Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 | // SPDX-License-Identifier: GPL-2.0-only /* * Copyright 2023 Red Hat */ #include "volume.h" #include <linux/atomic.h> #include <linux/dm-bufio.h> #include <linux/err.h> #include "errors.h" #include "logger.h" #include "memory-alloc.h" #include "permassert.h" #include "string-utils.h" #include "thread-utils.h" #include "chapter-index.h" #include "config.h" #include "geometry.h" #include "hash-utils.h" #include "index.h" #include "sparse-cache.h" /* * The first block of the volume layout is reserved for the volume header, which is no longer used. * The remainder of the volume is divided into chapters consisting of several pages of records, and * several pages of static index to use to find those records. The index pages are recorded first, * followed by the record pages. The chapters are written in order as they are filled, so the * volume storage acts as a circular log of the most recent chapters, with each new chapter * overwriting the oldest saved one. * * When a new chapter is filled and closed, the records from that chapter are sorted and * interleaved in approximate temporal order, and assigned to record pages. Then a static delta * index is generated to store which record page contains each record. The in-memory index page map * is also updated to indicate which delta lists fall on each chapter index page. This means that * when a record is read, the volume only has to load a single index page and a single record page, * rather than search the entire chapter. These index and record pages are written to storage, and * the index pages are transferred to the page cache under the theory that the most recently * written chapter is likely to be accessed again soon. * * When reading a record, the volume index will indicate which chapter should contain it. The * volume uses the index page map to determine which chapter index page needs to be loaded, and * then reads the relevant record page number from the chapter index. Both index and record pages * are stored in a page cache when read for the common case that subsequent records need the same * pages. The page cache evicts the least recently accessed entries when caching new pages. In * addition, the volume uses dm-bufio to manage access to the storage, which may allow for * additional caching depending on available system resources. * * Record requests are handled from cached pages when possible. If a page needs to be read, it is * placed on a queue along with the request that wants to read it. Any requests for the same page * that arrive while the read is pending are added to the queue entry. A separate reader thread * handles the queued reads, adding the page to the cache and updating any requests queued with it * so they can continue processing. This allows the index zone threads to continue processing new * requests rather than wait for the storage reads. * * When an index rebuild is necessary, the volume reads each stored chapter to determine which * range of chapters contain valid records, so that those records can be used to reconstruct the * in-memory volume index. */ /* The maximum allowable number of contiguous bad chapters */ #define MAX_BAD_CHAPTERS 100 #define VOLUME_CACHE_MAX_ENTRIES (U16_MAX >> 1) #define VOLUME_CACHE_QUEUED_FLAG (1 << 15) #define VOLUME_CACHE_MAX_QUEUED_READS 4096 static const u64 BAD_CHAPTER = U64_MAX; /* * The invalidate counter is two 32 bits fields stored together atomically. The low order 32 bits * are the physical page number of the cached page being read. The high order 32 bits are a * sequence number. This value is written when the zone that owns it begins or completes a cache * search. Any other thread will only read the counter in wait_for_pending_searches() while waiting * to update the cache contents. */ union invalidate_counter { u64 value; struct { u32 page; u32 counter; }; }; static inline u32 map_to_page_number(struct index_geometry *geometry, u32 physical_page) { return (physical_page - HEADER_PAGES_PER_VOLUME) % geometry->pages_per_chapter; } static inline u32 map_to_chapter_number(struct index_geometry *geometry, u32 physical_page) { return (physical_page - HEADER_PAGES_PER_VOLUME) / geometry->pages_per_chapter; } static inline bool is_record_page(struct index_geometry *geometry, u32 physical_page) { return map_to_page_number(geometry, physical_page) >= geometry->index_pages_per_chapter; } static u32 map_to_physical_page(const struct index_geometry *geometry, u32 chapter, u32 page) { /* Page zero is the header page, so the first chapter index page is page one. */ return HEADER_PAGES_PER_VOLUME + (geometry->pages_per_chapter * chapter) + page; } static inline union invalidate_counter get_invalidate_counter(struct page_cache *cache, unsigned int zone_number) { return (union invalidate_counter) { .value = READ_ONCE(cache->search_pending_counters[zone_number].atomic_value), }; } static inline void set_invalidate_counter(struct page_cache *cache, unsigned int zone_number, union invalidate_counter invalidate_counter) { WRITE_ONCE(cache->search_pending_counters[zone_number].atomic_value, invalidate_counter.value); } static inline bool search_pending(union invalidate_counter invalidate_counter) { return (invalidate_counter.counter & 1) != 0; } /* Lock the cache for a zone in order to search for a page. */ static void begin_pending_search(struct page_cache *cache, u32 physical_page, unsigned int zone_number) { union invalidate_counter invalidate_counter = get_invalidate_counter(cache, zone_number); invalidate_counter.page = physical_page; invalidate_counter.counter++; set_invalidate_counter(cache, zone_number, invalidate_counter); VDO_ASSERT_LOG_ONLY(search_pending(invalidate_counter), "Search is pending for zone %u", zone_number); /* * This memory barrier ensures that the write to the invalidate counter is seen by other * threads before this thread accesses the cached page. The corresponding read memory * barrier is in wait_for_pending_searches(). */ smp_mb(); } /* Unlock the cache for a zone by clearing its invalidate counter. */ static void end_pending_search(struct page_cache *cache, unsigned int zone_number) { union invalidate_counter invalidate_counter; /* * This memory barrier ensures that this thread completes reads of the * cached page before other threads see the write to the invalidate * counter. */ smp_mb(); invalidate_counter = get_invalidate_counter(cache, zone_number); VDO_ASSERT_LOG_ONLY(search_pending(invalidate_counter), "Search is pending for zone %u", zone_number); invalidate_counter.counter++; set_invalidate_counter(cache, zone_number, invalidate_counter); } static void wait_for_pending_searches(struct page_cache *cache, u32 physical_page) { union invalidate_counter initial_counters[MAX_ZONES]; unsigned int i; /* * We hold the read_threads_mutex. We are waiting for threads that do not hold the * read_threads_mutex. Those threads have "locked" their targeted page by setting the * search_pending_counter. The corresponding write memory barrier is in * begin_pending_search(). */ smp_mb(); for (i = 0; i < cache->zone_count; i++) initial_counters[i] = get_invalidate_counter(cache, i); for (i = 0; i < cache->zone_count; i++) { if (search_pending(initial_counters[i]) && (initial_counters[i].page == physical_page)) { /* * There is an active search using the physical page. We need to wait for * the search to finish. * * FIXME: Investigate using wait_event() to wait for the search to finish. */ while (initial_counters[i].value == get_invalidate_counter(cache, i).value) cond_resched(); } } } static void release_page_buffer(struct cached_page *page) { if (page->buffer != NULL) dm_bufio_release(vdo_forget(page->buffer)); } static void clear_cache_page(struct page_cache *cache, struct cached_page *page) { /* Do not clear read_pending because the read queue relies on it. */ release_page_buffer(page); page->physical_page = cache->indexable_pages; WRITE_ONCE(page->last_used, 0); } static void make_page_most_recent(struct page_cache *cache, struct cached_page *page) { /* * ASSERTION: We are either a zone thread holding a search_pending_counter, or we are any * thread holding the read_threads_mutex. */ if (atomic64_read(&cache->clock) != READ_ONCE(page->last_used)) WRITE_ONCE(page->last_used, atomic64_inc_return(&cache->clock)); } /* Select a page to remove from the cache to make space for a new entry. */ static struct cached_page *select_victim_in_cache(struct page_cache *cache) { struct cached_page *page; int oldest_index = 0; s64 oldest_time = S64_MAX; s64 last_used; u16 i; /* Find the oldest unclaimed page. We hold the read_threads_mutex. */ for (i = 0; i < cache->cache_slots; i++) { /* A page with a pending read must not be replaced. */ if (cache->cache[i].read_pending) continue; last_used = READ_ONCE(cache->cache[i].last_used); if (last_used <= oldest_time) { oldest_time = last_used; oldest_index = i; } } page = &cache->cache[oldest_index]; if (page->physical_page != cache->indexable_pages) { WRITE_ONCE(cache->index[page->physical_page], cache->cache_slots); wait_for_pending_searches(cache, page->physical_page); } page->read_pending = true; clear_cache_page(cache, page); return page; } /* Make a newly filled cache entry available to other threads. */ static int put_page_in_cache(struct page_cache *cache, u32 physical_page, struct cached_page *page) { int result; /* We hold the read_threads_mutex. */ result = VDO_ASSERT((page->read_pending), "page to install has a pending read"); if (result != VDO_SUCCESS) return result; page->physical_page = physical_page; make_page_most_recent(cache, page); page->read_pending = false; /* * We hold the read_threads_mutex, but we must have a write memory barrier before making * the cached_page available to the readers that do not hold the mutex. The corresponding * read memory barrier is in get_page_and_index(). */ smp_wmb(); /* This assignment also clears the queued flag. */ WRITE_ONCE(cache->index[physical_page], page - cache->cache); return UDS_SUCCESS; } static void cancel_page_in_cache(struct page_cache *cache, u32 physical_page, struct cached_page *page) { int result; /* We hold the read_threads_mutex. */ result = VDO_ASSERT((page->read_pending), "page to install has a pending read"); if (result != VDO_SUCCESS) return; clear_cache_page(cache, page); page->read_pending = false; /* Clear the mapping and the queued flag for the new page. */ WRITE_ONCE(cache->index[physical_page], cache->cache_slots); } static inline u16 next_queue_position(u16 position) { return (position + 1) % VOLUME_CACHE_MAX_QUEUED_READS; } static inline void advance_queue_position(u16 *position) { *position = next_queue_position(*position); } static inline bool read_queue_is_full(struct page_cache *cache) { return cache->read_queue_first == next_queue_position(cache->read_queue_last); } static bool enqueue_read(struct page_cache *cache, struct uds_request *request, u32 physical_page) { struct queued_read *queue_entry; u16 last = cache->read_queue_last; u16 read_queue_index; /* We hold the read_threads_mutex. */ if ((cache->index[physical_page] & VOLUME_CACHE_QUEUED_FLAG) == 0) { /* This page has no existing entry in the queue. */ if (read_queue_is_full(cache)) return false; /* Fill in the read queue entry. */ cache->read_queue[last].physical_page = physical_page; cache->read_queue[last].invalid = false; cache->read_queue[last].first_request = NULL; cache->read_queue[last].last_request = NULL; /* Point the cache index to the read queue entry. */ read_queue_index = last; WRITE_ONCE(cache->index[physical_page], read_queue_index | VOLUME_CACHE_QUEUED_FLAG); advance_queue_position(&cache->read_queue_last); } else { /* It's already queued, so add this request to the existing entry. */ read_queue_index = cache->index[physical_page] & ~VOLUME_CACHE_QUEUED_FLAG; } request->next_request = NULL; queue_entry = &cache->read_queue[read_queue_index]; if (queue_entry->first_request == NULL) queue_entry->first_request = request; else queue_entry->last_request->next_request = request; queue_entry->last_request = request; return true; } static void enqueue_page_read(struct volume *volume, struct uds_request *request, u32 physical_page) { /* Mark the page as queued, so that chapter invalidation knows to cancel a read. */ while (!enqueue_read(&volume->page_cache, request, physical_page)) { vdo_log_debug("Read queue full, waiting for reads to finish"); uds_wait_cond(&volume->read_threads_read_done_cond, &volume->read_threads_mutex); } uds_signal_cond(&volume->read_threads_cond); } /* * Reserve the next read queue entry for processing, but do not actually remove it from the queue. * Must be followed by release_queued_requests(). */ static struct queued_read *reserve_read_queue_entry(struct page_cache *cache) { /* We hold the read_threads_mutex. */ struct queued_read *entry; u16 index_value; bool queued; /* No items to dequeue */ if (cache->read_queue_next_read == cache->read_queue_last) return NULL; entry = &cache->read_queue[cache->read_queue_next_read]; index_value = cache->index[entry->physical_page]; queued = (index_value & VOLUME_CACHE_QUEUED_FLAG) != 0; /* Check to see if it's still queued before resetting. */ if (entry->invalid && queued) WRITE_ONCE(cache->index[entry->physical_page], cache->cache_slots); /* * If a synchronous read has taken this page, set invalid to true so it doesn't get * overwritten. Requests will just be requeued. */ if (!queued) entry->invalid = true; entry->reserved = true; advance_queue_position(&cache->read_queue_next_read); return entry; } static inline struct queued_read *wait_to_reserve_read_queue_entry(struct volume *volume) { struct queued_read *queue_entry = NULL; while (!volume->read_threads_exiting) { queue_entry = reserve_read_queue_entry(&volume->page_cache); if (queue_entry != NULL) break; uds_wait_cond(&volume->read_threads_cond, &volume->read_threads_mutex); } return queue_entry; } static int init_chapter_index_page(const struct volume *volume, u8 *index_page, u32 chapter, u32 index_page_number, struct delta_index_page *chapter_index_page) { u64 ci_virtual; u32 ci_chapter; u32 lowest_list; u32 highest_list; struct index_geometry *geometry = volume->geometry; int result; result = uds_initialize_chapter_index_page(chapter_index_page, geometry, index_page, volume->nonce); if (volume->lookup_mode == LOOKUP_FOR_REBUILD) return result; if (result != UDS_SUCCESS) { return vdo_log_error_strerror(result, "Reading chapter index page for chapter %u page %u", chapter, index_page_number); } uds_get_list_number_bounds(volume->index_page_map, chapter, index_page_number, &lowest_list, &highest_list); ci_virtual = chapter_index_page->virtual_chapter_number; ci_chapter = uds_map_to_physical_chapter(geometry, ci_virtual); if ((chapter == ci_chapter) && (lowest_list == chapter_index_page->lowest_list_number) && (highest_list == chapter_index_page->highest_list_number)) return UDS_SUCCESS; vdo_log_warning("Index page map updated to %llu", (unsigned long long) volume->index_page_map->last_update); vdo_log_warning("Page map expects that chapter %u page %u has range %u to %u, but chapter index page has chapter %llu with range %u to %u", chapter, index_page_number, lowest_list, highest_list, (unsigned long long) ci_virtual, chapter_index_page->lowest_list_number, chapter_index_page->highest_list_number); return vdo_log_error_strerror(UDS_CORRUPT_DATA, "index page map mismatch with chapter index"); } static int initialize_index_page(const struct volume *volume, u32 physical_page, struct cached_page *page) { u32 chapter = map_to_chapter_number(volume->geometry, physical_page); u32 index_page_number = map_to_page_number(volume->geometry, physical_page); return init_chapter_index_page(volume, dm_bufio_get_block_data(page->buffer), chapter, index_page_number, &page->index_page); } static bool search_record_page(const u8 record_page[], const struct uds_record_name *name, const struct index_geometry *geometry, struct uds_record_data *metadata) { /* * The array of records is sorted by name and stored as a binary tree in heap order, so the * root of the tree is the first array element. */ u32 node = 0; const struct uds_volume_record *records = (const struct uds_volume_record *) record_page; while (node < geometry->records_per_page) { int result; const struct uds_volume_record *record = &records[node]; result = memcmp(name, &record->name, UDS_RECORD_NAME_SIZE); if (result == 0) { if (metadata != NULL) *metadata = record->data; return true; } /* The children of node N are at indexes 2N+1 and 2N+2. */ node = ((2 * node) + ((result < 0) ? 1 : 2)); } return false; } /* * If we've read in a record page, we're going to do an immediate search, to speed up processing by * avoiding get_record_from_zone(), and to ensure that requests make progress even when queued. If * we've read in an index page, we save the record page number so we don't have to resolve the * index page again. We use the location, virtual_chapter, and old_metadata fields in the request * to allow the index code to know where to begin processing the request again. */ static int search_page(struct cached_page *page, const struct volume *volume, struct uds_request *request, u32 physical_page) { int result; enum uds_index_region location; u16 record_page_number; if (is_record_page(volume->geometry, physical_page)) { if (search_record_page(dm_bufio_get_block_data(page->buffer), &request->record_name, volume->geometry, &request->old_metadata)) location = UDS_LOCATION_RECORD_PAGE_LOOKUP; else location = UDS_LOCATION_UNAVAILABLE; } else { result = uds_search_chapter_index_page(&page->index_page, volume->geometry, &request->record_name, &record_page_number); if (result != UDS_SUCCESS) return result; if (record_page_number == NO_CHAPTER_INDEX_ENTRY) { location = UDS_LOCATION_UNAVAILABLE; } else { location = UDS_LOCATION_INDEX_PAGE_LOOKUP; *((u16 *) &request->old_metadata) = record_page_number; } } request->location = location; request->found = false; return UDS_SUCCESS; } static int process_entry(struct volume *volume, struct queued_read *entry) { u32 page_number = entry->physical_page; struct uds_request *request; struct cached_page *page = NULL; u8 *page_data; int result; if (entry->invalid) { vdo_log_debug("Requeuing requests for invalid page"); return UDS_SUCCESS; } page = select_victim_in_cache(&volume->page_cache); mutex_unlock(&volume->read_threads_mutex); page_data = dm_bufio_read(volume->client, page_number, &page->buffer); mutex_lock(&volume->read_threads_mutex); if (IS_ERR(page_data)) { result = -PTR_ERR(page_data); vdo_log_warning_strerror(result, "error reading physical page %u from volume", page_number); cancel_page_in_cache(&volume->page_cache, page_number, page); return result; } if (entry->invalid) { vdo_log_warning("Page %u invalidated after read", page_number); cancel_page_in_cache(&volume->page_cache, page_number, page); return UDS_SUCCESS; } if (!is_record_page(volume->geometry, page_number)) { result = initialize_index_page(volume, page_number, page); if (result != UDS_SUCCESS) { vdo_log_warning("Error initializing chapter index page"); cancel_page_in_cache(&volume->page_cache, page_number, page); return result; } } result = put_page_in_cache(&volume->page_cache, page_number, page); if (result != UDS_SUCCESS) { vdo_log_warning("Error putting page %u in cache", page_number); cancel_page_in_cache(&volume->page_cache, page_number, page); return result; } request = entry->first_request; while ((request != NULL) && (result == UDS_SUCCESS)) { result = search_page(page, volume, request, page_number); request = request->next_request; } return result; } static void release_queued_requests(struct volume *volume, struct queued_read *entry, int result) { struct page_cache *cache = &volume->page_cache; u16 next_read = cache->read_queue_next_read; struct uds_request *request; struct uds_request *next; for (request = entry->first_request; request != NULL; request = next) { next = request->next_request; request->status = result; request->requeued = true; uds_enqueue_request(request, STAGE_INDEX); } entry->reserved = false; /* Move the read_queue_first pointer as far as we can. */ while ((cache->read_queue_first != next_read) && (!cache->read_queue[cache->read_queue_first].reserved)) advance_queue_position(&cache->read_queue_first); uds_broadcast_cond(&volume->read_threads_read_done_cond); } static void read_thread_function(void *arg) { struct volume *volume = arg; vdo_log_debug("reader starting"); mutex_lock(&volume->read_threads_mutex); while (true) { struct queued_read *queue_entry; int result; queue_entry = wait_to_reserve_read_queue_entry(volume); if (volume->read_threads_exiting) break; result = process_entry(volume, queue_entry); release_queued_requests(volume, queue_entry, result); } mutex_unlock(&volume->read_threads_mutex); vdo_log_debug("reader done"); } static void get_page_and_index(struct page_cache *cache, u32 physical_page, int *queue_index, struct cached_page **page_ptr) { u16 index_value; u16 index; bool queued; /* * ASSERTION: We are either a zone thread holding a search_pending_counter, or we are any * thread holding the read_threads_mutex. * * Holding only a search_pending_counter is the most frequent case. */ /* * It would be unlikely for the compiler to turn the usage of index_value into two reads of * cache->index, but it would be possible and very bad if those reads did not return the * same bits. */ index_value = READ_ONCE(cache->index[physical_page]); queued = (index_value & VOLUME_CACHE_QUEUED_FLAG) != 0; index = index_value & ~VOLUME_CACHE_QUEUED_FLAG; if (!queued && (index < cache->cache_slots)) { *page_ptr = &cache->cache[index]; /* * We have acquired access to the cached page, but unless we hold the * read_threads_mutex, we need a read memory barrier now. The corresponding write * memory barrier is in put_page_in_cache(). */ smp_rmb(); } else { *page_ptr = NULL; } *queue_index = queued ? index : -1; } static void get_page_from_cache(struct page_cache *cache, u32 physical_page, struct cached_page **page) { /* * ASSERTION: We are in a zone thread. * ASSERTION: We holding a search_pending_counter or the read_threads_mutex. */ int queue_index = -1; get_page_and_index(cache, physical_page, &queue_index, page); } static int read_page_locked(struct volume *volume, u32 physical_page, struct cached_page **page_ptr) { int result = UDS_SUCCESS; struct cached_page *page = NULL; u8 *page_data; page = select_victim_in_cache(&volume->page_cache); page_data = dm_bufio_read(volume->client, physical_page, &page->buffer); if (IS_ERR(page_data)) { result = -PTR_ERR(page_data); vdo_log_warning_strerror(result, "error reading physical page %u from volume", physical_page); cancel_page_in_cache(&volume->page_cache, physical_page, page); return result; } if (!is_record_page(volume->geometry, physical_page)) { result = initialize_index_page(volume, physical_page, page); if (result != UDS_SUCCESS) { if (volume->lookup_mode != LOOKUP_FOR_REBUILD) vdo_log_warning("Corrupt index page %u", physical_page); cancel_page_in_cache(&volume->page_cache, physical_page, page); return result; } } result = put_page_in_cache(&volume->page_cache, physical_page, page); if (result != UDS_SUCCESS) { vdo_log_warning("Error putting page %u in cache", physical_page); cancel_page_in_cache(&volume->page_cache, physical_page, page); return result; } *page_ptr = page; return UDS_SUCCESS; } /* Retrieve a page from the cache while holding the read threads mutex. */ static int get_volume_page_locked(struct volume *volume, u32 physical_page, struct cached_page **page_ptr) { int result; struct cached_page *page = NULL; get_page_from_cache(&volume->page_cache, physical_page, &page); if (page == NULL) { result = read_page_locked(volume, physical_page, &page); if (result != UDS_SUCCESS) return result; } else { make_page_most_recent(&volume->page_cache, page); } *page_ptr = page; return UDS_SUCCESS; } /* Retrieve a page from the cache while holding a search_pending lock. */ static int get_volume_page_protected(struct volume *volume, struct uds_request *request, u32 physical_page, struct cached_page **page_ptr) { struct cached_page *page; get_page_from_cache(&volume->page_cache, physical_page, &page); if (page != NULL) { if (request->zone_number == 0) { /* Only one zone is allowed to update the LRU. */ make_page_most_recent(&volume->page_cache, page); } *page_ptr = page; return UDS_SUCCESS; } /* Prepare to enqueue a read for the page. */ end_pending_search(&volume->page_cache, request->zone_number); mutex_lock(&volume->read_threads_mutex); /* * Do the lookup again while holding the read mutex (no longer the fast case so this should * be fine to repeat). We need to do this because a page may have been added to the cache * by a reader thread between the time we searched above and the time we went to actually * try to enqueue it below. This could result in us enqueuing another read for a page which * is already in the cache, which would mean we end up with two entries in the cache for * the same page. */ get_page_from_cache(&volume->page_cache, physical_page, &page); if (page == NULL) { enqueue_page_read(volume, request, physical_page); /* * The performance gain from unlocking first, while "search pending" mode is off, * turns out to be significant in some cases. The page is not available yet so * the order does not matter for correctness as it does below. */ mutex_unlock(&volume->read_threads_mutex); begin_pending_search(&volume->page_cache, physical_page, request->zone_number); return UDS_QUEUED; } /* * Now that the page is loaded, the volume needs to switch to "reader thread unlocked" and * "search pending" state in careful order so no other thread can mess with the data before * the caller gets to look at it. */ begin_pending_search(&volume->page_cache, physical_page, request->zone_number); mutex_unlock(&volume->read_threads_mutex); *page_ptr = page; return UDS_SUCCESS; } static int get_volume_page(struct volume *volume, u32 chapter, u32 page_number, struct cached_page **page_ptr) { int result; u32 physical_page = map_to_physical_page(volume->geometry, chapter, page_number); mutex_lock(&volume->read_threads_mutex); result = get_volume_page_locked(volume, physical_page, page_ptr); mutex_unlock(&volume->read_threads_mutex); return result; } int uds_get_volume_record_page(struct volume *volume, u32 chapter, u32 page_number, u8 **data_ptr) { int result; struct cached_page *page = NULL; result = get_volume_page(volume, chapter, page_number, &page); if (result == UDS_SUCCESS) *data_ptr = dm_bufio_get_block_data(page->buffer); return result; } int uds_get_volume_index_page(struct volume *volume, u32 chapter, u32 page_number, struct delta_index_page **index_page_ptr) { int result; struct cached_page *page = NULL; result = get_volume_page(volume, chapter, page_number, &page); if (result == UDS_SUCCESS) *index_page_ptr = &page->index_page; return result; } /* * Find the record page associated with a name in a given index page. This will return UDS_QUEUED * if the page in question must be read from storage. */ static int search_cached_index_page(struct volume *volume, struct uds_request *request, u32 chapter, u32 index_page_number, u16 *record_page_number) { int result; struct cached_page *page = NULL; u32 physical_page = map_to_physical_page(volume->geometry, chapter, index_page_number); /* * Make sure the invalidate counter is updated before we try and read the mapping. This * prevents this thread from reading a page in the cache which has already been marked for * invalidation by the reader thread, before the reader thread has noticed that the * invalidate_counter has been incremented. */ begin_pending_search(&volume->page_cache, physical_page, request->zone_number); result = get_volume_page_protected(volume, request, physical_page, &page); if (result != UDS_SUCCESS) { end_pending_search(&volume->page_cache, request->zone_number); return result; } result = uds_search_chapter_index_page(&page->index_page, volume->geometry, &request->record_name, record_page_number); end_pending_search(&volume->page_cache, request->zone_number); return result; } /* * Find the metadata associated with a name in a given record page. This will return UDS_QUEUED if * the page in question must be read from storage. */ int uds_search_cached_record_page(struct volume *volume, struct uds_request *request, u32 chapter, u16 record_page_number, bool *found) { struct cached_page *record_page; struct index_geometry *geometry = volume->geometry; int result; u32 physical_page, page_number; *found = false; if (record_page_number == NO_CHAPTER_INDEX_ENTRY) return UDS_SUCCESS; result = VDO_ASSERT(record_page_number < geometry->record_pages_per_chapter, "0 <= %d < %u", record_page_number, geometry->record_pages_per_chapter); if (result != VDO_SUCCESS) return result; page_number = geometry->index_pages_per_chapter + record_page_number; physical_page = map_to_physical_page(volume->geometry, chapter, page_number); /* * Make sure the invalidate counter is updated before we try and read the mapping. This * prevents this thread from reading a page in the cache which has already been marked for * invalidation by the reader thread, before the reader thread has noticed that the * invalidate_counter has been incremented. */ begin_pending_search(&volume->page_cache, physical_page, request->zone_number); result = get_volume_page_protected(volume, request, physical_page, &record_page); if (result != UDS_SUCCESS) { end_pending_search(&volume->page_cache, request->zone_number); return result; } if (search_record_page(dm_bufio_get_block_data(record_page->buffer), &request->record_name, geometry, &request->old_metadata)) *found = true; end_pending_search(&volume->page_cache, request->zone_number); return UDS_SUCCESS; } void uds_prefetch_volume_chapter(const struct volume *volume, u32 chapter) { const struct index_geometry *geometry = volume->geometry; u32 physical_page = map_to_physical_page(geometry, chapter, 0); dm_bufio_prefetch(volume->client, physical_page, geometry->pages_per_chapter); } int uds_read_chapter_index_from_volume(const struct volume *volume, u64 virtual_chapter, struct dm_buffer *volume_buffers[], struct delta_index_page index_pages[]) { int result; u32 i; const struct index_geometry *geometry = volume->geometry; u32 physical_chapter = uds_map_to_physical_chapter(geometry, virtual_chapter); u32 physical_page = map_to_physical_page(geometry, physical_chapter, 0); dm_bufio_prefetch(volume->client, physical_page, geometry->index_pages_per_chapter); for (i = 0; i < geometry->index_pages_per_chapter; i++) { u8 *index_page; index_page = dm_bufio_read(volume->client, physical_page + i, &volume_buffers[i]); if (IS_ERR(index_page)) { result = -PTR_ERR(index_page); vdo_log_warning_strerror(result, "error reading physical page %u", physical_page); return result; } result = init_chapter_index_page(volume, index_page, physical_chapter, i, &index_pages[i]); if (result != UDS_SUCCESS) return result; } return UDS_SUCCESS; } int uds_search_volume_page_cache(struct volume *volume, struct uds_request *request, bool *found) { int result; u32 physical_chapter = uds_map_to_physical_chapter(volume->geometry, request->virtual_chapter); u32 index_page_number; u16 record_page_number; index_page_number = uds_find_index_page_number(volume->index_page_map, &request->record_name, physical_chapter); if (request->location == UDS_LOCATION_INDEX_PAGE_LOOKUP) { record_page_number = *((u16 *) &request->old_metadata); } else { result = search_cached_index_page(volume, request, physical_chapter, index_page_number, &record_page_number); if (result != UDS_SUCCESS) return result; } return uds_search_cached_record_page(volume, request, physical_chapter, record_page_number, found); } int uds_search_volume_page_cache_for_rebuild(struct volume *volume, const struct uds_record_name *name, u64 virtual_chapter, bool *found) { int result; struct index_geometry *geometry = volume->geometry; struct cached_page *page; u32 physical_chapter = uds_map_to_physical_chapter(geometry, virtual_chapter); u32 index_page_number; u16 record_page_number; u32 page_number; *found = false; index_page_number = uds_find_index_page_number(volume->index_page_map, name, physical_chapter); result = get_volume_page(volume, physical_chapter, index_page_number, &page); if (result != UDS_SUCCESS) return result; result = uds_search_chapter_index_page(&page->index_page, geometry, name, &record_page_number); if (result != UDS_SUCCESS) return result; if (record_page_number == NO_CHAPTER_INDEX_ENTRY) return UDS_SUCCESS; page_number = geometry->index_pages_per_chapter + record_page_number; result = get_volume_page(volume, physical_chapter, page_number, &page); if (result != UDS_SUCCESS) return result; *found = search_record_page(dm_bufio_get_block_data(page->buffer), name, geometry, NULL); return UDS_SUCCESS; } static void invalidate_page(struct page_cache *cache, u32 physical_page) { struct cached_page *page; int queue_index = -1; /* We hold the read_threads_mutex. */ get_page_and_index(cache, physical_page, &queue_index, &page); if (page != NULL) { WRITE_ONCE(cache->index[page->physical_page], cache->cache_slots); wait_for_pending_searches(cache, page->physical_page); clear_cache_page(cache, page); } else if (queue_index > -1) { vdo_log_debug("setting pending read to invalid"); cache->read_queue[queue_index].invalid = true; } } void uds_forget_chapter(struct volume *volume, u64 virtual_chapter) { u32 physical_chapter = uds_map_to_physical_chapter(volume->geometry, virtual_chapter); u32 first_page = map_to_physical_page(volume->geometry, physical_chapter, 0); u32 i; vdo_log_debug("forgetting chapter %llu", (unsigned long long) virtual_chapter); mutex_lock(&volume->read_threads_mutex); for (i = 0; i < volume->geometry->pages_per_chapter; i++) invalidate_page(&volume->page_cache, first_page + i); mutex_unlock(&volume->read_threads_mutex); } /* * Donate an index pages from a newly written chapter to the page cache since it is likely to be * used again soon. The caller must already hold the reader thread mutex. */ static int donate_index_page_locked(struct volume *volume, u32 physical_chapter, u32 index_page_number, struct dm_buffer *page_buffer) { int result; struct cached_page *page = NULL; u32 physical_page = map_to_physical_page(volume->geometry, physical_chapter, index_page_number); page = select_victim_in_cache(&volume->page_cache); page->buffer = page_buffer; result = init_chapter_index_page(volume, dm_bufio_get_block_data(page_buffer), physical_chapter, index_page_number, &page->index_page); if (result != UDS_SUCCESS) { vdo_log_warning("Error initialize chapter index page"); cancel_page_in_cache(&volume->page_cache, physical_page, page); return result; } result = put_page_in_cache(&volume->page_cache, physical_page, page); if (result != UDS_SUCCESS) { vdo_log_warning("Error putting page %u in cache", physical_page); cancel_page_in_cache(&volume->page_cache, physical_page, page); return result; } return UDS_SUCCESS; } static int write_index_pages(struct volume *volume, u32 physical_chapter_number, struct open_chapter_index *chapter_index) { struct index_geometry *geometry = volume->geometry; struct dm_buffer *page_buffer; u32 first_index_page = map_to_physical_page(geometry, physical_chapter_number, 0); u32 delta_list_number = 0; u32 index_page_number; for (index_page_number = 0; index_page_number < geometry->index_pages_per_chapter; index_page_number++) { u8 *page_data; u32 physical_page = first_index_page + index_page_number; u32 lists_packed; bool last_page; int result; page_data = dm_bufio_new(volume->client, physical_page, &page_buffer); if (IS_ERR(page_data)) { return vdo_log_warning_strerror(-PTR_ERR(page_data), "failed to prepare index page"); } last_page = ((index_page_number + 1) == geometry->index_pages_per_chapter); result = uds_pack_open_chapter_index_page(chapter_index, page_data, delta_list_number, last_page, &lists_packed); if (result != UDS_SUCCESS) { dm_bufio_release(page_buffer); return vdo_log_warning_strerror(result, "failed to pack index page"); } dm_bufio_mark_buffer_dirty(page_buffer); if (lists_packed == 0) { vdo_log_debug("no delta lists packed on chapter %u page %u", physical_chapter_number, index_page_number); } else { delta_list_number += lists_packed; } uds_update_index_page_map(volume->index_page_map, chapter_index->virtual_chapter_number, physical_chapter_number, index_page_number, delta_list_number - 1); mutex_lock(&volume->read_threads_mutex); result = donate_index_page_locked(volume, physical_chapter_number, index_page_number, page_buffer); mutex_unlock(&volume->read_threads_mutex); if (result != UDS_SUCCESS) { dm_bufio_release(page_buffer); return result; } } return UDS_SUCCESS; } static u32 encode_tree(u8 record_page[], const struct uds_volume_record *sorted_pointers[], u32 next_record, u32 node, u32 node_count) { if (node < node_count) { u32 child = (2 * node) + 1; next_record = encode_tree(record_page, sorted_pointers, next_record, child, node_count); /* * In-order traversal: copy the contents of the next record into the page at the * node offset. */ memcpy(&record_page[node * BYTES_PER_RECORD], sorted_pointers[next_record++], BYTES_PER_RECORD); next_record = encode_tree(record_page, sorted_pointers, next_record, child + 1, node_count); } return next_record; } static int encode_record_page(const struct volume *volume, const struct uds_volume_record records[], u8 record_page[]) { int result; u32 i; u32 records_per_page = volume->geometry->records_per_page; const struct uds_volume_record **record_pointers = volume->record_pointers; for (i = 0; i < records_per_page; i++) record_pointers[i] = &records[i]; /* * Sort the record pointers by using just the names in the records, which is less work than * sorting the entire record values. */ BUILD_BUG_ON(offsetof(struct uds_volume_record, name) != 0); result = uds_radix_sort(volume->radix_sorter, (const u8 **) record_pointers, records_per_page, UDS_RECORD_NAME_SIZE); if (result != UDS_SUCCESS) return result; encode_tree(record_page, record_pointers, 0, 0, records_per_page); return UDS_SUCCESS; } static int write_record_pages(struct volume *volume, u32 physical_chapter_number, const struct uds_volume_record *records) { u32 record_page_number; struct index_geometry *geometry = volume->geometry; struct dm_buffer *page_buffer; const struct uds_volume_record *next_record = records; u32 first_record_page = map_to_physical_page(geometry, physical_chapter_number, geometry->index_pages_per_chapter); for (record_page_number = 0; record_page_number < geometry->record_pages_per_chapter; record_page_number++) { u8 *page_data; u32 physical_page = first_record_page + record_page_number; int result; page_data = dm_bufio_new(volume->client, physical_page, &page_buffer); if (IS_ERR(page_data)) { return vdo_log_warning_strerror(-PTR_ERR(page_data), "failed to prepare record page"); } result = encode_record_page(volume, next_record, page_data); if (result != UDS_SUCCESS) { dm_bufio_release(page_buffer); return vdo_log_warning_strerror(result, "failed to encode record page %u", record_page_number); } next_record += geometry->records_per_page; dm_bufio_mark_buffer_dirty(page_buffer); dm_bufio_release(page_buffer); } return UDS_SUCCESS; } int uds_write_chapter(struct volume *volume, struct open_chapter_index *chapter_index, const struct uds_volume_record *records) { int result; u32 physical_chapter_number = uds_map_to_physical_chapter(volume->geometry, chapter_index->virtual_chapter_number); result = write_index_pages(volume, physical_chapter_number, chapter_index); if (result != UDS_SUCCESS) return result; result = write_record_pages(volume, physical_chapter_number, records); if (result != UDS_SUCCESS) return result; result = -dm_bufio_write_dirty_buffers(volume->client); if (result != UDS_SUCCESS) vdo_log_error_strerror(result, "cannot sync chapter to volume"); return result; } static void probe_chapter(struct volume *volume, u32 chapter_number, u64 *virtual_chapter_number) { const struct index_geometry *geometry = volume->geometry; u32 expected_list_number = 0; u32 i; u64 vcn = BAD_CHAPTER; *virtual_chapter_number = BAD_CHAPTER; dm_bufio_prefetch(volume->client, map_to_physical_page(geometry, chapter_number, 0), geometry->index_pages_per_chapter); for (i = 0; i < geometry->index_pages_per_chapter; i++) { struct delta_index_page *page; int result; result = uds_get_volume_index_page(volume, chapter_number, i, &page); if (result != UDS_SUCCESS) return; if (page->virtual_chapter_number == BAD_CHAPTER) { vdo_log_error("corrupt index page in chapter %u", chapter_number); return; } if (vcn == BAD_CHAPTER) { vcn = page->virtual_chapter_number; } else if (page->virtual_chapter_number != vcn) { vdo_log_error("inconsistent chapter %u index page %u: expected vcn %llu, got vcn %llu", chapter_number, i, (unsigned long long) vcn, (unsigned long long) page->virtual_chapter_number); return; } if (expected_list_number != page->lowest_list_number) { vdo_log_error("inconsistent chapter %u index page %u: expected list number %u, got list number %u", chapter_number, i, expected_list_number, page->lowest_list_number); return; } expected_list_number = page->highest_list_number + 1; result = uds_validate_chapter_index_page(page, geometry); if (result != UDS_SUCCESS) return; } if (chapter_number != uds_map_to_physical_chapter(geometry, vcn)) { vdo_log_error("chapter %u vcn %llu is out of phase (%u)", chapter_number, (unsigned long long) vcn, geometry->chapters_per_volume); return; } *virtual_chapter_number = vcn; } /* Find the last valid physical chapter in the volume. */ static void find_real_end_of_volume(struct volume *volume, u32 limit, u32 *limit_ptr) { u32 span = 1; u32 tries = 0; while (limit > 0) { u32 chapter = (span > limit) ? 0 : limit - span; u64 vcn = 0; probe_chapter(volume, chapter, &vcn); if (vcn == BAD_CHAPTER) { limit = chapter; if (++tries > 1) span *= 2; } else { if (span == 1) break; span /= 2; tries = 0; } } *limit_ptr = limit; } static int find_chapter_limits(struct volume *volume, u32 chapter_limit, u64 *lowest_vcn, u64 *highest_vcn) { struct index_geometry *geometry = volume->geometry; u64 zero_vcn; u64 lowest = BAD_CHAPTER; u64 highest = BAD_CHAPTER; u64 moved_chapter = BAD_CHAPTER; u32 left_chapter = 0; u32 right_chapter = 0; u32 bad_chapters = 0; /* * This method assumes there is at most one run of contiguous bad chapters caused by * unflushed writes. Either the bad spot is at the beginning and end, or somewhere in the * middle. Wherever it is, the highest and lowest VCNs are adjacent to it. Otherwise the * volume is cleanly saved and somewhere in the middle of it the highest VCN immediately * precedes the lowest one. */ /* It doesn't matter if this results in a bad spot (BAD_CHAPTER). */ probe_chapter(volume, 0, &zero_vcn); /* * Binary search for end of the discontinuity in the monotonically increasing virtual * chapter numbers; bad spots are treated as a span of BAD_CHAPTER values. In effect we're * searching for the index of the smallest value less than zero_vcn. In the case we go off * the end it means that chapter 0 has the lowest vcn. * * If a virtual chapter is out-of-order, it will be the one moved by conversion. Always * skip over the moved chapter when searching, adding it to the range at the end if * necessary. */ if (geometry->remapped_physical > 0) { u64 remapped_vcn; probe_chapter(volume, geometry->remapped_physical, &remapped_vcn); if (remapped_vcn == geometry->remapped_virtual) moved_chapter = geometry->remapped_physical; } left_chapter = 0; right_chapter = chapter_limit; while (left_chapter < right_chapter) { u64 probe_vcn; u32 chapter = (left_chapter + right_chapter) / 2; if (chapter == moved_chapter) chapter--; probe_chapter(volume, chapter, &probe_vcn); if (zero_vcn <= probe_vcn) { left_chapter = chapter + 1; if (left_chapter == moved_chapter) left_chapter++; } else { right_chapter = chapter; } } /* If left_chapter goes off the end, chapter 0 has the lowest virtual chapter number.*/ if (left_chapter >= chapter_limit) left_chapter = 0; /* At this point, left_chapter is the chapter with the lowest virtual chapter number. */ probe_chapter(volume, left_chapter, &lowest); /* The moved chapter might be the lowest in the range. */ if ((moved_chapter != BAD_CHAPTER) && (lowest == geometry->remapped_virtual + 1)) lowest = geometry->remapped_virtual; /* * Circularly scan backwards, moving over any bad chapters until encountering a good one, * which is the chapter with the highest vcn. */ while (highest == BAD_CHAPTER) { right_chapter = (right_chapter + chapter_limit - 1) % chapter_limit; if (right_chapter == moved_chapter) continue; probe_chapter(volume, right_chapter, &highest); if (bad_chapters++ >= MAX_BAD_CHAPTERS) { vdo_log_error("too many bad chapters in volume: %u", bad_chapters); return UDS_CORRUPT_DATA; } } *lowest_vcn = lowest; *highest_vcn = highest; return UDS_SUCCESS; } /* * Find the highest and lowest contiguous chapters present in the volume and determine their * virtual chapter numbers. This is used by rebuild. */ int uds_find_volume_chapter_boundaries(struct volume *volume, u64 *lowest_vcn, u64 *highest_vcn, bool *is_empty) { u32 chapter_limit = volume->geometry->chapters_per_volume; find_real_end_of_volume(volume, chapter_limit, &chapter_limit); if (chapter_limit == 0) { *lowest_vcn = 0; *highest_vcn = 0; *is_empty = true; return UDS_SUCCESS; } *is_empty = false; return find_chapter_limits(volume, chapter_limit, lowest_vcn, highest_vcn); } int __must_check uds_replace_volume_storage(struct volume *volume, struct index_layout *layout, struct block_device *bdev) { int result; u32 i; result = uds_replace_index_layout_storage(layout, bdev); if (result != UDS_SUCCESS) return result; /* Release all outstanding dm_bufio objects */ for (i = 0; i < volume->page_cache.indexable_pages; i++) volume->page_cache.index[i] = volume->page_cache.cache_slots; for (i = 0; i < volume->page_cache.cache_slots; i++) clear_cache_page(&volume->page_cache, &volume->page_cache.cache[i]); if (volume->sparse_cache != NULL) uds_invalidate_sparse_cache(volume->sparse_cache); if (volume->client != NULL) dm_bufio_client_destroy(vdo_forget(volume->client)); return uds_open_volume_bufio(layout, volume->geometry->bytes_per_page, volume->reserved_buffers, &volume->client); } static int __must_check initialize_page_cache(struct page_cache *cache, const struct index_geometry *geometry, u32 chapters_in_cache, unsigned int zone_count) { int result; u32 i; cache->indexable_pages = geometry->pages_per_volume + 1; cache->cache_slots = chapters_in_cache * geometry->record_pages_per_chapter; cache->zone_count = zone_count; atomic64_set(&cache->clock, 1); result = VDO_ASSERT((cache->cache_slots <= VOLUME_CACHE_MAX_ENTRIES), "requested cache size, %u, within limit %u", cache->cache_slots, VOLUME_CACHE_MAX_ENTRIES); if (result != VDO_SUCCESS) return result; result = vdo_allocate(VOLUME_CACHE_MAX_QUEUED_READS, struct queued_read, "volume read queue", &cache->read_queue); if (result != VDO_SUCCESS) return result; result = vdo_allocate(cache->zone_count, struct search_pending_counter, "Volume Cache Zones", &cache->search_pending_counters); if (result != VDO_SUCCESS) return result; result = vdo_allocate(cache->indexable_pages, u16, "page cache index", &cache->index); if (result != VDO_SUCCESS) return result; result = vdo_allocate(cache->cache_slots, struct cached_page, "page cache cache", &cache->cache); if (result != VDO_SUCCESS) return result; /* Initialize index values to invalid values. */ for (i = 0; i < cache->indexable_pages; i++) cache->index[i] = cache->cache_slots; for (i = 0; i < cache->cache_slots; i++) clear_cache_page(cache, &cache->cache[i]); return UDS_SUCCESS; } int uds_make_volume(const struct uds_configuration *config, struct index_layout *layout, struct volume **new_volume) { unsigned int i; struct volume *volume = NULL; struct index_geometry *geometry; unsigned int reserved_buffers; int result; result = vdo_allocate(1, struct volume, "volume", &volume); if (result != VDO_SUCCESS) return result; volume->nonce = uds_get_volume_nonce(layout); result = uds_copy_index_geometry(config->geometry, &volume->geometry); if (result != UDS_SUCCESS) { uds_free_volume(volume); return vdo_log_warning_strerror(result, "failed to allocate geometry: error"); } geometry = volume->geometry; /* * Reserve a buffer for each entry in the page cache, one for the chapter writer, and one * for each entry in the sparse cache. */ reserved_buffers = config->cache_chapters * geometry->record_pages_per_chapter; reserved_buffers += 1; if (uds_is_sparse_index_geometry(geometry)) reserved_buffers += (config->cache_chapters * geometry->index_pages_per_chapter); volume->reserved_buffers = reserved_buffers; result = uds_open_volume_bufio(layout, geometry->bytes_per_page, volume->reserved_buffers, &volume->client); if (result != UDS_SUCCESS) { uds_free_volume(volume); return result; } result = uds_make_radix_sorter(geometry->records_per_page, &volume->radix_sorter); if (result != UDS_SUCCESS) { uds_free_volume(volume); return result; } result = vdo_allocate(geometry->records_per_page, const struct uds_volume_record *, "record pointers", &volume->record_pointers); if (result != VDO_SUCCESS) { uds_free_volume(volume); return result; } if (uds_is_sparse_index_geometry(geometry)) { size_t page_size = sizeof(struct delta_index_page) + geometry->bytes_per_page; result = uds_make_sparse_cache(geometry, config->cache_chapters, config->zone_count, &volume->sparse_cache); if (result != UDS_SUCCESS) { uds_free_volume(volume); return result; } volume->cache_size = page_size * geometry->index_pages_per_chapter * config->cache_chapters; } result = initialize_page_cache(&volume->page_cache, geometry, config->cache_chapters, config->zone_count); if (result != UDS_SUCCESS) { uds_free_volume(volume); return result; } volume->cache_size += volume->page_cache.cache_slots * sizeof(struct delta_index_page); result = uds_make_index_page_map(geometry, &volume->index_page_map); if (result != UDS_SUCCESS) { uds_free_volume(volume); return result; } mutex_init(&volume->read_threads_mutex); uds_init_cond(&volume->read_threads_read_done_cond); uds_init_cond(&volume->read_threads_cond); result = vdo_allocate(config->read_threads, struct thread *, "reader threads", &volume->reader_threads); if (result != VDO_SUCCESS) { uds_free_volume(volume); return result; } for (i = 0; i < config->read_threads; i++) { result = vdo_create_thread(read_thread_function, (void *) volume, "reader", &volume->reader_threads[i]); if (result != VDO_SUCCESS) { uds_free_volume(volume); return result; } volume->read_thread_count = i + 1; } *new_volume = volume; return UDS_SUCCESS; } static void uninitialize_page_cache(struct page_cache *cache) { u16 i; if (cache->cache != NULL) { for (i = 0; i < cache->cache_slots; i++) release_page_buffer(&cache->cache[i]); } vdo_free(cache->index); vdo_free(cache->cache); vdo_free(cache->search_pending_counters); vdo_free(cache->read_queue); } void uds_free_volume(struct volume *volume) { if (volume == NULL) return; if (volume->reader_threads != NULL) { unsigned int i; /* This works even if some threads weren't started. */ mutex_lock(&volume->read_threads_mutex); volume->read_threads_exiting = true; uds_broadcast_cond(&volume->read_threads_cond); mutex_unlock(&volume->read_threads_mutex); for (i = 0; i < volume->read_thread_count; i++) vdo_join_threads(volume->reader_threads[i]); vdo_free(volume->reader_threads); volume->reader_threads = NULL; } /* Must destroy the client AFTER freeing the cached pages. */ uninitialize_page_cache(&volume->page_cache); uds_free_sparse_cache(volume->sparse_cache); if (volume->client != NULL) dm_bufio_client_destroy(vdo_forget(volume->client)); uds_free_index_page_map(volume->index_page_map); uds_free_radix_sorter(volume->radix_sorter); vdo_free(volume->geometry); vdo_free(volume->record_pointers); vdo_free(volume); } |