x02, 0x02, 0x03, 0x03, 0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x01, 0x01, 0x02, 0x02, 0x03, 0x03, 0x02, 0x02, 0x03, 0x03, 0x04, 0x04, 0x05, 0x05, 0x04, 0x04, 0x05, 0x05, 0x06, 0x06, 0x07, 0x07, 0x06, 0x06, 0x07, 0x07, 0x04, 0x04, 0x05, 0x05, 0x04, 0x04, 0x05, 0x05, 0x06, 0x06, 0x07, 0x07, 0x06, 0x06, 0x07, 0x07, 0x08, 0x08, 0x09, 0x09, 0x08, 0x08, 0x09, 0x09, 0x0a, 0x0a, 0x0b, 0x0b, 0x0a, 0x0a, 0x0b, 0x0b, 0x08, 0x08, 0x09, 0x09, 0x08, 0x08, 0x09, 0x09, 0x0a, 0x0a, 0x0b, 0x0b, 0x0a, 0x0a, 0x0b, 0x0b, 0x0c, 0x0c, 0x0d, 0x0d, 0x0c, 0x0c, 0x0d, 0x0d, 0x0e, 0x0e, 0x0f, 0x0f, 0x0e, 0x0e, 0x0f, 0x0f, 0x0c, 0x0c, 0x0d, 0x0d, 0x0c, 0x0c, 0x0d, 0x0d, 0x0e, 0x0e, 0x0f, 0x0f, 0x0e, 0x0e, 0x0f, 0x0f, 0x08, 0x08, 0x09, 0x09, 0x08, 0x08, 0x09, 0x09, 0x0a, 0x0a, 0x0b, 0x0b, 0x0a, 0x0a, 0x0b, 0x0b, 0x08, 0x08, 0x09, 0x09, 0x08, 0x08, 0x09, 0x09, 0x0a, 0x0a, 0x0b, 0x0b, 0x0a, 0x0a, 0x0b, 0x0b, 0x0c, 0x0c, 0x0d, 0x0d, 0x0c, 0x0c, 0x0d, 0x0d, 0x0e, 0x0e, 0x0f, 0x0f, 0x0e, 0x0e, 0x0f, 0x0f, 0x0c, 0x0c, 0x0d, 0x0d, 0x0c, 0x0c, 0x0d, 0x0d, 0x0e, 0x0e, 0x0f, 0x0f, 0x0e, 0x0e, 0x0f, 0x0f }; int ecc_sw_hamming_calculate(const unsigned char *buf, unsigned int step_size, unsigned char *code, bool sm_order) { const u32 *bp = (uint32_t *)buf; const u32 eccsize_mult = (step_size == 256) ? 1 : 2; /* current value in buffer */ u32 cur; /* rp0..rp17 are the various accumulated parities (per byte) */ u32 rp0, rp1, rp2, rp3, rp4, rp5, rp6, rp7, rp8, rp9, rp10, rp11, rp12, rp13, rp14, rp15, rp16, rp17; /* Cumulative parity for all data */ u32 par; /* Cumulative parity at the end of the loop (rp12, rp14, rp16) */ u32 tmppar; int i; par = 0; rp4 = 0; rp6 = 0; rp8 = 0; rp10 = 0; rp12 = 0; rp14 = 0; rp16 = 0; rp17 = 0; /* * The loop is unrolled a number of times; * This avoids if statements to decide on which rp value to update * Also we process the data by longwords. * Note: passing unaligned data might give a performance penalty. * It is assumed that the buffers are aligned. * tmppar is the cumulative sum of this iteration. * needed for calculating rp12, rp14, rp16 and par * also used as a performance improvement for rp6, rp8 and rp10 */ for (i = 0; i < eccsize_mult << 2; i++) { cur = *bp++; tmppar = cur; rp4 ^= cur; cur = *bp++; tmppar ^= cur; rp6 ^= tmppar; cur = *bp++; tmppar ^= cur; rp4 ^= cur; cur = *bp++; tmppar ^= cur; rp8 ^= tmppar; cur = *bp++; tmppar ^= cur; rp4 ^= cur; rp6 ^= cur; cur = *bp++; tmppar ^= cur; rp6 ^= cur; cur = *bp++; tmppar ^= cur; rp4 ^= cur; cur = *bp++; tmppar ^= cur; rp10 ^= tmppar; cur = *bp++; tmppar ^= cur; rp4 ^= cur; rp6 ^= cur; rp8 ^= cur; cur = *bp++; tmppar ^= cur; rp6 ^= cur; rp8 ^= cur; cur = *bp++; tmppar ^= cur; rp4 ^= cur; rp8 ^= cur; cur = *bp++; tmppar ^= cur; rp8 ^= cur; cur = *bp++; tmppar ^= cur; rp4 ^= cur; rp6 ^= cur; cur = *bp++; tmppar ^= cur; rp6 ^= cur; cur = *bp++; tmppar ^= cur; rp4 ^= cur; cur = *bp++; tmppar ^= cur; par ^= tmppar; if ((i & 0x1) == 0) rp12 ^= tmppar; if ((i & 0x2) == 0) rp14 ^= tmppar; if (eccsize_mult == 2 && (i & 0x4) == 0) rp16 ^= tmppar; } /* * handle the fact that we use longword operations * we'll bring rp4..rp14..rp16 back to single byte entities by * shifting and xoring first fold the upper and lower 16 bits, * then the upper and lower 8 bits. */ rp4 ^= (rp4 >> 16); rp4 ^= (rp4 >> 8); rp4 &= 0xff; rp6 ^= (rp6 >> 16); rp6 ^= (rp6 >> 8); rp6 &= 0xff; rp8 ^= (rp8 >> 16); rp8 ^= (rp8 >> 8); rp8 &= 0xff; rp10 ^= (rp10 >> 16); rp10 ^= (rp10 >> 8); rp10 &= 0xff; rp12 ^= (rp12 >> 16); rp12 ^= (rp12 >> 8); rp12 &= 0xff; rp14 ^= (rp14 >> 16); rp14 ^= (rp14 >> 8); rp14 &= 0xff; if (eccsize_mult == 2) { rp16 ^= (rp16 >> 16); rp16 ^= (rp16 >> 8); rp16 &= 0xff; } /* * we also need to calculate the row parity for rp0..rp3 * This is present in par, because par is now * rp3 rp3 rp2 rp2 in little endian and * rp2 rp2 rp3 rp3 in big endian * as well as * rp1 rp0 rp1 rp0 in little endian and * rp0 rp1 rp0 rp1 in big endian * First calculate rp2 and rp3 */ #ifdef __BIG_ENDIAN rp2 = (par >> 16); rp2 ^= (rp2 >> 8); rp2 &= 0xff; rp3 = par & 0xffff; rp3 ^= (rp3 >> 8); rp3 &= 0xff; #else rp3 = (par >> 16); rp3 ^= (rp3 >> 8); rp3 &= 0xff; rp2 = par & 0xffff; rp2 ^= (rp2 >> 8); rp2 &= 0xff; #endif /* reduce par to 16 bits then calculate rp1 and rp0 */ par ^= (par >> 16); #ifdef __BIG_ENDIAN rp0 = (par >> 8) & 0xff; rp1 = (par & 0xff); #else rp1 = (par >> 8) & 0xff; rp0 = (par & 0xff); #endif /* finally reduce par to 8 bits */ par ^= (par >> 8); par &= 0xff; /* * and calculate rp5..rp15..rp17 * note that par = rp4 ^ rp5 and due to the commutative property * of the ^ operator we can say: * rp5 = (par ^ rp4); * The & 0xff seems superfluous, but benchmarking learned that * leaving it out gives slightly worse results. No idea why, probably * it has to do with the way the pipeline in pentium is organized. */ rp5 = (par ^ rp4) & 0xff; rp7 = (par ^ rp6) & 0xff; rp9 = (par ^ rp8) & 0xff; rp11 = (par ^ rp10) & 0xff; rp13 = (par ^ rp12) & 0xff; rp15 = (par ^ rp14) & 0xff; if (eccsize_mult == 2) rp17 = (par ^ rp16) & 0xff; /* * Finally calculate the ECC bits. * Again here it might seem that there are performance optimisations * possible, but benchmarks showed that on the system this is developed * the code below is the fastest */ if (sm_order) { code[0] = (invparity[rp7] << 7) | (invparity[rp6] << 6) | (invparity[rp5] << 5) | (invparity[rp4] << 4) | (invparity[rp3] << 3) | (invparity[rp2] << 2) | (invparity[rp1] << 1) | (invparity[rp0]); code[1] = (invparity[rp15] << 7) | (invparity[rp14] << 6) | (invparity[rp13] << 5) | (invparity[rp12] << 4) | (invparity[rp11] << 3) | (invparity[rp10] << 2) | (invparity[rp9] << 1) | (invparity[rp8]); } else { code[1] = (invparity[rp7] << 7) | (invparity[rp6] << 6) | (invparity[rp5] << 5) | (invparity[rp4] << 4) | (invparity[rp3] << 3) | (invparity[rp2] << 2) | (invparity[rp1] << 1) | (invparity[rp0]); code[0] = (invparity[rp15] << 7) | (invparity[rp14] << 6) | (invparity[rp13] << 5) | (invparity[rp12] << 4) | (invparity[rp11] << 3) | (invparity[rp10] << 2) | (invparity[rp9] << 1) | (invparity[rp8]); } if (eccsize_mult == 1) code[2] = (invparity[par & 0xf0] << 7) | (invparity[par & 0x0f] << 6) | (invparity[par & 0xcc] << 5) | (invparity[par & 0x33] << 4) | (invparity[par & 0xaa] << 3) | (invparity[par & 0x55] << 2) | 3; else code[2] = (invparity[par & 0xf0] << 7) | (invparity[par & 0x0f] << 6) | (invparity[par & 0xcc] << 5) | (invparity[par & 0x33] << 4) | (invparity[par & 0xaa] << 3) | (invparity[par & 0x55] << 2) | (invparity[rp17] << 1) | (invparity[rp16] << 0); return 0; } EXPORT_SYMBOL(ecc_sw_hamming_calculate); /** * nand_ecc_sw_hamming_calculate - Calculate 3-byte ECC for 256/512-byte block * @nand: NAND device * @buf: Input buffer with raw data * @code: Output buffer with ECC */ int nand_ecc_sw_hamming_calculate(struct nand_device *nand, const unsigned char *buf, unsigned char *code) { struct nand_ecc_sw_hamming_conf *engine_conf = nand->ecc.ctx.priv; unsigned int step_size = nand->ecc.ctx.conf.step_size; bool sm_order = engine_conf ? engine_conf->sm_order : false; return ecc_sw_hamming_calculate(buf, step_size, code, sm_order); } EXPORT_SYMBOL(nand_ecc_sw_hamming_calculate); int ecc_sw_hamming_correct(unsigned char *buf, unsigned char *read_ecc, unsigned char *calc_ecc, unsigned int step_size, bool sm_order) { const u32 eccsize_mult = step_size >> 8; unsigned char b0, b1, b2, bit_addr; unsigned int byte_addr; /* * b0 to b2 indicate which bit is faulty (if any) * we might need the xor result more than once, * so keep them in a local var */ if (sm_order) { b0 = read_ecc[0] ^ calc_ecc[0]; b1 = read_ecc[1] ^ calc_ecc[1]; } else { b0 = read_ecc[1] ^ calc_ecc[1]; b1 = read_ecc[0] ^ calc_ecc[0]; } b2 = read_ecc[2] ^ calc_ecc[2]; /* check if there are any bitfaults */ /* repeated if statements are slightly more efficient than switch ... */ /* ordered in order of likelihood */ if ((b0 | b1 | b2) == 0) return 0; /* no error */ if ((((b0 ^ (b0 >> 1)) & 0x55) == 0x55) && (((b1 ^ (b1 >> 1)) & 0x55) == 0x55) && ((eccsize_mult == 1 && ((b2 ^ (b2 >> 1)) & 0x54) == 0x54) || (eccsize_mult == 2 && ((b2 ^ (b2 >> 1)) & 0x55) == 0x55))) { /* single bit error */ /* * rp17/rp15/13/11/9/7/5/3/1 indicate which byte is the faulty * byte, cp 5/3/1 indicate the faulty bit. * A lookup table (called addressbits) is used to filter * the bits from the byte they are in. * A marginal optimisation is possible by having three * different lookup tables. * One as we have now (for b0), one for b2 * (that would avoid the >> 1), and one for b1 (with all values * << 4). However it was felt that introducing two more tables * hardly justify the gain. * * The b2 shift is there to get rid of the lowest two bits. * We could also do addressbits[b2] >> 1 but for the * performance it does not make any difference */ if (eccsize_mult == 1) byte_addr = (addressbits[b1] << 4) + addressbits[b0]; else byte_addr = (addressbits[b2 & 0x3] << 8) + (addressbits[b1] << 4) + addressbits[b0]; bit_addr = addressbits[b2 >> 2]; /* flip the bit */ buf[byte_addr] ^= (1 << bit_addr); return 1; } /* count nr of bits; use table lookup, faster than calculating it */ if ((bitsperbyte[b0] + bitsperbyte[b1] + bitsperbyte[b2]) == 1) return 1; /* error in ECC data; no action needed */ pr_err("%s: uncorrectable ECC error\n", __func__); return -EBADMSG; } EXPORT_SYMBOL(ecc_sw_hamming_correct); /** * nand_ecc_sw_hamming_correct - Detect and correct bit error(s) * @nand: NAND device * @buf: Raw data read from the chip * @read_ecc: ECC bytes read from the chip * @calc_ecc: ECC calculated from the raw data * * Detect and correct up to 1 bit error per 256/512-byte block. */ int nand_ecc_sw_hamming_correct(struct nand_device *nand, unsigned char *buf, unsigned char *read_ecc, unsigned char *calc_ecc) { struct nand_ecc_sw_hamming_conf *engine_conf = nand->ecc.ctx.priv; unsigned int step_size = nand->ecc.ctx.conf.step_size; bool sm_order = engine_conf ? engine_conf->sm_order : false; return ecc_sw_hamming_correct(buf, read_ecc, calc_ecc, step_size, sm_order); } EXPORT_SYMBOL(nand_ecc_sw_hamming_correct); int nand_ecc_sw_hamming_init_ctx(struct nand_device *nand) { struct nand_ecc_props *conf = &nand->ecc.ctx.conf; struct nand_ecc_sw_hamming_conf *engine_conf; struct mtd_info *mtd = nanddev_to_mtd(nand); int ret; if (!mtd->ooblayout) { switch (mtd->oobsize) { case 8: case 16: mtd_set_ooblayout(mtd, nand_get_small_page_ooblayout()); break; case 64: case 128: mtd_set_ooblayout(mtd, nand_get_large_page_hamming_ooblayout()); break; default: return -ENOTSUPP; } } conf->engine_type = NAND_ECC_ENGINE_TYPE_SOFT; conf->algo = NAND_ECC_ALGO_HAMMING; conf->step_size = nand->ecc.user_conf.step_size; conf->strength = 1; /* Use the strongest configuration by default */ if (conf->step_size != 256 && conf->step_size != 512) conf->step_size = 256; engine_conf = kzalloc(sizeof(*engine_conf), GFP_KERNEL); if (!engine_conf) return -ENOMEM; ret = nand_ecc_init_req_tweaking(&engine_conf->req_ctx, nand); if (ret) goto free_engine_conf; engine_conf->code_size = 3; engine_conf->calc_buf = kzalloc(mtd->oobsize, GFP_KERNEL); engine_conf->code_buf = kzalloc(mtd->oobsize, GFP_KERNEL); if (!engine_conf->calc_buf || !engine_conf->code_buf) { ret = -ENOMEM; goto free_bufs; } nand->ecc.ctx.priv = engine_conf; nand->ecc.ctx.nsteps = mtd->writesize / conf->step_size; nand->ecc.ctx.total = nand->ecc.ctx.nsteps * engine_conf->code_size; return 0; free_bufs: nand_ecc_cleanup_req_tweaking(&engine_conf->req_ctx); kfree(engine_conf->calc_buf); kfree(engine_conf->code_buf); free_engine_conf: kfree(engine_conf); return ret; } EXPORT_SYMBOL(nand_ecc_sw_hamming_init_ctx); void nand_ecc_sw_hamming_cleanup_ctx(struct nand_device *nand) { struct nand_ecc_sw_hamming_conf *engine_conf = nand->ecc.ctx.priv; if (engine_conf) { nand_ecc_cleanup_req_tweaking(&engine_conf->req_ctx); kfree(engine_conf->calc_buf); kfree(engine_conf->code_buf); kfree(engine_conf); } } EXPORT_SYMBOL(nand_ecc_sw_hamming_cleanup_ctx); static int nand_ecc_sw_hamming_prepare_io_req(struct nand_device *nand, struct nand_page_io_req *req) { struct nand_ecc_sw_hamming_conf *engine_conf = nand->ecc.ctx.priv; struct mtd_info *mtd = nanddev_to_mtd(nand); int eccsize = nand->ecc.ctx.conf.step_size; int eccbytes = engine_conf->code_size; int eccsteps = nand->ecc.ctx.nsteps; int total = nand->ecc.ctx.total; u8 *ecccalc = engine_conf->calc_buf; const u8 *data; int i; /* Nothing to do for a raw operation */ if (req->mode == MTD_OPS_RAW) return 0; /* This engine does not provide BBM/free OOB bytes protection */ if (!req->datalen) return 0; nand_ecc_tweak_req(&engine_conf->req_ctx, req); /* No more preparation for page read */ if (req->type == NAND_PAGE_READ) return 0; /* Preparation for page write: derive the ECC bytes and place them */ for (i = 0, data = req->databuf.out; eccsteps; eccsteps--, i += eccbytes, data += eccsize) nand_ecc_sw_hamming_calculate(nand, data, &ecccalc[i]); return mtd_ooblayout_set_eccbytes(mtd, ecccalc, (void *)req->oobbuf.out, 0, total); } static int nand_ecc_sw_hamming_finish_io_req(struct nand_device *nand, struct nand_page_io_req *req) { struct nand_ecc_sw_hamming_conf *engine_conf = nand->ecc.ctx.priv; struct mtd_info *mtd = nanddev_to_mtd(nand); int eccsize = nand->ecc.ctx.conf.step_size; int total = nand->ecc.ctx.total; int eccbytes = engine_conf->code_size; int eccsteps = nand->ecc.ctx.nsteps; u8 *ecccalc = engine_conf->calc_buf; u8 *ecccode = engine_conf->code_buf; unsigned int max_bitflips = 0; u8 *data = req->databuf.in; int i, ret; /* Nothing to do for a raw operation */ if (req->mode == MTD_OPS_RAW) return 0; /* This engine does not provide BBM/free OOB bytes protection */ if (!req->datalen) return 0; /* No more preparation for page write */ if (req->type == NAND_PAGE_WRITE) { nand_ecc_restore_req(&engine_conf->req_ctx, req); return 0; } /* Finish a page read: retrieve the (raw) ECC bytes*/ ret = mtd_ooblayout_get_eccbytes(mtd, ecccode, req->oobbuf.in, 0, total); if (ret) return ret; /* Calculate the ECC bytes */ for (i = 0; eccsteps; eccsteps--, i += eccbytes, data += eccsize) nand_ecc_sw_hamming_calculate(nand, data, &ecccalc[i]); /* Finish a page read: compare and correct */ for (eccsteps = nand->ecc.ctx.nsteps, i = 0, data = req->databuf.in; eccsteps; eccsteps--, i += eccbytes, data += eccsize) { int stat = nand_ecc_sw_hamming_correct(nand, data, &ecccode[i], &ecccalc[i]); if (stat < 0) { mtd->ecc_stats.failed++; } else { mtd->ecc_stats.corrected += stat; max_bitflips = max_t(unsigned int, max_bitflips, stat); } } nand_ecc_restore_req(&engine_conf->req_ctx, req); return max_bitflips; } static struct nand_ecc_engine_ops nand_ecc_sw_hamming_engine_ops = { .init_ctx = nand_ecc_sw_hamming_init_ctx, .cleanup_ctx = nand_ecc_sw_hamming_cleanup_ctx, .prepare_io_req = nand_ecc_sw_hamming_prepare_io_req, .finish_io_req = nand_ecc_sw_hamming_finish_io_req, }; static struct nand_ecc_engine nand_ecc_sw_hamming_engine = { .ops = &nand_ecc_sw_hamming_engine_ops, }; struct nand_ecc_engine *nand_ecc_sw_hamming_get_engine(void) { return &nand_ecc_sw_hamming_engine; } EXPORT_SYMBOL(nand_ecc_sw_hamming_get_engine); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Frans Meulenbroeks <fransmeulenbroeks@gmail.com>"); MODULE_DESCRIPTION("NAND software Hamming ECC support"); |