Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 | // SPDX-License-Identifier: GPL-2.0-only /* * Copyright 2023 Red Hat */ #include "io-submitter.h" #include <linux/bio.h> #include <linux/kernel.h> #include <linux/mutex.h> #include "memory-alloc.h" #include "permassert.h" #include "data-vio.h" #include "logger.h" #include "types.h" #include "vdo.h" #include "vio.h" /* * Submission of bio operations to the underlying storage device will go through a separate work * queue thread (or more than one) to prevent blocking in other threads if the storage device has a * full queue. The plug structure allows that thread to do better batching of requests to make the * I/O more efficient. * * When multiple worker threads are used, a thread is chosen for a I/O operation submission based * on the PBN, so a given PBN will consistently wind up on the same thread. Flush operations are * assigned round-robin. * * The map (protected by the mutex) collects pending I/O operations so that the worker thread can * reorder them to try to encourage I/O request merging in the request queue underneath. */ struct bio_queue_data { struct vdo_work_queue *queue; struct blk_plug plug; struct int_map *map; struct mutex lock; unsigned int queue_number; }; struct io_submitter { unsigned int num_bio_queues_used; unsigned int bio_queue_rotation_interval; struct bio_queue_data bio_queue_data[]; }; static void start_bio_queue(void *ptr) { struct bio_queue_data *bio_queue_data = ptr; blk_start_plug(&bio_queue_data->plug); } static void finish_bio_queue(void *ptr) { struct bio_queue_data *bio_queue_data = ptr; blk_finish_plug(&bio_queue_data->plug); } static const struct vdo_work_queue_type bio_queue_type = { .start = start_bio_queue, .finish = finish_bio_queue, .max_priority = BIO_Q_MAX_PRIORITY, .default_priority = BIO_Q_DATA_PRIORITY, }; /** * count_all_bios() - Determine which bio counter to use. * @vio: The vio associated with the bio. * @bio: The bio to count. */ static void count_all_bios(struct vio *vio, struct bio *bio) { struct atomic_statistics *stats = &vio->completion.vdo->stats; if (is_data_vio(vio)) { vdo_count_bios(&stats->bios_out, bio); return; } vdo_count_bios(&stats->bios_meta, bio); if (vio->type == VIO_TYPE_RECOVERY_JOURNAL) vdo_count_bios(&stats->bios_journal, bio); else if (vio->type == VIO_TYPE_BLOCK_MAP) vdo_count_bios(&stats->bios_page_cache, bio); } /** * assert_in_bio_zone() - Assert that a vio is in the correct bio zone and not in interrupt * context. * @vio: The vio to check. */ static void assert_in_bio_zone(struct vio *vio) { VDO_ASSERT_LOG_ONLY(!in_interrupt(), "not in interrupt context"); assert_vio_in_bio_zone(vio); } /** * send_bio_to_device() - Update stats and tracing info, then submit the supplied bio to the OS for * processing. * @vio: The vio associated with the bio. * @bio: The bio to submit to the OS. */ static void send_bio_to_device(struct vio *vio, struct bio *bio) { struct vdo *vdo = vio->completion.vdo; assert_in_bio_zone(vio); atomic64_inc(&vdo->stats.bios_submitted); count_all_bios(vio, bio); bio_set_dev(bio, vdo_get_backing_device(vdo)); submit_bio_noacct(bio); } /** * vdo_submit_vio() - Submits a vio's bio to the underlying block device. May block if the device * is busy. This callback should be used by vios which did not attempt to merge. */ void vdo_submit_vio(struct vdo_completion *completion) { struct vio *vio = as_vio(completion); send_bio_to_device(vio, vio->bio); } /** * get_bio_list() - Extract the list of bios to submit from a vio. * @vio: The vio submitting I/O. * * The list will always contain at least one entry (the bio for the vio on which it is called), but * other bios may have been merged with it as well. * * Return: bio The head of the bio list to submit. */ static struct bio *get_bio_list(struct vio *vio) { struct bio *bio; struct io_submitter *submitter = vio->completion.vdo->io_submitter; struct bio_queue_data *bio_queue_data = &(submitter->bio_queue_data[vio->bio_zone]); assert_in_bio_zone(vio); mutex_lock(&bio_queue_data->lock); vdo_int_map_remove(bio_queue_data->map, vio->bios_merged.head->bi_iter.bi_sector); vdo_int_map_remove(bio_queue_data->map, vio->bios_merged.tail->bi_iter.bi_sector); bio = vio->bios_merged.head; bio_list_init(&vio->bios_merged); mutex_unlock(&bio_queue_data->lock); return bio; } /** * submit_data_vio() - Submit a data_vio's bio to the storage below along with * any bios that have been merged with it. * * Context: This call may block and so should only be called from a bio thread. */ static void submit_data_vio(struct vdo_completion *completion) { struct bio *bio, *next; struct vio *vio = as_vio(completion); assert_in_bio_zone(vio); for (bio = get_bio_list(vio); bio != NULL; bio = next) { next = bio->bi_next; bio->bi_next = NULL; send_bio_to_device((struct vio *) bio->bi_private, bio); } } /** * get_mergeable_locked() - Attempt to find an already queued bio that the current bio can be * merged with. * @map: The bio map to use for merging. * @vio: The vio we want to merge. * @back_merge: Set to true for a back merge, false for a front merge. * * There are two types of merging possible, forward and backward, which are distinguished by a flag * that uses kernel elevator terminology. * * Return: the vio to merge to, NULL if no merging is possible. */ static struct vio *get_mergeable_locked(struct int_map *map, struct vio *vio, bool back_merge) { struct bio *bio = vio->bio; sector_t merge_sector = bio->bi_iter.bi_sector; struct vio *vio_merge; if (back_merge) merge_sector -= VDO_SECTORS_PER_BLOCK; else merge_sector += VDO_SECTORS_PER_BLOCK; vio_merge = vdo_int_map_get(map, merge_sector); if (vio_merge == NULL) return NULL; if (vio->completion.priority != vio_merge->completion.priority) return NULL; if (bio_data_dir(bio) != bio_data_dir(vio_merge->bio)) return NULL; if (bio_list_empty(&vio_merge->bios_merged)) return NULL; if (back_merge) { return (vio_merge->bios_merged.tail->bi_iter.bi_sector == merge_sector ? vio_merge : NULL); } return (vio_merge->bios_merged.head->bi_iter.bi_sector == merge_sector ? vio_merge : NULL); } static int map_merged_vio(struct int_map *bio_map, struct vio *vio) { int result; sector_t bio_sector; bio_sector = vio->bios_merged.head->bi_iter.bi_sector; result = vdo_int_map_put(bio_map, bio_sector, vio, true, NULL); if (result != VDO_SUCCESS) return result; bio_sector = vio->bios_merged.tail->bi_iter.bi_sector; return vdo_int_map_put(bio_map, bio_sector, vio, true, NULL); } static int merge_to_prev_tail(struct int_map *bio_map, struct vio *vio, struct vio *prev_vio) { vdo_int_map_remove(bio_map, prev_vio->bios_merged.tail->bi_iter.bi_sector); bio_list_merge(&prev_vio->bios_merged, &vio->bios_merged); return map_merged_vio(bio_map, prev_vio); } static int merge_to_next_head(struct int_map *bio_map, struct vio *vio, struct vio *next_vio) { /* * Handle "next merge" and "gap fill" cases the same way so as to reorder bios in a way * that's compatible with using funnel queues in work queues. This avoids removing an * existing completion. */ vdo_int_map_remove(bio_map, next_vio->bios_merged.head->bi_iter.bi_sector); bio_list_merge_head(&next_vio->bios_merged, &vio->bios_merged); return map_merged_vio(bio_map, next_vio); } /** * try_bio_map_merge() - Attempt to merge a vio's bio with other pending I/Os. * @vio: The vio to merge. * * Currently this is only used for data_vios, but is broken out for future use with metadata vios. * * Return: whether or not the vio was merged. */ static bool try_bio_map_merge(struct vio *vio) { int result; bool merged = true; struct bio *bio = vio->bio; struct vio *prev_vio, *next_vio; struct vdo *vdo = vio->completion.vdo; struct bio_queue_data *bio_queue_data = &vdo->io_submitter->bio_queue_data[vio->bio_zone]; bio->bi_next = NULL; bio_list_init(&vio->bios_merged); bio_list_add(&vio->bios_merged, bio); mutex_lock(&bio_queue_data->lock); prev_vio = get_mergeable_locked(bio_queue_data->map, vio, true); next_vio = get_mergeable_locked(bio_queue_data->map, vio, false); if (prev_vio == next_vio) next_vio = NULL; if ((prev_vio == NULL) && (next_vio == NULL)) { /* no merge. just add to bio_queue */ merged = false; result = vdo_int_map_put(bio_queue_data->map, bio->bi_iter.bi_sector, vio, true, NULL); } else if (next_vio == NULL) { /* Only prev. merge to prev's tail */ result = merge_to_prev_tail(bio_queue_data->map, vio, prev_vio); } else { /* Only next. merge to next's head */ result = merge_to_next_head(bio_queue_data->map, vio, next_vio); } mutex_unlock(&bio_queue_data->lock); /* We don't care about failure of int_map_put in this case. */ VDO_ASSERT_LOG_ONLY(result == VDO_SUCCESS, "bio map insertion succeeds"); return merged; } /** * vdo_submit_data_vio() - Submit I/O for a data_vio. * @data_vio: the data_vio for which to issue I/O. * * If possible, this I/O will be merged other pending I/Os. Otherwise, the data_vio will be sent to * the appropriate bio zone directly. */ void vdo_submit_data_vio(struct data_vio *data_vio) { if (try_bio_map_merge(&data_vio->vio)) return; launch_data_vio_bio_zone_callback(data_vio, submit_data_vio); } /** * __submit_metadata_vio() - Submit I/O for a metadata vio. * @vio: the vio for which to issue I/O * @physical: the physical block number to read or write * @callback: the bio endio function which will be called after the I/O completes * @error_handler: the handler for submission or I/O errors (may be NULL) * @operation: the type of I/O to perform * @data: the buffer to read or write (may be NULL) * * The vio is enqueued on a vdo bio queue so that bio submission (which may block) does not block * other vdo threads. * * That the error handler will run on the correct thread is only true so long as the thread calling * this function, and the thread set in the endio callback are the same, as well as the fact that * no error can occur on the bio queue. Currently this is true for all callers, but additional care * will be needed if this ever changes. */ void __submit_metadata_vio(struct vio *vio, physical_block_number_t physical, bio_end_io_t callback, vdo_action_fn error_handler, blk_opf_t operation, char *data) { int result; struct vdo_completion *completion = &vio->completion; const struct admin_state_code *code = vdo_get_admin_state(completion->vdo); VDO_ASSERT_LOG_ONLY(!code->quiescent, "I/O not allowed in state %s", code->name); VDO_ASSERT_LOG_ONLY(vio->bio->bi_next == NULL, "metadata bio has no next bio"); vdo_reset_completion(completion); completion->error_handler = error_handler; result = vio_reset_bio(vio, data, callback, operation | REQ_META, physical); if (result != VDO_SUCCESS) { continue_vio(vio, result); return; } vdo_set_completion_callback(completion, vdo_submit_vio, get_vio_bio_zone_thread_id(vio)); vdo_launch_completion_with_priority(completion, get_metadata_priority(vio)); } /** * vdo_make_io_submitter() - Create an io_submitter structure. * @thread_count: Number of bio-submission threads to set up. * @rotation_interval: Interval to use when rotating between bio-submission threads when enqueuing * completions. * @max_requests_active: Number of bios for merge tracking. * @vdo: The vdo which will use this submitter. * @io_submitter: pointer to the new data structure. * * Return: VDO_SUCCESS or an error. */ int vdo_make_io_submitter(unsigned int thread_count, unsigned int rotation_interval, unsigned int max_requests_active, struct vdo *vdo, struct io_submitter **io_submitter_ptr) { unsigned int i; struct io_submitter *io_submitter; int result; result = vdo_allocate_extended(struct io_submitter, thread_count, struct bio_queue_data, "bio submission data", &io_submitter); if (result != VDO_SUCCESS) return result; io_submitter->bio_queue_rotation_interval = rotation_interval; /* Setup for each bio-submission work queue */ for (i = 0; i < thread_count; i++) { struct bio_queue_data *bio_queue_data = &io_submitter->bio_queue_data[i]; mutex_init(&bio_queue_data->lock); /* * One I/O operation per request, but both first & last sector numbers. * * If requests are assigned to threads round-robin, they should be distributed * quite evenly. But if they're assigned based on PBN, things can sometimes be very * uneven. So for now, we'll assume that all requests *may* wind up on one thread, * and thus all in the same map. */ result = vdo_int_map_create(max_requests_active * 2, &bio_queue_data->map); if (result != VDO_SUCCESS) { /* * Clean up the partially initialized bio-queue entirely and indicate that * initialization failed. */ vdo_log_error("bio map initialization failed %d", result); vdo_cleanup_io_submitter(io_submitter); vdo_free_io_submitter(io_submitter); return result; } bio_queue_data->queue_number = i; result = vdo_make_thread(vdo, vdo->thread_config.bio_threads[i], &bio_queue_type, 1, (void **) &bio_queue_data); if (result != VDO_SUCCESS) { /* * Clean up the partially initialized bio-queue entirely and indicate that * initialization failed. */ vdo_int_map_free(vdo_forget(bio_queue_data->map)); vdo_log_error("bio queue initialization failed %d", result); vdo_cleanup_io_submitter(io_submitter); vdo_free_io_submitter(io_submitter); return result; } bio_queue_data->queue = vdo->threads[vdo->thread_config.bio_threads[i]].queue; io_submitter->num_bio_queues_used++; } *io_submitter_ptr = io_submitter; return VDO_SUCCESS; } /** * vdo_cleanup_io_submitter() - Tear down the io_submitter fields as needed for a physical layer. * @io_submitter: The I/O submitter data to tear down (may be NULL). */ void vdo_cleanup_io_submitter(struct io_submitter *io_submitter) { int i; if (io_submitter == NULL) return; for (i = io_submitter->num_bio_queues_used - 1; i >= 0; i--) vdo_finish_work_queue(io_submitter->bio_queue_data[i].queue); } /** * vdo_free_io_submitter() - Free the io_submitter fields and structure as needed. * @io_submitter: The I/O submitter data to destroy. * * This must be called after vdo_cleanup_io_submitter(). It is used to release resources late in * the shutdown process to avoid or reduce the chance of race conditions. */ void vdo_free_io_submitter(struct io_submitter *io_submitter) { int i; if (io_submitter == NULL) return; for (i = io_submitter->num_bio_queues_used - 1; i >= 0; i--) { io_submitter->num_bio_queues_used--; /* vdo_destroy() will free the work queue, so just give up our reference to it. */ vdo_forget(io_submitter->bio_queue_data[i].queue); vdo_int_map_free(vdo_forget(io_submitter->bio_queue_data[i].map)); } vdo_free(io_submitter); } |