Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 | // SPDX-License-Identifier: GPL-2.0-only /* * drivers/media/i2c/ccs/ccs-reg-access.c * * Generic driver for MIPI CCS/SMIA/SMIA++ compliant camera sensors * * Copyright (C) 2020 Intel Corporation * Copyright (C) 2011--2012 Nokia Corporation * Contact: Sakari Ailus <sakari.ailus@linux.intel.com> */ #include <asm/unaligned.h> #include <linux/delay.h> #include <linux/i2c.h> #include "ccs.h" #include "ccs-limits.h" static u32 float_to_u32_mul_1000000(struct i2c_client *client, u32 phloat) { s32 exp; u64 man; if (phloat >= 0x80000000) { dev_err(&client->dev, "this is a negative number\n"); return 0; } if (phloat == 0x7f800000) return ~0; /* Inf. */ if ((phloat & 0x7f800000) == 0x7f800000) { dev_err(&client->dev, "NaN or other special number\n"); return 0; } /* Valid cases begin here */ if (phloat == 0) return 0; /* Valid zero */ if (phloat > 0x4f800000) return ~0; /* larger than 4294967295 */ /* * Unbias exponent (note how phloat is now guaranteed to * have 0 in the high bit) */ exp = ((int32_t)phloat >> 23) - 127; /* Extract mantissa, add missing '1' bit and it's in MHz */ man = ((phloat & 0x7fffff) | 0x800000) * 1000000ULL; if (exp < 0) man >>= -exp; else man <<= exp; man >>= 23; /* Remove mantissa bias */ return man & 0xffffffff; } static u32 ireal32_to_u32_mul_1000000(struct i2c_client *client, u32 val) { if (val >> 10 > U32_MAX / 15625) { dev_warn(&client->dev, "value %u overflows!\n", val); return U32_MAX; } return ((val >> 10) * 15625) + (val & GENMASK(9, 0)) * 15625 / 1024; } u32 ccs_reg_conv(struct ccs_sensor *sensor, u32 reg, u32 val) { struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); if (reg & CCS_FL_FLOAT_IREAL) { if (CCS_LIM(sensor, CLOCK_CAPA_TYPE_CAPABILITY) & CCS_CLOCK_CAPA_TYPE_CAPABILITY_IREAL) val = ireal32_to_u32_mul_1000000(client, val); else val = float_to_u32_mul_1000000(client, val); } else if (reg & CCS_FL_IREAL) { val = ireal32_to_u32_mul_1000000(client, val); } return val; } /* * Read a 8/16/32-bit i2c register. The value is returned in 'val'. * Returns zero if successful, or non-zero otherwise. */ static int __ccs_read_addr(struct ccs_sensor *sensor, u32 reg, u32 *val, bool only8, bool conv) { u64 __val; int rval; rval = cci_read(sensor->regmap, reg, &__val, NULL); if (rval < 0) return rval; *val = conv ? ccs_reg_conv(sensor, reg, __val) : __val; return 0; } static int __ccs_static_data_read_ro_reg(struct ccs_reg *regs, size_t num_regs, u32 reg, u32 *val) { unsigned int width = CCI_REG_WIDTH_BYTES(reg); size_t i; for (i = 0; i < num_regs; i++, regs++) { u8 *data; if (regs->addr + regs->len < CCS_REG_ADDR(reg) + width) continue; if (regs->addr > CCS_REG_ADDR(reg)) break; data = ®s->value[CCS_REG_ADDR(reg) - regs->addr]; switch (width) { case sizeof(u8): *val = *data; break; case sizeof(u16): *val = get_unaligned_be16(data); break; case sizeof(u32): *val = get_unaligned_be32(data); break; default: WARN_ON(1); return -EINVAL; } return 0; } return -ENOENT; } static int ccs_static_data_read_ro_reg(struct ccs_sensor *sensor, u32 reg, u32 *val) { if (!__ccs_static_data_read_ro_reg(sensor->sdata.sensor_read_only_regs, sensor->sdata.num_sensor_read_only_regs, reg, val)) return 0; return __ccs_static_data_read_ro_reg(sensor->mdata.module_read_only_regs, sensor->mdata.num_module_read_only_regs, reg, val); } static int ccs_read_addr_raw(struct ccs_sensor *sensor, u32 reg, u32 *val, bool force8, bool quirk, bool conv, bool data) { int rval; if (data) { rval = ccs_static_data_read_ro_reg(sensor, reg, val); if (!rval) return 0; } if (quirk) { *val = 0; rval = ccs_call_quirk(sensor, reg_access, false, ®, val); if (rval == -ENOIOCTLCMD) return 0; if (rval < 0) return rval; if (force8) return __ccs_read_addr(sensor, reg, val, true, conv); } return __ccs_read_addr(sensor, reg, val, ccs_needs_quirk(sensor, CCS_QUIRK_FLAG_8BIT_READ_ONLY), conv); } int ccs_read_addr(struct ccs_sensor *sensor, u32 reg, u32 *val) { return ccs_read_addr_raw(sensor, reg, val, false, true, true, true); } int ccs_read_addr_8only(struct ccs_sensor *sensor, u32 reg, u32 *val) { return ccs_read_addr_raw(sensor, reg, val, true, true, true, true); } int ccs_read_addr_noconv(struct ccs_sensor *sensor, u32 reg, u32 *val) { return ccs_read_addr_raw(sensor, reg, val, false, true, false, true); } /* * Write to a 8/16-bit register. * Returns zero if successful, or non-zero otherwise. */ int ccs_write_addr(struct ccs_sensor *sensor, u32 reg, u32 val) { unsigned int retries = 10; int rval; rval = ccs_call_quirk(sensor, reg_access, true, ®, &val); if (rval == -ENOIOCTLCMD) return 0; if (rval < 0) return rval; rval = 0; do { if (cci_write(sensor->regmap, reg, val, &rval)) fsleep(1000); } while (rval && --retries); return rval; } #define MAX_WRITE_LEN 32U int ccs_write_data_regs(struct ccs_sensor *sensor, struct ccs_reg *regs, size_t num_regs) { struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); size_t i; for (i = 0; i < num_regs; i++, regs++) { unsigned char *regdata = regs->value; unsigned int j; int len; for (j = 0; j < regs->len; j += len, regdata += len) { char printbuf[(MAX_WRITE_LEN << 1) + 1 /* \0 */] = { 0 }; unsigned int retries = 10; int rval; len = min(regs->len - j, MAX_WRITE_LEN); bin2hex(printbuf, regdata, len); dev_dbg(&client->dev, "writing msr reg 0x%4.4x value 0x%s\n", regs->addr + j, printbuf); do { rval = regmap_bulk_write(sensor->regmap, regs->addr + j, regdata, len); if (rval) fsleep(1000); } while (rval && --retries); if (rval) { dev_err(&client->dev, "error writing %u octets to address 0x%4.4x\n", len, regs->addr + j); return rval; } } } return 0; } |