Linux Audio

Check our new training course

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
// SPDX-License-Identifier: GPL-2.0-only
/*
 * Copyright 2023 Red Hat
 */

#include "volume.h"

#include <linux/atomic.h>
#include <linux/dm-bufio.h>
#include <linux/err.h>

#include "errors.h"
#include "logger.h"
#include "memory-alloc.h"
#include "permassert.h"
#include "string-utils.h"
#include "thread-utils.h"

#include "chapter-index.h"
#include "config.h"
#include "geometry.h"
#include "hash-utils.h"
#include "index.h"
#include "sparse-cache.h"

/*
 * The first block of the volume layout is reserved for the volume header, which is no longer used.
 * The remainder of the volume is divided into chapters consisting of several pages of records, and
 * several pages of static index to use to find those records. The index pages are recorded first,
 * followed by the record pages. The chapters are written in order as they are filled, so the
 * volume storage acts as a circular log of the most recent chapters, with each new chapter
 * overwriting the oldest saved one.
 *
 * When a new chapter is filled and closed, the records from that chapter are sorted and
 * interleaved in approximate temporal order, and assigned to record pages. Then a static delta
 * index is generated to store which record page contains each record. The in-memory index page map
 * is also updated to indicate which delta lists fall on each chapter index page. This means that
 * when a record is read, the volume only has to load a single index page and a single record page,
 * rather than search the entire chapter. These index and record pages are written to storage, and
 * the index pages are transferred to the page cache under the theory that the most recently
 * written chapter is likely to be accessed again soon.
 *
 * When reading a record, the volume index will indicate which chapter should contain it. The
 * volume uses the index page map to determine which chapter index page needs to be loaded, and
 * then reads the relevant record page number from the chapter index. Both index and record pages
 * are stored in a page cache when read for the common case that subsequent records need the same
 * pages. The page cache evicts the least recently accessed entries when caching new pages. In
 * addition, the volume uses dm-bufio to manage access to the storage, which may allow for
 * additional caching depending on available system resources.
 *
 * Record requests are handled from cached pages when possible. If a page needs to be read, it is
 * placed on a queue along with the request that wants to read it. Any requests for the same page
 * that arrive while the read is pending are added to the queue entry. A separate reader thread
 * handles the queued reads, adding the page to the cache and updating any requests queued with it
 * so they can continue processing. This allows the index zone threads to continue processing new
 * requests rather than wait for the storage reads.
 *
 * When an index rebuild is necessary, the volume reads each stored chapter to determine which
 * range of chapters contain valid records, so that those records can be used to reconstruct the
 * in-memory volume index.
 */

/* The maximum allowable number of contiguous bad chapters */
#define MAX_BAD_CHAPTERS 100
#define VOLUME_CACHE_MAX_ENTRIES (U16_MAX >> 1)
#define VOLUME_CACHE_QUEUED_FLAG (1 << 15)
#define VOLUME_CACHE_MAX_QUEUED_READS 4096

static const u64 BAD_CHAPTER = U64_MAX;

/*
 * The invalidate counter is two 32 bits fields stored together atomically. The low order 32 bits
 * are the physical page number of the cached page being read. The high order 32 bits are a
 * sequence number. This value is written when the zone that owns it begins or completes a cache
 * search. Any other thread will only read the counter in wait_for_pending_searches() while waiting
 * to update the cache contents.
 */
union invalidate_counter {
	u64 value;
	struct {
		u32 page;
		u32 counter;
	};
};

static inline u32 map_to_page_number(struct index_geometry *geometry, u32 physical_page)
{
	return (physical_page - HEADER_PAGES_PER_VOLUME) % geometry->pages_per_chapter;
}

static inline u32 map_to_chapter_number(struct index_geometry *geometry, u32 physical_page)
{
	return (physical_page - HEADER_PAGES_PER_VOLUME) / geometry->pages_per_chapter;
}

static inline bool is_record_page(struct index_geometry *geometry, u32 physical_page)
{
	return map_to_page_number(geometry, physical_page) >= geometry->index_pages_per_chapter;
}

static u32 map_to_physical_page(const struct index_geometry *geometry, u32 chapter, u32 page)
{
	/* Page zero is the header page, so the first chapter index page is page one. */
	return HEADER_PAGES_PER_VOLUME + (geometry->pages_per_chapter * chapter) + page;
}

static inline union invalidate_counter get_invalidate_counter(struct page_cache *cache,
							      unsigned int zone_number)
{
	return (union invalidate_counter) {
		.value = READ_ONCE(cache->search_pending_counters[zone_number].atomic_value),
	};
}

static inline void set_invalidate_counter(struct page_cache *cache,
					  unsigned int zone_number,
					  union invalidate_counter invalidate_counter)
{
	WRITE_ONCE(cache->search_pending_counters[zone_number].atomic_value,
		   invalidate_counter.value);
}

static inline bool search_pending(union invalidate_counter invalidate_counter)
{
	return (invalidate_counter.counter & 1) != 0;
}

/* Lock the cache for a zone in order to search for a page. */
static void begin_pending_search(struct page_cache *cache, u32 physical_page,
				 unsigned int zone_number)
{
	union invalidate_counter invalidate_counter =
		get_invalidate_counter(cache, zone_number);

	invalidate_counter.page = physical_page;
	invalidate_counter.counter++;
	set_invalidate_counter(cache, zone_number, invalidate_counter);
	VDO_ASSERT_LOG_ONLY(search_pending(invalidate_counter),
			    "Search is pending for zone %u", zone_number);
	/*
	 * This memory barrier ensures that the write to the invalidate counter is seen by other
	 * threads before this thread accesses the cached page. The corresponding read memory
	 * barrier is in wait_for_pending_searches().
	 */
	smp_mb();
}

/* Unlock the cache for a zone by clearing its invalidate counter. */
static void end_pending_search(struct page_cache *cache, unsigned int zone_number)
{
	union invalidate_counter invalidate_counter;

	/*
	 * This memory barrier ensures that this thread completes reads of the
	 * cached page before other threads see the write to the invalidate
	 * counter.
	 */
	smp_mb();

	invalidate_counter = get_invalidate_counter(cache, zone_number);
	VDO_ASSERT_LOG_ONLY(search_pending(invalidate_counter),
			    "Search is pending for zone %u", zone_number);
	invalidate_counter.counter++;
	set_invalidate_counter(cache, zone_number, invalidate_counter);
}

static void wait_for_pending_searches(struct page_cache *cache, u32 physical_page)
{
	union invalidate_counter initial_counters[MAX_ZONES];
	unsigned int i;

	/*
	 * We hold the read_threads_mutex. We are waiting for threads that do not hold the
	 * read_threads_mutex. Those threads have "locked" their targeted page by setting the
	 * search_pending_counter. The corresponding write memory barrier is in
	 * begin_pending_search().
	 */
	smp_mb();

	for (i = 0; i < cache->zone_count; i++)
		initial_counters[i] = get_invalidate_counter(cache, i);
	for (i = 0; i < cache->zone_count; i++) {
		if (search_pending(initial_counters[i]) &&
		    (initial_counters[i].page == physical_page)) {
			/*
			 * There is an active search using the physical page. We need to wait for
			 * the search to finish.
			 *
			 * FIXME: Investigate using wait_event() to wait for the search to finish.
			 */
			while (initial_counters[i].value ==
			       get_invalidate_counter(cache, i).value)
				cond_resched();
		}
	}
}

static void release_page_buffer(struct cached_page *page)
{
	if (page->buffer != NULL)
		dm_bufio_release(vdo_forget(page->buffer));
}

static void clear_cache_page(struct page_cache *cache, struct cached_page *page)
{
	/* Do not clear read_pending because the read queue relies on it. */
	release_page_buffer(page);
	page->physical_page = cache->indexable_pages;
	WRITE_ONCE(page->last_used, 0);
}

static void make_page_most_recent(struct page_cache *cache, struct cached_page *page)
{
	/*
	 * ASSERTION: We are either a zone thread holding a search_pending_counter, or we are any
	 * thread holding the read_threads_mutex.
	 */
	if (atomic64_read(&cache->clock) != READ_ONCE(page->last_used))
		WRITE_ONCE(page->last_used, atomic64_inc_return(&cache->clock));
}

/* Select a page to remove from the cache to make space for a new entry. */
static struct cached_page *select_victim_in_cache(struct page_cache *cache)
{
	struct cached_page *page;
	int oldest_index = 0;
	s64 oldest_time = S64_MAX;
	s64 last_used;
	u16 i;

	/* Find the oldest unclaimed page. We hold the read_threads_mutex. */
	for (i = 0; i < cache->cache_slots; i++) {
		/* A page with a pending read must not be replaced. */
		if (cache->cache[i].read_pending)
			continue;

		last_used = READ_ONCE(cache->cache[i].last_used);
		if (last_used <= oldest_time) {
			oldest_time = last_used;
			oldest_index = i;
		}
	}

	page = &cache->cache[oldest_index];
	if (page->physical_page != cache->indexable_pages) {
		WRITE_ONCE(cache->index[page->physical_page], cache->cache_slots);
		wait_for_pending_searches(cache, page->physical_page);
	}

	page->read_pending = true;
	clear_cache_page(cache, page);
	return page;
}

/* Make a newly filled cache entry available to other threads. */
static int put_page_in_cache(struct page_cache *cache, u32 physical_page,
			     struct cached_page *page)
{
	int result;

	/* We hold the read_threads_mutex. */
	result = VDO_ASSERT((page->read_pending), "page to install has a pending read");
	if (result != VDO_SUCCESS)
		return result;

	page->physical_page = physical_page;
	make_page_most_recent(cache, page);
	page->read_pending = false;

	/*
	 * We hold the read_threads_mutex, but we must have a write memory barrier before making
	 * the cached_page available to the readers that do not hold the mutex. The corresponding
	 * read memory barrier is in get_page_and_index().
	 */
	smp_wmb();

	/* This assignment also clears the queued flag. */
	WRITE_ONCE(cache->index[physical_page], page - cache->cache);
	return UDS_SUCCESS;
}

static void cancel_page_in_cache(struct page_cache *cache, u32 physical_page,
				 struct cached_page *page)
{
	int result;

	/* We hold the read_threads_mutex. */
	result = VDO_ASSERT((page->read_pending), "page to install has a pending read");
	if (result != VDO_SUCCESS)
		return;

	clear_cache_page(cache, page);
	page->read_pending = false;

	/* Clear the mapping and the queued flag for the new page. */
	WRITE_ONCE(cache->index[physical_page], cache->cache_slots);
}

static inline u16 next_queue_position(u16 position)
{
	return (position + 1) % VOLUME_CACHE_MAX_QUEUED_READS;
}

static inline void advance_queue_position(u16 *position)
{
	*position = next_queue_position(*position);
}

static inline bool read_queue_is_full(struct page_cache *cache)
{
	return cache->read_queue_first == next_queue_position(cache->read_queue_last);
}

static bool enqueue_read(struct page_cache *cache, struct uds_request *request,
			 u32 physical_page)
{
	struct queued_read *queue_entry;
	u16 last = cache->read_queue_last;
	u16 read_queue_index;

	/* We hold the read_threads_mutex. */
	if ((cache->index[physical_page] & VOLUME_CACHE_QUEUED_FLAG) == 0) {
		/* This page has no existing entry in the queue. */
		if (read_queue_is_full(cache))
			return false;

		/* Fill in the read queue entry. */
		cache->read_queue[last].physical_page = physical_page;
		cache->read_queue[last].invalid = false;
		cache->read_queue[last].first_request = NULL;
		cache->read_queue[last].last_request = NULL;

		/* Point the cache index to the read queue entry. */
		read_queue_index = last;
		WRITE_ONCE(cache->index[physical_page],
			   read_queue_index | VOLUME_CACHE_QUEUED_FLAG);

		advance_queue_position(&cache->read_queue_last);
	} else {
		/* It's already queued, so add this request to the existing entry. */
		read_queue_index = cache->index[physical_page] & ~VOLUME_CACHE_QUEUED_FLAG;
	}

	request->next_request = NULL;
	queue_entry = &cache->read_queue[read_queue_index];
	if (queue_entry->first_request == NULL)
		queue_entry->first_request = request;
	else
		queue_entry->last_request->next_request = request;
	queue_entry->last_request = request;

	return true;
}

static void enqueue_page_read(struct volume *volume, struct uds_request *request,
			      u32 physical_page)
{
	/* Mark the page as queued, so that chapter invalidation knows to cancel a read. */
	while (!enqueue_read(&volume->page_cache, request, physical_page)) {
		vdo_log_debug("Read queue full, waiting for reads to finish");
		uds_wait_cond(&volume->read_threads_read_done_cond,
			      &volume->read_threads_mutex);
	}

	uds_signal_cond(&volume->read_threads_cond);
}

/*
 * Reserve the next read queue entry for processing, but do not actually remove it from the queue.
 * Must be followed by release_queued_requests().
 */
static struct queued_read *reserve_read_queue_entry(struct page_cache *cache)
{
	/* We hold the read_threads_mutex. */
	struct queued_read *entry;
	u16 index_value;
	bool queued;

	/* No items to dequeue */
	if (cache->read_queue_next_read == cache->read_queue_last)
		return NULL;

	entry = &cache->read_queue[cache->read_queue_next_read];
	index_value = cache->index[entry->physical_page];
	queued = (index_value & VOLUME_CACHE_QUEUED_FLAG) != 0;
	/* Check to see if it's still queued before resetting. */
	if (entry->invalid && queued)
		WRITE_ONCE(cache->index[entry->physical_page], cache->cache_slots);

	/*
	 * If a synchronous read has taken this page, set invalid to true so it doesn't get
	 * overwritten. Requests will just be requeued.
	 */
	if (!queued)
		entry->invalid = true;

	entry->reserved = true;
	advance_queue_position(&cache->read_queue_next_read);
	return entry;
}

static inline struct queued_read *wait_to_reserve_read_queue_entry(struct volume *volume)
{
	struct queued_read *queue_entry = NULL;

	while (!volume->read_threads_exiting) {
		queue_entry = reserve_read_queue_entry(&volume->page_cache);
		if (queue_entry != NULL)
			break;

		uds_wait_cond(&volume->read_threads_cond, &volume->read_threads_mutex);
	}

	return queue_entry;
}

static int init_chapter_index_page(const struct volume *volume, u8 *index_page,
				   u32 chapter, u32 index_page_number,
				   struct delta_index_page *chapter_index_page)
{
	u64 ci_virtual;
	u32 ci_chapter;
	u32 lowest_list;
	u32 highest_list;
	struct index_geometry *geometry = volume->geometry;
	int result;

	result = uds_initialize_chapter_index_page(chapter_index_page, geometry,
						   index_page, volume->nonce);
	if (volume->lookup_mode == LOOKUP_FOR_REBUILD)
		return result;

	if (result != UDS_SUCCESS) {
		return vdo_log_error_strerror(result,
					      "Reading chapter index page for chapter %u page %u",
					      chapter, index_page_number);
	}

	uds_get_list_number_bounds(volume->index_page_map, chapter, index_page_number,
				   &lowest_list, &highest_list);
	ci_virtual = chapter_index_page->virtual_chapter_number;
	ci_chapter = uds_map_to_physical_chapter(geometry, ci_virtual);
	if ((chapter == ci_chapter) &&
	    (lowest_list == chapter_index_page->lowest_list_number) &&
	    (highest_list == chapter_index_page->highest_list_number))
		return UDS_SUCCESS;

	vdo_log_warning("Index page map updated to %llu",
			(unsigned long long) volume->index_page_map->last_update);
	vdo_log_warning("Page map expects that chapter %u page %u has range %u to %u, but chapter index page has chapter %llu with range %u to %u",
			chapter, index_page_number, lowest_list, highest_list,
			(unsigned long long) ci_virtual,
			chapter_index_page->lowest_list_number,
			chapter_index_page->highest_list_number);
	return vdo_log_error_strerror(UDS_CORRUPT_DATA,
				      "index page map mismatch with chapter index");
}

static int initialize_index_page(const struct volume *volume, u32 physical_page,
				 struct cached_page *page)
{
	u32 chapter = map_to_chapter_number(volume->geometry, physical_page);
	u32 index_page_number = map_to_page_number(volume->geometry, physical_page);

	return init_chapter_index_page(volume, dm_bufio_get_block_data(page->buffer),
				       chapter, index_page_number, &page->index_page);
}

static bool search_record_page(const u8 record_page[],
			       const struct uds_record_name *name,
			       const struct index_geometry *geometry,
			       struct uds_record_data *metadata)
{
	/*
	 * The array of records is sorted by name and stored as a binary tree in heap order, so the
	 * root of the tree is the first array element.
	 */
	u32 node = 0;
	const struct uds_volume_record *records = (const struct uds_volume_record *) record_page;

	while (node < geometry->records_per_page) {
		int result;
		const struct uds_volume_record *record = &records[node];

		result = memcmp(name, &record->name, UDS_RECORD_NAME_SIZE);
		if (result == 0) {
			if (metadata != NULL)
				*metadata = record->data;
			return true;
		}

		/* The children of node N are at indexes 2N+1 and 2N+2. */
		node = ((2 * node) + ((result < 0) ? 1 : 2));
	}

	return false;
}

/*
 * If we've read in a record page, we're going to do an immediate search, to speed up processing by
 * avoiding get_record_from_zone(), and to ensure that requests make progress even when queued. If
 * we've read in an index page, we save the record page number so we don't have to resolve the
 * index page again. We use the location, virtual_chapter, and old_metadata fields in the request
 * to allow the index code to know where to begin processing the request again.
 */
static int search_page(struct cached_page *page, const struct volume *volume,
		       struct uds_request *request, u32 physical_page)
{
	int result;
	enum uds_index_region location;
	u16 record_page_number;

	if (is_record_page(volume->geometry, physical_page)) {
		if (search_record_page(dm_bufio_get_block_data(page->buffer),
				       &request->record_name, volume->geometry,
				       &request->old_metadata))
			location = UDS_LOCATION_RECORD_PAGE_LOOKUP;
		else
			location = UDS_LOCATION_UNAVAILABLE;
	} else {
		result = uds_search_chapter_index_page(&page->index_page,
						       volume->geometry,
						       &request->record_name,
						       &record_page_number);
		if (result != UDS_SUCCESS)
			return result;

		if (record_page_number == NO_CHAPTER_INDEX_ENTRY) {
			location = UDS_LOCATION_UNAVAILABLE;
		} else {
			location = UDS_LOCATION_INDEX_PAGE_LOOKUP;
			*((u16 *) &request->old_metadata) = record_page_number;
		}
	}

	request->location = location;
	request->found = false;
	return UDS_SUCCESS;
}

static int process_entry(struct volume *volume, struct queued_read *entry)
{
	u32 page_number = entry->physical_page;
	struct uds_request *request;
	struct cached_page *page = NULL;
	u8 *page_data;
	int result;

	if (entry->invalid) {
		vdo_log_debug("Requeuing requests for invalid page");
		return UDS_SUCCESS;
	}

	page = select_victim_in_cache(&volume->page_cache);

	mutex_unlock(&volume->read_threads_mutex);
	page_data = dm_bufio_read(volume->client, page_number, &page->buffer);
	mutex_lock(&volume->read_threads_mutex);
	if (IS_ERR(page_data)) {
		result = -PTR_ERR(page_data);
		vdo_log_warning_strerror(result,
					 "error reading physical page %u from volume",
					 page_number);
		cancel_page_in_cache(&volume->page_cache, page_number, page);
		return result;
	}

	if (entry->invalid) {
		vdo_log_warning("Page %u invalidated after read", page_number);
		cancel_page_in_cache(&volume->page_cache, page_number, page);
		return UDS_SUCCESS;
	}

	if (!is_record_page(volume->geometry, page_number)) {
		result = initialize_index_page(volume, page_number, page);
		if (result != UDS_SUCCESS) {
			vdo_log_warning("Error initializing chapter index page");
			cancel_page_in_cache(&volume->page_cache, page_number, page);
			return result;
		}
	}

	result = put_page_in_cache(&volume->page_cache, page_number, page);
	if (result != UDS_SUCCESS) {
		vdo_log_warning("Error putting page %u in cache", page_number);
		cancel_page_in_cache(&volume->page_cache, page_number, page);
		return result;
	}

	request = entry->first_request;
	while ((request != NULL) && (result == UDS_SUCCESS)) {
		result = search_page(page, volume, request, page_number);
		request = request->next_request;
	}

	return result;
}

static void release_queued_requests(struct volume *volume, struct queued_read *entry,
				    int result)
{
	struct page_cache *cache = &volume->page_cache;
	u16 next_read = cache->read_queue_next_read;
	struct uds_request *request;
	struct uds_request *next;

	for (request = entry->first_request; request != NULL; request = next) {
		next = request->next_request;
		request->status = result;
		request->requeued = true;
		uds_enqueue_request(request, STAGE_INDEX);
	}

	entry->reserved = false;

	/* Move the read_queue_first pointer as far as we can. */
	while ((cache->read_queue_first != next_read) &&
	       (!cache->read_queue[cache->read_queue_first].reserved))
		advance_queue_position(&cache->read_queue_first);
	uds_broadcast_cond(&volume->read_threads_read_done_cond);
}

static void read_thread_function(void *arg)
{
	struct volume *volume = arg;

	vdo_log_debug("reader starting");
	mutex_lock(&volume->read_threads_mutex);
	while (true) {
		struct queued_read *queue_entry;
		int result;

		queue_entry = wait_to_reserve_read_queue_entry(volume);
		if (volume->read_threads_exiting)
			break;

		result = process_entry(volume, queue_entry);
		release_queued_requests(volume, queue_entry, result);
	}
	mutex_unlock(&volume->read_threads_mutex);
	vdo_log_debug("reader done");
}

static void get_page_and_index(struct page_cache *cache, u32 physical_page,
			       int *queue_index, struct cached_page **page_ptr)
{
	u16 index_value;
	u16 index;
	bool queued;

	/*
	 * ASSERTION: We are either a zone thread holding a search_pending_counter, or we are any
	 * thread holding the read_threads_mutex.
	 *
	 * Holding only a search_pending_counter is the most frequent case.
	 */
	/*
	 * It would be unlikely for the compiler to turn the usage of index_value into two reads of
	 * cache->index, but it would be possible and very bad if those reads did not return the
	 * same bits.
	 */
	index_value = READ_ONCE(cache->index[physical_page]);
	queued = (index_value & VOLUME_CACHE_QUEUED_FLAG) != 0;
	index = index_value & ~VOLUME_CACHE_QUEUED_FLAG;

	if (!queued && (index < cache->cache_slots)) {
		*page_ptr = &cache->cache[index];
		/*
		 * We have acquired access to the cached page, but unless we hold the
		 * read_threads_mutex, we need a read memory barrier now. The corresponding write
		 * memory barrier is in put_page_in_cache().
		 */
		smp_rmb();
	} else {
		*page_ptr = NULL;
	}

	*queue_index = queued ? index : -1;
}

static void get_page_from_cache(struct page_cache *cache, u32 physical_page,
				struct cached_page **page)
{
	/*
	 * ASSERTION: We are in a zone thread.
	 * ASSERTION: We holding a search_pending_counter or the read_threads_mutex.
	 */
	int queue_index = -1;

	get_page_and_index(cache, physical_page, &queue_index, page);
}

static int read_page_locked(struct volume *volume, u32 physical_page,
			    struct cached_page **page_ptr)
{
	int result = UDS_SUCCESS;
	struct cached_page *page = NULL;
	u8 *page_data;

	page = select_victim_in_cache(&volume->page_cache);
	page_data = dm_bufio_read(volume->client, physical_page, &page->buffer);
	if (IS_ERR(page_data)) {
		result = -PTR_ERR(page_data);
		vdo_log_warning_strerror(result,
					 "error reading physical page %u from volume",
					 physical_page);
		cancel_page_in_cache(&volume->page_cache, physical_page, page);
		return result;
	}

	if (!is_record_page(volume->geometry, physical_page)) {
		result = initialize_index_page(volume, physical_page, page);
		if (result != UDS_SUCCESS) {
			if (volume->lookup_mode != LOOKUP_FOR_REBUILD)
				vdo_log_warning("Corrupt index page %u", physical_page);
			cancel_page_in_cache(&volume->page_cache, physical_page, page);
			return result;
		}
	}

	result = put_page_in_cache(&volume->page_cache, physical_page, page);
	if (result != UDS_SUCCESS) {
		vdo_log_warning("Error putting page %u in cache", physical_page);
		cancel_page_in_cache(&volume->page_cache, physical_page, page);
		return result;
	}

	*page_ptr = page;
	return UDS_SUCCESS;
}

/* Retrieve a page from the cache while holding the read threads mutex. */
static int get_volume_page_locked(struct volume *volume, u32 physical_page,
				  struct cached_page **page_ptr)
{
	int result;
	struct cached_page *page = NULL;

	get_page_from_cache(&volume->page_cache, physical_page, &page);
	if (page == NULL) {
		result = read_page_locked(volume, physical_page, &page);
		if (result != UDS_SUCCESS)
			return result;
	} else {
		make_page_most_recent(&volume->page_cache, page);
	}

	*page_ptr = page;
	return UDS_SUCCESS;
}

/* Retrieve a page from the cache while holding a search_pending lock. */
static int get_volume_page_protected(struct volume *volume, struct uds_request *request,
				     u32 physical_page, struct cached_page **page_ptr)
{
	struct cached_page *page;

	get_page_from_cache(&volume->page_cache, physical_page, &page);
	if (page != NULL) {
		if (request->zone_number == 0) {
			/* Only one zone is allowed to update the LRU. */
			make_page_most_recent(&volume->page_cache, page);
		}

		*page_ptr = page;
		return UDS_SUCCESS;
	}

	/* Prepare to enqueue a read for the page. */
	end_pending_search(&volume->page_cache, request->zone_number);
	mutex_lock(&volume->read_threads_mutex);

	/*
	 * Do the lookup again while holding the read mutex (no longer the fast case so this should
	 * be fine to repeat). We need to do this because a page may have been added to the cache
	 * by a reader thread between the time we searched above and the time we went to actually
	 * try to enqueue it below. This could result in us enqueuing another read for a page which
	 * is already in the cache, which would mean we end up with two entries in the cache for
	 * the same page.
	 */
	get_page_from_cache(&volume->page_cache, physical_page, &page);
	if (page == NULL) {
		enqueue_page_read(volume, request, physical_page);
		/*
		 * The performance gain from unlocking first, while "search pending" mode is off,
		 * turns out to be significant in some cases. The page is not available yet so
		 * the order does not matter for correctness as it does below.
		 */
		mutex_unlock(&volume->read_threads_mutex);
		begin_pending_search(&volume->page_cache, physical_page,
				     request->zone_number);
		return UDS_QUEUED;
	}

	/*
	 * Now that the page is loaded, the volume needs to switch to "reader thread unlocked" and
	 * "search pending" state in careful order so no other thread can mess with the data before
	 * the caller gets to look at it.
	 */
	begin_pending_search(&volume->page_cache, physical_page, request->zone_number);
	mutex_unlock(&volume->read_threads_mutex);
	*page_ptr = page;
	return UDS_SUCCESS;
}

static int get_volume_page(struct volume *volume, u32 chapter, u32 page_number,
			   struct cached_page **page_ptr)
{
	int result;
	u32 physical_page = map_to_physical_page(volume->geometry, chapter, page_number);

	mutex_lock(&volume->read_threads_mutex);
	result = get_volume_page_locked(volume, physical_page, page_ptr);
	mutex_unlock(&volume->read_threads_mutex);
	return result;
}

int uds_get_volume_record_page(struct volume *volume, u32 chapter, u32 page_number,
			       u8 **data_ptr)
{
	int result;
	struct cached_page *page = NULL;

	result = get_volume_page(volume, chapter, page_number, &page);
	if (result == UDS_SUCCESS)
		*data_ptr = dm_bufio_get_block_data(page->buffer);
	return result;
}

int uds_get_volume_index_page(struct volume *volume, u32 chapter, u32 page_number,
			      struct delta_index_page **index_page_ptr)
{
	int result;
	struct cached_page *page = NULL;

	result = get_volume_page(volume, chapter, page_number, &page);
	if (result == UDS_SUCCESS)
		*index_page_ptr = &page->index_page;
	return result;
}

/*
 * Find the record page associated with a name in a given index page. This will return UDS_QUEUED
 * if the page in question must be read from storage.
 */
static int search_cached_index_page(struct volume *volume, struct uds_request *request,
				    u32 chapter, u32 index_page_number,
				    u16 *record_page_number)
{
	int result;
	struct cached_page *page = NULL;
	u32 physical_page = map_to_physical_page(volume->geometry, chapter,
						 index_page_number);

	/*
	 * Make sure the invalidate counter is updated before we try and read the mapping. This
	 * prevents this thread from reading a page in the cache which has already been marked for
	 * invalidation by the reader thread, before the reader thread has noticed that the
	 * invalidate_counter has been incremented.
	 */
	begin_pending_search(&volume->page_cache, physical_page, request->zone_number);

	result = get_volume_page_protected(volume, request, physical_page, &page);
	if (result != UDS_SUCCESS) {
		end_pending_search(&volume->page_cache, request->zone_number);
		return result;
	}

	result = uds_search_chapter_index_page(&page->index_page, volume->geometry,
					       &request->record_name,
					       record_page_number);
	end_pending_search(&volume->page_cache, request->zone_number);
	return result;
}

/*
 * Find the metadata associated with a name in a given record page. This will return UDS_QUEUED if
 * the page in question must be read from storage.
 */
int uds_search_cached_record_page(struct volume *volume, struct uds_request *request,
				  u32 chapter, u16 record_page_number, bool *found)
{
	struct cached_page *record_page;
	struct index_geometry *geometry = volume->geometry;
	int result;
	u32 physical_page, page_number;

	*found = false;
	if (record_page_number == NO_CHAPTER_INDEX_ENTRY)
		return UDS_SUCCESS;

	result = VDO_ASSERT(record_page_number < geometry->record_pages_per_chapter,
			    "0 <= %d < %u", record_page_number,
			    geometry->record_pages_per_chapter);
	if (result != VDO_SUCCESS)
		return result;

	page_number = geometry->index_pages_per_chapter + record_page_number;

	physical_page = map_to_physical_page(volume->geometry, chapter, page_number);

	/*
	 * Make sure the invalidate counter is updated before we try and read the mapping. This
	 * prevents this thread from reading a page in the cache which has already been marked for
	 * invalidation by the reader thread, before the reader thread has noticed that the
	 * invalidate_counter has been incremented.
	 */
	begin_pending_search(&volume->page_cache, physical_page, request->zone_number);

	result = get_volume_page_protected(volume, request, physical_page, &record_page);
	if (result != UDS_SUCCESS) {
		end_pending_search(&volume->page_cache, request->zone_number);
		return result;
	}

	if (search_record_page(dm_bufio_get_block_data(record_page->buffer),
			       &request->record_name, geometry, &request->old_metadata))
		*found = true;

	end_pending_search(&volume->page_cache, request->zone_number);
	return UDS_SUCCESS;
}

void uds_prefetch_volume_chapter(const struct volume *volume, u32 chapter)
{
	const struct index_geometry *geometry = volume->geometry;
	u32 physical_page = map_to_physical_page(geometry, chapter, 0);

	dm_bufio_prefetch(volume->client, physical_page, geometry->pages_per_chapter);
}

int uds_read_chapter_index_from_volume(const struct volume *volume, u64 virtual_chapter,
				       struct dm_buffer *volume_buffers[],
				       struct delta_index_page index_pages[])
{
	int result;
	u32 i;
	const struct index_geometry *geometry = volume->geometry;
	u32 physical_chapter = uds_map_to_physical_chapter(geometry, virtual_chapter);
	u32 physical_page = map_to_physical_page(geometry, physical_chapter, 0);

	dm_bufio_prefetch(volume->client, physical_page, geometry->index_pages_per_chapter);
	for (i = 0; i < geometry->index_pages_per_chapter; i++) {
		u8 *index_page;

		index_page = dm_bufio_read(volume->client, physical_page + i,
					   &volume_buffers[i]);
		if (IS_ERR(index_page)) {
			result = -PTR_ERR(index_page);
			vdo_log_warning_strerror(result,
						 "error reading physical page %u",
						 physical_page);
			return result;
		}

		result = init_chapter_index_page(volume, index_page, physical_chapter, i,
						 &index_pages[i]);
		if (result != UDS_SUCCESS)
			return result;
	}

	return UDS_SUCCESS;
}

int uds_search_volume_page_cache(struct volume *volume, struct uds_request *request,
				 bool *found)
{
	int result;
	u32 physical_chapter =
		uds_map_to_physical_chapter(volume->geometry, request->virtual_chapter);
	u32 index_page_number;
	u16 record_page_number;

	index_page_number = uds_find_index_page_number(volume->index_page_map,
						       &request->record_name,
						       physical_chapter);

	if (request->location == UDS_LOCATION_INDEX_PAGE_LOOKUP) {
		record_page_number = *((u16 *) &request->old_metadata);
	} else {
		result = search_cached_index_page(volume, request, physical_chapter,
						  index_page_number,
						  &record_page_number);
		if (result != UDS_SUCCESS)
			return result;
	}

	return uds_search_cached_record_page(volume, request, physical_chapter,
					     record_page_number, found);
}

int uds_search_volume_page_cache_for_rebuild(struct volume *volume,
					     const struct uds_record_name *name,
					     u64 virtual_chapter, bool *found)
{
	int result;
	struct index_geometry *geometry = volume->geometry;
	struct cached_page *page;
	u32 physical_chapter = uds_map_to_physical_chapter(geometry, virtual_chapter);
	u32 index_page_number;
	u16 record_page_number;
	u32 page_number;

	*found = false;
	index_page_number =
		uds_find_index_page_number(volume->index_page_map, name,
					   physical_chapter);
	result = get_volume_page(volume, physical_chapter, index_page_number, &page);
	if (result != UDS_SUCCESS)
		return result;

	result = uds_search_chapter_index_page(&page->index_page, geometry, name,
					       &record_page_number);
	if (result != UDS_SUCCESS)
		return result;

	if (record_page_number == NO_CHAPTER_INDEX_ENTRY)
		return UDS_SUCCESS;

	page_number = geometry->index_pages_per_chapter + record_page_number;
	result = get_volume_page(volume, physical_chapter, page_number, &page);
	if (result != UDS_SUCCESS)
		return result;

	*found = search_record_page(dm_bufio_get_block_data(page->buffer), name,
				    geometry, NULL);
	return UDS_SUCCESS;
}

static void invalidate_page(struct page_cache *cache, u32 physical_page)
{
	struct cached_page *page;
	int queue_index = -1;

	/* We hold the read_threads_mutex. */
	get_page_and_index(cache, physical_page, &queue_index, &page);
	if (page != NULL) {
		WRITE_ONCE(cache->index[page->physical_page], cache->cache_slots);
		wait_for_pending_searches(cache, page->physical_page);
		clear_cache_page(cache, page);
	} else if (queue_index > -1) {
		vdo_log_debug("setting pending read to invalid");
		cache->read_queue[queue_index].invalid = true;
	}
}

void uds_forget_chapter(struct volume *volume, u64 virtual_chapter)
{
	u32 physical_chapter =
		uds_map_to_physical_chapter(volume->geometry, virtual_chapter);
	u32 first_page = map_to_physical_page(volume->geometry, physical_chapter, 0);
	u32 i;

	vdo_log_debug("forgetting chapter %llu", (unsigned long long) virtual_chapter);
	mutex_lock(&volume->read_threads_mutex);
	for (i = 0; i < volume->geometry->pages_per_chapter; i++)
		invalidate_page(&volume->page_cache, first_page + i);
	mutex_unlock(&volume->read_threads_mutex);
}

/*
 * Donate an index pages from a newly written chapter to the page cache since it is likely to be
 * used again soon. The caller must already hold the reader thread mutex.
 */
static int donate_index_page_locked(struct volume *volume, u32 physical_chapter,
				    u32 index_page_number, struct dm_buffer *page_buffer)
{
	int result;
	struct cached_page *page = NULL;
	u32 physical_page =
		map_to_physical_page(volume->geometry, physical_chapter,
				     index_page_number);

	page = select_victim_in_cache(&volume->page_cache);
	page->buffer = page_buffer;
	result = init_chapter_index_page(volume, dm_bufio_get_block_data(page_buffer),
					 physical_chapter, index_page_number,
					 &page->index_page);
	if (result != UDS_SUCCESS) {
		vdo_log_warning("Error initialize chapter index page");
		cancel_page_in_cache(&volume->page_cache, physical_page, page);
		return result;
	}

	result = put_page_in_cache(&volume->page_cache, physical_page, page);
	if (result != UDS_SUCCESS) {
		vdo_log_warning("Error putting page %u in cache", physical_page);
		cancel_page_in_cache(&volume->page_cache, physical_page, page);
		return result;
	}

	return UDS_SUCCESS;
}

static int write_index_pages(struct volume *volume, u32 physical_chapter_number,
			     struct open_chapter_index *chapter_index)
{
	struct index_geometry *geometry = volume->geometry;
	struct dm_buffer *page_buffer;
	u32 first_index_page = map_to_physical_page(geometry, physical_chapter_number, 0);
	u32 delta_list_number = 0;
	u32 index_page_number;

	for (index_page_number = 0;
	     index_page_number < geometry->index_pages_per_chapter;
	     index_page_number++) {
		u8 *page_data;
		u32 physical_page = first_index_page + index_page_number;
		u32 lists_packed;
		bool last_page;
		int result;

		page_data = dm_bufio_new(volume->client, physical_page, &page_buffer);
		if (IS_ERR(page_data)) {
			return vdo_log_warning_strerror(-PTR_ERR(page_data),
							"failed to prepare index page");
		}

		last_page = ((index_page_number + 1) == geometry->index_pages_per_chapter);
		result = uds_pack_open_chapter_index_page(chapter_index, page_data,
							  delta_list_number, last_page,
							  &lists_packed);
		if (result != UDS_SUCCESS) {
			dm_bufio_release(page_buffer);
			return vdo_log_warning_strerror(result,
							"failed to pack index page");
		}

		dm_bufio_mark_buffer_dirty(page_buffer);

		if (lists_packed == 0) {
			vdo_log_debug("no delta lists packed on chapter %u page %u",
				      physical_chapter_number, index_page_number);
		} else {
			delta_list_number += lists_packed;
		}

		uds_update_index_page_map(volume->index_page_map,
					  chapter_index->virtual_chapter_number,
					  physical_chapter_number, index_page_number,
					  delta_list_number - 1);

		mutex_lock(&volume->read_threads_mutex);
		result = donate_index_page_locked(volume, physical_chapter_number,
						  index_page_number, page_buffer);
		mutex_unlock(&volume->read_threads_mutex);
		if (result != UDS_SUCCESS) {
			dm_bufio_release(page_buffer);
			return result;
		}
	}

	return UDS_SUCCESS;
}

static u32 encode_tree(u8 record_page[],
		       const struct uds_volume_record *sorted_pointers[],
		       u32 next_record, u32 node, u32 node_count)
{
	if (node < node_count) {
		u32 child = (2 * node) + 1;

		next_record = encode_tree(record_page, sorted_pointers, next_record,
					  child, node_count);

		/*
		 * In-order traversal: copy the contents of the next record into the page at the
		 * node offset.
		 */
		memcpy(&record_page[node * BYTES_PER_RECORD],
		       sorted_pointers[next_record++], BYTES_PER_RECORD);

		next_record = encode_tree(record_page, sorted_pointers, next_record,
					  child + 1, node_count);
	}

	return next_record;
}

static int encode_record_page(const struct volume *volume,
			      const struct uds_volume_record records[], u8 record_page[])
{
	int result;
	u32 i;
	u32 records_per_page = volume->geometry->records_per_page;
	const struct uds_volume_record **record_pointers = volume->record_pointers;

	for (i = 0; i < records_per_page; i++)
		record_pointers[i] = &records[i];

	/*
	 * Sort the record pointers by using just the names in the records, which is less work than
	 * sorting the entire record values.
	 */
	BUILD_BUG_ON(offsetof(struct uds_volume_record, name) != 0);
	result = uds_radix_sort(volume->radix_sorter, (const u8 **) record_pointers,
				records_per_page, UDS_RECORD_NAME_SIZE);
	if (result != UDS_SUCCESS)
		return result;

	encode_tree(record_page, record_pointers, 0, 0, records_per_page);
	return UDS_SUCCESS;
}

static int write_record_pages(struct volume *volume, u32 physical_chapter_number,
			      const struct uds_volume_record *records)
{
	u32 record_page_number;
	struct index_geometry *geometry = volume->geometry;
	struct dm_buffer *page_buffer;
	const struct uds_volume_record *next_record = records;
	u32 first_record_page = map_to_physical_page(geometry, physical_chapter_number,
						     geometry->index_pages_per_chapter);

	for (record_page_number = 0;
	     record_page_number < geometry->record_pages_per_chapter;
	     record_page_number++) {
		u8 *page_data;
		u32 physical_page = first_record_page + record_page_number;
		int result;

		page_data = dm_bufio_new(volume->client, physical_page, &page_buffer);
		if (IS_ERR(page_data)) {
			return vdo_log_warning_strerror(-PTR_ERR(page_data),
							"failed to prepare record page");
		}

		result = encode_record_page(volume, next_record, page_data);
		if (result != UDS_SUCCESS) {
			dm_bufio_release(page_buffer);
			return vdo_log_warning_strerror(result,
							"failed to encode record page %u",
							record_page_number);
		}

		next_record += geometry->records_per_page;
		dm_bufio_mark_buffer_dirty(page_buffer);
		dm_bufio_release(page_buffer);
	}

	return UDS_SUCCESS;
}

int uds_write_chapter(struct volume *volume, struct open_chapter_index *chapter_index,
		      const struct uds_volume_record *records)
{
	int result;
	u32 physical_chapter_number =
		uds_map_to_physical_chapter(volume->geometry,
					    chapter_index->virtual_chapter_number);

	result = write_index_pages(volume, physical_chapter_number, chapter_index);
	if (result != UDS_SUCCESS)
		return result;

	result = write_record_pages(volume, physical_chapter_number, records);
	if (result != UDS_SUCCESS)
		return result;

	result = -dm_bufio_write_dirty_buffers(volume->client);
	if (result != UDS_SUCCESS)
		vdo_log_error_strerror(result, "cannot sync chapter to volume");

	return result;
}

static void probe_chapter(struct volume *volume, u32 chapter_number,
			  u64 *virtual_chapter_number)
{
	const struct index_geometry *geometry = volume->geometry;
	u32 expected_list_number = 0;
	u32 i;
	u64 vcn = BAD_CHAPTER;

	*virtual_chapter_number = BAD_CHAPTER;
	dm_bufio_prefetch(volume->client,
			  map_to_physical_page(geometry, chapter_number, 0),
			  geometry->index_pages_per_chapter);

	for (i = 0; i < geometry->index_pages_per_chapter; i++) {
		struct delta_index_page *page;
		int result;

		result = uds_get_volume_index_page(volume, chapter_number, i, &page);
		if (result != UDS_SUCCESS)
			return;

		if (page->virtual_chapter_number == BAD_CHAPTER) {
			vdo_log_error("corrupt index page in chapter %u",
				      chapter_number);
			return;
		}

		if (vcn == BAD_CHAPTER) {
			vcn = page->virtual_chapter_number;
		} else if (page->virtual_chapter_number != vcn) {
			vdo_log_error("inconsistent chapter %u index page %u: expected vcn %llu, got vcn %llu",
				      chapter_number, i, (unsigned long long) vcn,
				      (unsigned long long) page->virtual_chapter_number);
			return;
		}

		if (expected_list_number != page->lowest_list_number) {
			vdo_log_error("inconsistent chapter %u index page %u: expected list number %u, got list number %u",
				      chapter_number, i, expected_list_number,
				      page->lowest_list_number);
			return;
		}
		expected_list_number = page->highest_list_number + 1;

		result = uds_validate_chapter_index_page(page, geometry);
		if (result != UDS_SUCCESS)
			return;
	}

	if (chapter_number != uds_map_to_physical_chapter(geometry, vcn)) {
		vdo_log_error("chapter %u vcn %llu is out of phase (%u)", chapter_number,
			      (unsigned long long) vcn, geometry->chapters_per_volume);
		return;
	}

	*virtual_chapter_number = vcn;
}

/* Find the last valid physical chapter in the volume. */
static void find_real_end_of_volume(struct volume *volume, u32 limit, u32 *limit_ptr)
{
	u32 span = 1;
	u32 tries = 0;

	while (limit > 0) {
		u32 chapter = (span > limit) ? 0 : limit - span;
		u64 vcn = 0;

		probe_chapter(volume, chapter, &vcn);
		if (vcn == BAD_CHAPTER) {
			limit = chapter;
			if (++tries > 1)
				span *= 2;
		} else {
			if (span == 1)
				break;
			span /= 2;
			tries = 0;
		}
	}

	*limit_ptr = limit;
}

static int find_chapter_limits(struct volume *volume, u32 chapter_limit, u64 *lowest_vcn,
			       u64 *highest_vcn)
{
	struct index_geometry *geometry = volume->geometry;
	u64 zero_vcn;
	u64 lowest = BAD_CHAPTER;
	u64 highest = BAD_CHAPTER;
	u64 moved_chapter = BAD_CHAPTER;
	u32 left_chapter = 0;
	u32 right_chapter = 0;
	u32 bad_chapters = 0;

	/*
	 * This method assumes there is at most one run of contiguous bad chapters caused by
	 * unflushed writes. Either the bad spot is at the beginning and end, or somewhere in the
	 * middle. Wherever it is, the highest and lowest VCNs are adjacent to it. Otherwise the
	 * volume is cleanly saved and somewhere in the middle of it the highest VCN immediately
	 * precedes the lowest one.
	 */

	/* It doesn't matter if this results in a bad spot (BAD_CHAPTER). */
	probe_chapter(volume, 0, &zero_vcn);

	/*
	 * Binary search for end of the discontinuity in the monotonically increasing virtual
	 * chapter numbers; bad spots are treated as a span of BAD_CHAPTER values. In effect we're
	 * searching for the index of the smallest value less than zero_vcn. In the case we go off
	 * the end it means that chapter 0 has the lowest vcn.
	 *
	 * If a virtual chapter is out-of-order, it will be the one moved by conversion. Always
	 * skip over the moved chapter when searching, adding it to the range at the end if
	 * necessary.
	 */
	if (geometry->remapped_physical > 0) {
		u64 remapped_vcn;

		probe_chapter(volume, geometry->remapped_physical, &remapped_vcn);
		if (remapped_vcn == geometry->remapped_virtual)
			moved_chapter = geometry->remapped_physical;
	}

	left_chapter = 0;
	right_chapter = chapter_limit;

	while (left_chapter < right_chapter) {
		u64 probe_vcn;
		u32 chapter = (left_chapter + right_chapter) / 2;

		if (chapter == moved_chapter)
			chapter--;

		probe_chapter(volume, chapter, &probe_vcn);
		if (zero_vcn <= probe_vcn) {
			left_chapter = chapter + 1;
			if (left_chapter == moved_chapter)
				left_chapter++;
		} else {
			right_chapter = chapter;
		}
	}

	/* If left_chapter goes off the end, chapter 0 has the lowest virtual chapter number.*/
	if (left_chapter >= chapter_limit)
		left_chapter = 0;

	/* At this point, left_chapter is the chapter with the lowest virtual chapter number. */
	probe_chapter(volume, left_chapter, &lowest);

	/* The moved chapter might be the lowest in the range. */
	if ((moved_chapter != BAD_CHAPTER) && (lowest == geometry->remapped_virtual + 1))
		lowest = geometry->remapped_virtual;

	/*
	 * Circularly scan backwards, moving over any bad chapters until encountering a good one,
	 * which is the chapter with the highest vcn.
	 */
	while (highest == BAD_CHAPTER) {
		right_chapter = (right_chapter + chapter_limit - 1) % chapter_limit;
		if (right_chapter == moved_chapter)
			continue;

		probe_chapter(volume, right_chapter, &highest);
		if (bad_chapters++ >= MAX_BAD_CHAPTERS) {
			vdo_log_error("too many bad chapters in volume: %u",
				      bad_chapters);
			return UDS_CORRUPT_DATA;
		}
	}

	*lowest_vcn = lowest;
	*highest_vcn = highest;
	return UDS_SUCCESS;
}

/*
 * Find the highest and lowest contiguous chapters present in the volume and determine their
 * virtual chapter numbers. This is used by rebuild.
 */
int uds_find_volume_chapter_boundaries(struct volume *volume, u64 *lowest_vcn,
				       u64 *highest_vcn, bool *is_empty)
{
	u32 chapter_limit = volume->geometry->chapters_per_volume;

	find_real_end_of_volume(volume, chapter_limit, &chapter_limit);
	if (chapter_limit == 0) {
		*lowest_vcn = 0;
		*highest_vcn = 0;
		*is_empty = true;
		return UDS_SUCCESS;
	}

	*is_empty = false;
	return find_chapter_limits(volume, chapter_limit, lowest_vcn, highest_vcn);
}

int __must_check uds_replace_volume_storage(struct volume *volume,
					    struct index_layout *layout,
					    struct block_device *bdev)
{
	int result;
	u32 i;

	result = uds_replace_index_layout_storage(layout, bdev);
	if (result != UDS_SUCCESS)
		return result;

	/* Release all outstanding dm_bufio objects */
	for (i = 0; i < volume->page_cache.indexable_pages; i++)
		volume->page_cache.index[i] = volume->page_cache.cache_slots;
	for (i = 0; i < volume->page_cache.cache_slots; i++)
		clear_cache_page(&volume->page_cache, &volume->page_cache.cache[i]);
	if (volume->sparse_cache != NULL)
		uds_invalidate_sparse_cache(volume->sparse_cache);
	if (volume->client != NULL)
		dm_bufio_client_destroy(vdo_forget(volume->client));

	return uds_open_volume_bufio(layout, volume->geometry->bytes_per_page,
				     volume->reserved_buffers, &volume->client);
}

static int __must_check initialize_page_cache(struct page_cache *cache,
					      const struct index_geometry *geometry,
					      u32 chapters_in_cache,
					      unsigned int zone_count)
{
	int result;
	u32 i;

	cache->indexable_pages = geometry->pages_per_volume + 1;
	cache->cache_slots = chapters_in_cache * geometry->record_pages_per_chapter;
	cache->zone_count = zone_count;
	atomic64_set(&cache->clock, 1);

	result = VDO_ASSERT((cache->cache_slots <= VOLUME_CACHE_MAX_ENTRIES),
			    "requested cache size, %u, within limit %u",
			    cache->cache_slots, VOLUME_CACHE_MAX_ENTRIES);
	if (result != VDO_SUCCESS)
		return result;

	result = vdo_allocate(VOLUME_CACHE_MAX_QUEUED_READS, struct queued_read,
			      "volume read queue", &cache->read_queue);
	if (result != VDO_SUCCESS)
		return result;

	result = vdo_allocate(cache->zone_count, struct search_pending_counter,
			      "Volume Cache Zones", &cache->search_pending_counters);
	if (result != VDO_SUCCESS)
		return result;

	result = vdo_allocate(cache->indexable_pages, u16, "page cache index",
			      &cache->index);
	if (result != VDO_SUCCESS)
		return result;

	result = vdo_allocate(cache->cache_slots, struct cached_page, "page cache cache",
			      &cache->cache);
	if (result != VDO_SUCCESS)
		return result;

	/* Initialize index values to invalid values. */
	for (i = 0; i < cache->indexable_pages; i++)
		cache->index[i] = cache->cache_slots;

	for (i = 0; i < cache->cache_slots; i++)
		clear_cache_page(cache, &cache->cache[i]);

	return UDS_SUCCESS;
}

int uds_make_volume(const struct uds_configuration *config, struct index_layout *layout,
		    struct volume **new_volume)
{
	unsigned int i;
	struct volume *volume = NULL;
	struct index_geometry *geometry;
	unsigned int reserved_buffers;
	int result;

	result = vdo_allocate(1, struct volume, "volume", &volume);
	if (result != VDO_SUCCESS)
		return result;

	volume->nonce = uds_get_volume_nonce(layout);

	result = uds_copy_index_geometry(config->geometry, &volume->geometry);
	if (result != UDS_SUCCESS) {
		uds_free_volume(volume);
		return vdo_log_warning_strerror(result,
						"failed to allocate geometry: error");
	}
	geometry = volume->geometry;

	/*
	 * Reserve a buffer for each entry in the page cache, one for the chapter writer, and one
	 * for each entry in the sparse cache.
	 */
	reserved_buffers = config->cache_chapters * geometry->record_pages_per_chapter;
	reserved_buffers += 1;
	if (uds_is_sparse_index_geometry(geometry))
		reserved_buffers += (config->cache_chapters * geometry->index_pages_per_chapter);
	volume->reserved_buffers = reserved_buffers;
	result = uds_open_volume_bufio(layout, geometry->bytes_per_page,
				       volume->reserved_buffers, &volume->client);
	if (result != UDS_SUCCESS) {
		uds_free_volume(volume);
		return result;
	}

	result = uds_make_radix_sorter(geometry->records_per_page,
				       &volume->radix_sorter);
	if (result != UDS_SUCCESS) {
		uds_free_volume(volume);
		return result;
	}

	result = vdo_allocate(geometry->records_per_page,
			      const struct uds_volume_record *, "record pointers",
			      &volume->record_pointers);
	if (result != VDO_SUCCESS) {
		uds_free_volume(volume);
		return result;
	}

	if (uds_is_sparse_index_geometry(geometry)) {
		size_t page_size = sizeof(struct delta_index_page) + geometry->bytes_per_page;

		result = uds_make_sparse_cache(geometry, config->cache_chapters,
					       config->zone_count,
					       &volume->sparse_cache);
		if (result != UDS_SUCCESS) {
			uds_free_volume(volume);
			return result;
		}

		volume->cache_size =
			page_size * geometry->index_pages_per_chapter * config->cache_chapters;
	}

	result = initialize_page_cache(&volume->page_cache, geometry,
				       config->cache_chapters, config->zone_count);
	if (result != UDS_SUCCESS) {
		uds_free_volume(volume);
		return result;
	}

	volume->cache_size += volume->page_cache.cache_slots * sizeof(struct delta_index_page);
	result = uds_make_index_page_map(geometry, &volume->index_page_map);
	if (result != UDS_SUCCESS) {
		uds_free_volume(volume);
		return result;
	}

	mutex_init(&volume->read_threads_mutex);
	uds_init_cond(&volume->read_threads_read_done_cond);
	uds_init_cond(&volume->read_threads_cond);

	result = vdo_allocate(config->read_threads, struct thread *, "reader threads",
			      &volume->reader_threads);
	if (result != VDO_SUCCESS) {
		uds_free_volume(volume);
		return result;
	}

	for (i = 0; i < config->read_threads; i++) {
		result = vdo_create_thread(read_thread_function, (void *) volume,
					   "reader", &volume->reader_threads[i]);
		if (result != VDO_SUCCESS) {
			uds_free_volume(volume);
			return result;
		}

		volume->read_thread_count = i + 1;
	}

	*new_volume = volume;
	return UDS_SUCCESS;
}

static void uninitialize_page_cache(struct page_cache *cache)
{
	u16 i;

	if (cache->cache != NULL) {
		for (i = 0; i < cache->cache_slots; i++)
			release_page_buffer(&cache->cache[i]);
	}
	vdo_free(cache->index);
	vdo_free(cache->cache);
	vdo_free(cache->search_pending_counters);
	vdo_free(cache->read_queue);
}

void uds_free_volume(struct volume *volume)
{
	if (volume == NULL)
		return;

	if (volume->reader_threads != NULL) {
		unsigned int i;

		/* This works even if some threads weren't started. */
		mutex_lock(&volume->read_threads_mutex);
		volume->read_threads_exiting = true;
		uds_broadcast_cond(&volume->read_threads_cond);
		mutex_unlock(&volume->read_threads_mutex);
		for (i = 0; i < volume->read_thread_count; i++)
			vdo_join_threads(volume->reader_threads[i]);
		vdo_free(volume->reader_threads);
		volume->reader_threads = NULL;
	}

	/* Must destroy the client AFTER freeing the cached pages. */
	uninitialize_page_cache(&volume->page_cache);
	uds_free_sparse_cache(volume->sparse_cache);
	if (volume->client != NULL)
		dm_bufio_client_destroy(vdo_forget(volume->client));

	uds_free_index_page_map(volume->index_page_map);
	uds_free_radix_sorter(volume->radix_sorter);
	vdo_free(volume->geometry);
	vdo_free(volume->record_pointers);
	vdo_free(volume);
}