Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 | // SPDX-License-Identifier: GPL-2.0-only /* * Scaler library * * Copyright (c) 2013 Texas Instruments Inc. * * David Griego, <dagriego@biglakesoftware.com> * Dale Farnsworth, <dale@farnsworth.org> * Archit Taneja, <archit@ti.com> */ #include <linux/err.h> #include <linux/io.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/slab.h> #include "sc.h" #include "sc_coeff.h" void sc_dump_regs(struct sc_data *sc) { struct device *dev = &sc->pdev->dev; #define DUMPREG(r) dev_dbg(dev, "%-35s %08x\n", #r, \ ioread32(sc->base + CFG_##r)) dev_dbg(dev, "SC Registers @ %pa:\n", &sc->res->start); DUMPREG(SC0); DUMPREG(SC1); DUMPREG(SC2); DUMPREG(SC3); DUMPREG(SC4); DUMPREG(SC5); DUMPREG(SC6); DUMPREG(SC8); DUMPREG(SC9); DUMPREG(SC10); DUMPREG(SC11); DUMPREG(SC12); DUMPREG(SC13); DUMPREG(SC17); DUMPREG(SC18); DUMPREG(SC19); DUMPREG(SC20); DUMPREG(SC21); DUMPREG(SC22); DUMPREG(SC23); DUMPREG(SC24); DUMPREG(SC25); #undef DUMPREG } EXPORT_SYMBOL(sc_dump_regs); /* * set the horizontal scaler coefficients according to the ratio of output to * input widths, after accounting for up to two levels of decimation */ void sc_set_hs_coeffs(struct sc_data *sc, void *addr, unsigned int src_w, unsigned int dst_w) { int sixteenths; int idx; int i, j; u16 *coeff_h = addr; const u16 *cp; if (dst_w > src_w) { idx = HS_UP_SCALE; } else { if ((dst_w << 1) < src_w) dst_w <<= 1; /* first level decimation */ if ((dst_w << 1) < src_w) dst_w <<= 1; /* second level decimation */ if (dst_w == src_w) { idx = HS_LE_16_16_SCALE; } else { sixteenths = (dst_w << 4) / src_w; if (sixteenths < 8) sixteenths = 8; idx = HS_LT_9_16_SCALE + sixteenths - 8; } } cp = scaler_hs_coeffs[idx]; for (i = 0; i < SC_NUM_PHASES * 2; i++) { for (j = 0; j < SC_H_NUM_TAPS; j++) *coeff_h++ = *cp++; /* * for each phase, the scaler expects space for 8 coefficients * in it's memory. For the horizontal scaler, we copy the first * 7 coefficients and skip the last slot to move to the next * row to hold coefficients for the next phase */ coeff_h += SC_NUM_TAPS_MEM_ALIGN - SC_H_NUM_TAPS; } sc->load_coeff_h = true; } EXPORT_SYMBOL(sc_set_hs_coeffs); /* * set the vertical scaler coefficients according to the ratio of output to * input heights */ void sc_set_vs_coeffs(struct sc_data *sc, void *addr, unsigned int src_h, unsigned int dst_h) { int sixteenths; int idx; int i, j; u16 *coeff_v = addr; const u16 *cp; if (dst_h > src_h) { idx = VS_UP_SCALE; } else if (dst_h == src_h) { idx = VS_1_TO_1_SCALE; } else { sixteenths = (dst_h << 4) / src_h; if (sixteenths < 8) sixteenths = 8; idx = VS_LT_9_16_SCALE + sixteenths - 8; } cp = scaler_vs_coeffs[idx]; for (i = 0; i < SC_NUM_PHASES * 2; i++) { for (j = 0; j < SC_V_NUM_TAPS; j++) *coeff_v++ = *cp++; /* * for the vertical scaler, we copy the first 5 coefficients and * skip the last 3 slots to move to the next row to hold * coefficients for the next phase */ coeff_v += SC_NUM_TAPS_MEM_ALIGN - SC_V_NUM_TAPS; } sc->load_coeff_v = true; } EXPORT_SYMBOL(sc_set_vs_coeffs); void sc_config_scaler(struct sc_data *sc, u32 *sc_reg0, u32 *sc_reg8, u32 *sc_reg17, unsigned int src_w, unsigned int src_h, unsigned int dst_w, unsigned int dst_h) { struct device *dev = &sc->pdev->dev; u32 val; int dcm_x, dcm_shift; bool use_rav; unsigned long lltmp; u32 lin_acc_inc, lin_acc_inc_u; u32 col_acc_offset; u16 factor = 0; int row_acc_init_rav = 0, row_acc_init_rav_b = 0; u32 row_acc_inc = 0, row_acc_offset = 0, row_acc_offset_b = 0; /* * location of SC register in payload memory with respect to the first * register in the mmr address data block */ u32 *sc_reg9 = sc_reg8 + 1; u32 *sc_reg12 = sc_reg8 + 4; u32 *sc_reg13 = sc_reg8 + 5; u32 *sc_reg24 = sc_reg17 + 7; val = sc_reg0[0]; /* clear all the features(they may get enabled elsewhere later) */ val &= ~(CFG_SELFGEN_FID | CFG_TRIM | CFG_ENABLE_SIN2_VER_INTP | CFG_INTERLACE_I | CFG_DCM_4X | CFG_DCM_2X | CFG_AUTO_HS | CFG_ENABLE_EV | CFG_USE_RAV | CFG_INVT_FID | CFG_SC_BYPASS | CFG_INTERLACE_O | CFG_Y_PK_EN | CFG_HP_BYPASS | CFG_LINEAR); if (src_w == dst_w && src_h == dst_h) { val |= CFG_SC_BYPASS; sc_reg0[0] = val; return; } /* we only support linear scaling for now */ val |= CFG_LINEAR; /* configure horizontal scaler */ /* enable 2X or 4X decimation */ dcm_x = src_w / dst_w; if (dcm_x > 4) { val |= CFG_DCM_4X; dcm_shift = 2; } else if (dcm_x > 2) { val |= CFG_DCM_2X; dcm_shift = 1; } else { dcm_shift = 0; } lltmp = dst_w - 1; lin_acc_inc = div64_u64(((u64)(src_w >> dcm_shift) - 1) << 24, lltmp); lin_acc_inc_u = 0; col_acc_offset = 0; dev_dbg(dev, "hs config: src_w = %d, dst_w = %d, decimation = %s, lin_acc_inc = %08x\n", src_w, dst_w, dcm_shift == 2 ? "4x" : (dcm_shift == 1 ? "2x" : "none"), lin_acc_inc); /* configure vertical scaler */ /* use RAV for vertical scaler if vertical downscaling is > 4x */ if (dst_h < (src_h >> 2)) { use_rav = true; val |= CFG_USE_RAV; } else { use_rav = false; } if (use_rav) { /* use RAV */ factor = (u16) ((dst_h << 10) / src_h); row_acc_init_rav = factor + ((1 + factor) >> 1); if (row_acc_init_rav >= 1024) row_acc_init_rav -= 1024; row_acc_init_rav_b = row_acc_init_rav + (1 + (row_acc_init_rav >> 1)) - (1024 >> 1); if (row_acc_init_rav_b < 0) { row_acc_init_rav_b += row_acc_init_rav; row_acc_init_rav *= 2; } dev_dbg(dev, "vs config(RAV): src_h = %d, dst_h = %d, factor = %d, acc_init = %08x, acc_init_b = %08x\n", src_h, dst_h, factor, row_acc_init_rav, row_acc_init_rav_b); } else { /* use polyphase */ row_acc_inc = ((src_h - 1) << 16) / (dst_h - 1); row_acc_offset = 0; row_acc_offset_b = 0; dev_dbg(dev, "vs config(POLY): src_h = %d, dst_h = %d,row_acc_inc = %08x\n", src_h, dst_h, row_acc_inc); } sc_reg0[0] = val; sc_reg0[1] = row_acc_inc; sc_reg0[2] = row_acc_offset; sc_reg0[3] = row_acc_offset_b; sc_reg0[4] = ((lin_acc_inc_u & CFG_LIN_ACC_INC_U_MASK) << CFG_LIN_ACC_INC_U_SHIFT) | (dst_w << CFG_TAR_W_SHIFT) | (dst_h << CFG_TAR_H_SHIFT); sc_reg0[5] = (src_w << CFG_SRC_W_SHIFT) | (src_h << CFG_SRC_H_SHIFT); sc_reg0[6] = (row_acc_init_rav_b << CFG_ROW_ACC_INIT_RAV_B_SHIFT) | (row_acc_init_rav << CFG_ROW_ACC_INIT_RAV_SHIFT); *sc_reg9 = lin_acc_inc; *sc_reg12 = col_acc_offset << CFG_COL_ACC_OFFSET_SHIFT; *sc_reg13 = factor; *sc_reg24 = (src_w << CFG_ORG_W_SHIFT) | (src_h << CFG_ORG_H_SHIFT); } EXPORT_SYMBOL(sc_config_scaler); struct sc_data *sc_create(struct platform_device *pdev, const char *res_name) { struct sc_data *sc; dev_dbg(&pdev->dev, "sc_create\n"); sc = devm_kzalloc(&pdev->dev, sizeof(*sc), GFP_KERNEL); if (!sc) { dev_err(&pdev->dev, "couldn't alloc sc_data\n"); return ERR_PTR(-ENOMEM); } sc->pdev = pdev; sc->res = platform_get_resource_byname(pdev, IORESOURCE_MEM, res_name); if (!sc->res) { dev_err(&pdev->dev, "missing '%s' platform resources data\n", res_name); return ERR_PTR(-ENODEV); } sc->base = devm_ioremap_resource(&pdev->dev, sc->res); if (IS_ERR(sc->base)) return ERR_CAST(sc->base); return sc; } EXPORT_SYMBOL(sc_create); MODULE_DESCRIPTION("TI VIP/VPE Scaler"); MODULE_AUTHOR("Texas Instruments Inc."); MODULE_LICENSE("GPL v2"); |