Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 | // SPDX-License-Identifier: GPL-2.0-only /* * Copyright 2023 Red Hat */ #include "open-chapter.h" #include <linux/log2.h> #include "logger.h" #include "memory-alloc.h" #include "numeric.h" #include "permassert.h" #include "config.h" #include "hash-utils.h" /* * Each index zone has a dedicated open chapter zone structure which gets an equal share of the * open chapter space. Records are assigned to zones based on their record name. Within each zone, * records are stored in an array in the order they arrive. Additionally, a reference to each * record is stored in a hash table to help determine if a new record duplicates an existing one. * If new metadata for an existing name arrives, the record is altered in place. The array of * records is 1-based so that record number 0 can be used to indicate an unused hash slot. * * Deleted records are marked with a flag rather than actually removed to simplify hash table * management. The array of deleted flags overlays the array of hash slots, but the flags are * indexed by record number instead of by record name. The number of hash slots will always be a * power of two that is greater than the number of records to be indexed, guaranteeing that hash * insertion cannot fail, and that there are sufficient flags for all records. * * Once any open chapter zone fills its available space, the chapter is closed. The records from * each zone are interleaved to attempt to preserve temporal locality and assigned to record pages. * Empty or deleted records are replaced by copies of a valid record so that the record pages only * contain valid records. The chapter then constructs a delta index which maps each record name to * the record page on which that record can be found, which is split into index pages. These * structures are then passed to the volume to be recorded on storage. * * When the index is saved, the open chapter records are saved in a single array, once again * interleaved to attempt to preserve temporal locality. When the index is reloaded, there may be a * different number of zones than previously, so the records must be parcelled out to their new * zones. In addition, depending on the distribution of record names, a new zone may have more * records than it has space. In this case, the latest records for that zone will be discarded. */ static const u8 OPEN_CHAPTER_MAGIC[] = "ALBOC"; static const u8 OPEN_CHAPTER_VERSION[] = "02.00"; #define OPEN_CHAPTER_MAGIC_LENGTH (sizeof(OPEN_CHAPTER_MAGIC) - 1) #define OPEN_CHAPTER_VERSION_LENGTH (sizeof(OPEN_CHAPTER_VERSION) - 1) #define LOAD_RATIO 2 static inline size_t records_size(const struct open_chapter_zone *open_chapter) { return sizeof(struct uds_volume_record) * (1 + open_chapter->capacity); } static inline size_t slots_size(size_t slot_count) { return sizeof(struct open_chapter_zone_slot) * slot_count; } int uds_make_open_chapter(const struct index_geometry *geometry, unsigned int zone_count, struct open_chapter_zone **open_chapter_ptr) { int result; struct open_chapter_zone *open_chapter; size_t capacity = geometry->records_per_chapter / zone_count; size_t slot_count = (1 << bits_per(capacity * LOAD_RATIO)); result = vdo_allocate_extended(struct open_chapter_zone, slot_count, struct open_chapter_zone_slot, "open chapter", &open_chapter); if (result != VDO_SUCCESS) return result; open_chapter->slot_count = slot_count; open_chapter->capacity = capacity; result = vdo_allocate_cache_aligned(records_size(open_chapter), "record pages", &open_chapter->records); if (result != VDO_SUCCESS) { uds_free_open_chapter(open_chapter); return result; } *open_chapter_ptr = open_chapter; return UDS_SUCCESS; } void uds_reset_open_chapter(struct open_chapter_zone *open_chapter) { open_chapter->size = 0; open_chapter->deletions = 0; memset(open_chapter->records, 0, records_size(open_chapter)); memset(open_chapter->slots, 0, slots_size(open_chapter->slot_count)); } static unsigned int probe_chapter_slots(struct open_chapter_zone *open_chapter, const struct uds_record_name *name) { struct uds_volume_record *record; unsigned int slot_count = open_chapter->slot_count; unsigned int slot = uds_name_to_hash_slot(name, slot_count); unsigned int record_number; unsigned int attempts = 1; while (true) { record_number = open_chapter->slots[slot].record_number; /* * If the hash slot is empty, we've reached the end of a chain without finding the * record and should terminate the search. */ if (record_number == 0) return slot; /* * If the name of the record referenced by the slot matches and has not been * deleted, then we've found the requested name. */ record = &open_chapter->records[record_number]; if ((memcmp(&record->name, name, UDS_RECORD_NAME_SIZE) == 0) && !open_chapter->slots[record_number].deleted) return slot; /* * Quadratic probing: advance the probe by 1, 2, 3, etc. and try again. This * performs better than linear probing and works best for 2^N slots. */ slot = (slot + attempts++) % slot_count; } } void uds_search_open_chapter(struct open_chapter_zone *open_chapter, const struct uds_record_name *name, struct uds_record_data *metadata, bool *found) { unsigned int slot; unsigned int record_number; slot = probe_chapter_slots(open_chapter, name); record_number = open_chapter->slots[slot].record_number; if (record_number == 0) { *found = false; } else { *found = true; *metadata = open_chapter->records[record_number].data; } } /* Add a record to the open chapter zone and return the remaining space. */ int uds_put_open_chapter(struct open_chapter_zone *open_chapter, const struct uds_record_name *name, const struct uds_record_data *metadata) { unsigned int slot; unsigned int record_number; struct uds_volume_record *record; if (open_chapter->size >= open_chapter->capacity) return 0; slot = probe_chapter_slots(open_chapter, name); record_number = open_chapter->slots[slot].record_number; if (record_number == 0) { record_number = ++open_chapter->size; open_chapter->slots[slot].record_number = record_number; } record = &open_chapter->records[record_number]; record->name = *name; record->data = *metadata; return open_chapter->capacity - open_chapter->size; } void uds_remove_from_open_chapter(struct open_chapter_zone *open_chapter, const struct uds_record_name *name) { unsigned int slot; unsigned int record_number; slot = probe_chapter_slots(open_chapter, name); record_number = open_chapter->slots[slot].record_number; if (record_number > 0) { open_chapter->slots[record_number].deleted = true; open_chapter->deletions += 1; } } void uds_free_open_chapter(struct open_chapter_zone *open_chapter) { if (open_chapter != NULL) { vdo_free(open_chapter->records); vdo_free(open_chapter); } } /* Map each record name to its record page number in the delta chapter index. */ static int fill_delta_chapter_index(struct open_chapter_zone **chapter_zones, unsigned int zone_count, struct open_chapter_index *index, struct uds_volume_record *collated_records) { int result; unsigned int records_per_chapter; unsigned int records_per_page; unsigned int record_index; unsigned int records = 0; u32 page_number; unsigned int z; int overflow_count = 0; struct uds_volume_record *fill_record = NULL; /* * The record pages should not have any empty space, so find a record with which to fill * the chapter zone if it was closed early, and also to replace any deleted records. The * last record in any filled zone is guaranteed to not have been deleted, so use one of * those. */ for (z = 0; z < zone_count; z++) { struct open_chapter_zone *zone = chapter_zones[z]; if (zone->size == zone->capacity) { fill_record = &zone->records[zone->size]; break; } } records_per_chapter = index->geometry->records_per_chapter; records_per_page = index->geometry->records_per_page; for (records = 0; records < records_per_chapter; records++) { struct uds_volume_record *record = &collated_records[records]; struct open_chapter_zone *open_chapter; /* The record arrays in the zones are 1-based. */ record_index = 1 + (records / zone_count); page_number = records / records_per_page; open_chapter = chapter_zones[records % zone_count]; /* Use the fill record in place of an unused record. */ if (record_index > open_chapter->size || open_chapter->slots[record_index].deleted) { *record = *fill_record; continue; } *record = open_chapter->records[record_index]; result = uds_put_open_chapter_index_record(index, &record->name, page_number); switch (result) { case UDS_SUCCESS: break; case UDS_OVERFLOW: overflow_count++; break; default: vdo_log_error_strerror(result, "failed to build open chapter index"); return result; } } if (overflow_count > 0) vdo_log_warning("Failed to add %d entries to chapter index", overflow_count); return UDS_SUCCESS; } int uds_close_open_chapter(struct open_chapter_zone **chapter_zones, unsigned int zone_count, struct volume *volume, struct open_chapter_index *chapter_index, struct uds_volume_record *collated_records, u64 virtual_chapter_number) { int result; uds_empty_open_chapter_index(chapter_index, virtual_chapter_number); result = fill_delta_chapter_index(chapter_zones, zone_count, chapter_index, collated_records); if (result != UDS_SUCCESS) return result; return uds_write_chapter(volume, chapter_index, collated_records); } int uds_save_open_chapter(struct uds_index *index, struct buffered_writer *writer) { int result; struct open_chapter_zone *open_chapter; struct uds_volume_record *record; u8 record_count_data[sizeof(u32)]; u32 record_count = 0; unsigned int record_index; unsigned int z; result = uds_write_to_buffered_writer(writer, OPEN_CHAPTER_MAGIC, OPEN_CHAPTER_MAGIC_LENGTH); if (result != UDS_SUCCESS) return result; result = uds_write_to_buffered_writer(writer, OPEN_CHAPTER_VERSION, OPEN_CHAPTER_VERSION_LENGTH); if (result != UDS_SUCCESS) return result; for (z = 0; z < index->zone_count; z++) { open_chapter = index->zones[z]->open_chapter; record_count += open_chapter->size - open_chapter->deletions; } put_unaligned_le32(record_count, record_count_data); result = uds_write_to_buffered_writer(writer, record_count_data, sizeof(record_count_data)); if (result != UDS_SUCCESS) return result; record_index = 1; while (record_count > 0) { for (z = 0; z < index->zone_count; z++) { open_chapter = index->zones[z]->open_chapter; if (record_index > open_chapter->size) continue; if (open_chapter->slots[record_index].deleted) continue; record = &open_chapter->records[record_index]; result = uds_write_to_buffered_writer(writer, (u8 *) record, sizeof(*record)); if (result != UDS_SUCCESS) return result; record_count--; } record_index++; } return uds_flush_buffered_writer(writer); } u64 uds_compute_saved_open_chapter_size(struct index_geometry *geometry) { unsigned int records_per_chapter = geometry->records_per_chapter; return OPEN_CHAPTER_MAGIC_LENGTH + OPEN_CHAPTER_VERSION_LENGTH + sizeof(u32) + records_per_chapter * sizeof(struct uds_volume_record); } static int load_version20(struct uds_index *index, struct buffered_reader *reader) { int result; u32 record_count; u8 record_count_data[sizeof(u32)]; struct uds_volume_record record; /* * Track which zones cannot accept any more records. If the open chapter had a different * number of zones previously, some new zones may have more records than they have space * for. These overflow records will be discarded. */ bool full_flags[MAX_ZONES] = { false, }; result = uds_read_from_buffered_reader(reader, (u8 *) &record_count_data, sizeof(record_count_data)); if (result != UDS_SUCCESS) return result; record_count = get_unaligned_le32(record_count_data); while (record_count-- > 0) { unsigned int zone = 0; result = uds_read_from_buffered_reader(reader, (u8 *) &record, sizeof(record)); if (result != UDS_SUCCESS) return result; if (index->zone_count > 1) zone = uds_get_volume_index_zone(index->volume_index, &record.name); if (!full_flags[zone]) { struct open_chapter_zone *open_chapter; unsigned int remaining; open_chapter = index->zones[zone]->open_chapter; remaining = uds_put_open_chapter(open_chapter, &record.name, &record.data); /* Do not allow any zone to fill completely. */ full_flags[zone] = (remaining <= 1); } } return UDS_SUCCESS; } int uds_load_open_chapter(struct uds_index *index, struct buffered_reader *reader) { u8 version[OPEN_CHAPTER_VERSION_LENGTH]; int result; result = uds_verify_buffered_data(reader, OPEN_CHAPTER_MAGIC, OPEN_CHAPTER_MAGIC_LENGTH); if (result != UDS_SUCCESS) return result; result = uds_read_from_buffered_reader(reader, version, sizeof(version)); if (result != UDS_SUCCESS) return result; if (memcmp(OPEN_CHAPTER_VERSION, version, sizeof(version)) != 0) { return vdo_log_error_strerror(UDS_CORRUPT_DATA, "Invalid open chapter version: %.*s", (int) sizeof(version), version); } return load_version20(index, reader); } |