Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 | // SPDX-License-Identifier: GPL-2.0-only /* * Copyright 2023 Red Hat */ #include "index.h" #include "logger.h" #include "memory-alloc.h" #include "funnel-requestqueue.h" #include "hash-utils.h" #include "sparse-cache.h" static const u64 NO_LAST_SAVE = U64_MAX; /* * When searching for deduplication records, the index first searches the volume index, and then * searches the chapter index for the relevant chapter. If the chapter has been fully committed to * storage, the chapter pages are loaded into the page cache. If the chapter has not yet been * committed (either the open chapter or a recently closed one), the index searches the in-memory * representation of the chapter. Finally, if the volume index does not find a record and the index * is sparse, the index will search the sparse cache. * * The index send two kinds of messages to coordinate between zones: chapter close messages for the * chapter writer, and sparse cache barrier messages for the sparse cache. * * The chapter writer is responsible for committing chapters of records to storage. Since zones can * get different numbers of records, some zones may fall behind others. Each time a zone fills up * its available space in a chapter, it informs the chapter writer that the chapter is complete, * and also informs all other zones that it has closed the chapter. Each other zone will then close * the chapter immediately, regardless of how full it is, in order to minimize skew between zones. * Once every zone has closed the chapter, the chapter writer will commit that chapter to storage. * * The last zone to close the chapter also removes the oldest chapter from the volume index. * Although that chapter is invalid for zones that have moved on, the existence of the open chapter * means that those zones will never ask the volume index about it. No zone is allowed to get more * than one chapter ahead of any other. If a zone is so far ahead that it tries to close another * chapter before the previous one has been closed by all zones, it is forced to wait. * * The sparse cache relies on having the same set of chapter indexes available to all zones. When a * request wants to add a chapter to the sparse cache, it sends a barrier message to each zone * during the triage stage that acts as a rendezvous. Once every zone has reached the barrier and * paused its operations, the cache membership is changed and each zone is then informed that it * can proceed. More details can be found in the sparse cache documentation. * * If a sparse cache has only one zone, it will not create a triage queue, but it still needs the * barrier message to change the sparse cache membership, so the index simulates the message by * invoking the handler directly. */ struct chapter_writer { /* The index to which we belong */ struct uds_index *index; /* The thread to do the writing */ struct thread *thread; /* The lock protecting the following fields */ struct mutex mutex; /* The condition signalled on state changes */ struct cond_var cond; /* Set to true to stop the thread */ bool stop; /* The result from the most recent write */ int result; /* The number of bytes allocated by the chapter writer */ size_t memory_size; /* The number of zones which have submitted a chapter for writing */ unsigned int zones_to_write; /* Open chapter index used by uds_close_open_chapter() */ struct open_chapter_index *open_chapter_index; /* Collated records used by uds_close_open_chapter() */ struct uds_volume_record *collated_records; /* The chapters to write (one per zone) */ struct open_chapter_zone *chapters[]; }; static bool is_zone_chapter_sparse(const struct index_zone *zone, u64 virtual_chapter) { return uds_is_chapter_sparse(zone->index->volume->geometry, zone->oldest_virtual_chapter, zone->newest_virtual_chapter, virtual_chapter); } static int launch_zone_message(struct uds_zone_message message, unsigned int zone, struct uds_index *index) { int result; struct uds_request *request; result = vdo_allocate(1, struct uds_request, __func__, &request); if (result != VDO_SUCCESS) return result; request->index = index; request->unbatched = true; request->zone_number = zone; request->zone_message = message; uds_enqueue_request(request, STAGE_MESSAGE); return UDS_SUCCESS; } static void enqueue_barrier_messages(struct uds_index *index, u64 virtual_chapter) { struct uds_zone_message message = { .type = UDS_MESSAGE_SPARSE_CACHE_BARRIER, .virtual_chapter = virtual_chapter, }; unsigned int zone; for (zone = 0; zone < index->zone_count; zone++) { int result = launch_zone_message(message, zone, index); VDO_ASSERT_LOG_ONLY((result == UDS_SUCCESS), "barrier message allocation"); } } /* * Determine whether this request should trigger a sparse cache barrier message to change the * membership of the sparse cache. If a change in membership is desired, the function returns the * chapter number to add. */ static u64 triage_index_request(struct uds_index *index, struct uds_request *request) { u64 virtual_chapter; struct index_zone *zone; virtual_chapter = uds_lookup_volume_index_name(index->volume_index, &request->record_name); if (virtual_chapter == NO_CHAPTER) return NO_CHAPTER; zone = index->zones[request->zone_number]; if (!is_zone_chapter_sparse(zone, virtual_chapter)) return NO_CHAPTER; /* * FIXME: Optimize for a common case by remembering the chapter from the most recent * barrier message and skipping this chapter if is it the same. */ return virtual_chapter; } /* * Simulate a message to change the sparse cache membership for a single-zone sparse index. This * allows us to forgo the complicated locking required by a multi-zone sparse index. Any other kind * of index does nothing here. */ static int simulate_index_zone_barrier_message(struct index_zone *zone, struct uds_request *request) { u64 sparse_virtual_chapter; if ((zone->index->zone_count > 1) || !uds_is_sparse_index_geometry(zone->index->volume->geometry)) return UDS_SUCCESS; sparse_virtual_chapter = triage_index_request(zone->index, request); if (sparse_virtual_chapter == NO_CHAPTER) return UDS_SUCCESS; return uds_update_sparse_cache(zone, sparse_virtual_chapter); } /* This is the request processing function for the triage queue. */ static void triage_request(struct uds_request *request) { struct uds_index *index = request->index; u64 sparse_virtual_chapter = triage_index_request(index, request); if (sparse_virtual_chapter != NO_CHAPTER) enqueue_barrier_messages(index, sparse_virtual_chapter); uds_enqueue_request(request, STAGE_INDEX); } static int finish_previous_chapter(struct uds_index *index, u64 current_chapter_number) { int result; struct chapter_writer *writer = index->chapter_writer; mutex_lock(&writer->mutex); while (index->newest_virtual_chapter < current_chapter_number) uds_wait_cond(&writer->cond, &writer->mutex); result = writer->result; mutex_unlock(&writer->mutex); if (result != UDS_SUCCESS) return vdo_log_error_strerror(result, "Writing of previous open chapter failed"); return UDS_SUCCESS; } static int swap_open_chapter(struct index_zone *zone) { int result; struct open_chapter_zone *temporary_chapter; result = finish_previous_chapter(zone->index, zone->newest_virtual_chapter); if (result != UDS_SUCCESS) return result; temporary_chapter = zone->open_chapter; zone->open_chapter = zone->writing_chapter; zone->writing_chapter = temporary_chapter; return UDS_SUCCESS; } /* * Inform the chapter writer that this zone is done with this chapter. The chapter won't start * writing until all zones have closed it. */ static unsigned int start_closing_chapter(struct uds_index *index, unsigned int zone_number, struct open_chapter_zone *chapter) { unsigned int finished_zones; struct chapter_writer *writer = index->chapter_writer; mutex_lock(&writer->mutex); finished_zones = ++writer->zones_to_write; writer->chapters[zone_number] = chapter; uds_broadcast_cond(&writer->cond); mutex_unlock(&writer->mutex); return finished_zones; } static int announce_chapter_closed(struct index_zone *zone, u64 closed_chapter) { int result; unsigned int i; struct uds_zone_message zone_message = { .type = UDS_MESSAGE_ANNOUNCE_CHAPTER_CLOSED, .virtual_chapter = closed_chapter, }; for (i = 0; i < zone->index->zone_count; i++) { if (zone->id == i) continue; result = launch_zone_message(zone_message, i, zone->index); if (result != UDS_SUCCESS) return result; } return UDS_SUCCESS; } static int open_next_chapter(struct index_zone *zone) { int result; u64 closed_chapter; u64 expiring; unsigned int finished_zones; u32 expire_chapters; vdo_log_debug("closing chapter %llu of zone %u after %u entries (%u short)", (unsigned long long) zone->newest_virtual_chapter, zone->id, zone->open_chapter->size, zone->open_chapter->capacity - zone->open_chapter->size); result = swap_open_chapter(zone); if (result != UDS_SUCCESS) return result; closed_chapter = zone->newest_virtual_chapter++; uds_set_volume_index_zone_open_chapter(zone->index->volume_index, zone->id, zone->newest_virtual_chapter); uds_reset_open_chapter(zone->open_chapter); finished_zones = start_closing_chapter(zone->index, zone->id, zone->writing_chapter); if ((finished_zones == 1) && (zone->index->zone_count > 1)) { result = announce_chapter_closed(zone, closed_chapter); if (result != UDS_SUCCESS) return result; } expiring = zone->oldest_virtual_chapter; expire_chapters = uds_chapters_to_expire(zone->index->volume->geometry, zone->newest_virtual_chapter); zone->oldest_virtual_chapter += expire_chapters; if (finished_zones < zone->index->zone_count) return UDS_SUCCESS; while (expire_chapters-- > 0) uds_forget_chapter(zone->index->volume, expiring++); return UDS_SUCCESS; } static int handle_chapter_closed(struct index_zone *zone, u64 virtual_chapter) { if (zone->newest_virtual_chapter == virtual_chapter) return open_next_chapter(zone); return UDS_SUCCESS; } static int dispatch_index_zone_control_request(struct uds_request *request) { struct uds_zone_message *message = &request->zone_message; struct index_zone *zone = request->index->zones[request->zone_number]; switch (message->type) { case UDS_MESSAGE_SPARSE_CACHE_BARRIER: return uds_update_sparse_cache(zone, message->virtual_chapter); case UDS_MESSAGE_ANNOUNCE_CHAPTER_CLOSED: return handle_chapter_closed(zone, message->virtual_chapter); default: vdo_log_error("invalid message type: %d", message->type); return UDS_INVALID_ARGUMENT; } } static void set_request_location(struct uds_request *request, enum uds_index_region new_location) { request->location = new_location; request->found = ((new_location == UDS_LOCATION_IN_OPEN_CHAPTER) || (new_location == UDS_LOCATION_IN_DENSE) || (new_location == UDS_LOCATION_IN_SPARSE)); } static void set_chapter_location(struct uds_request *request, const struct index_zone *zone, u64 virtual_chapter) { request->found = true; if (virtual_chapter == zone->newest_virtual_chapter) request->location = UDS_LOCATION_IN_OPEN_CHAPTER; else if (is_zone_chapter_sparse(zone, virtual_chapter)) request->location = UDS_LOCATION_IN_SPARSE; else request->location = UDS_LOCATION_IN_DENSE; } static int search_sparse_cache_in_zone(struct index_zone *zone, struct uds_request *request, u64 virtual_chapter, bool *found) { int result; struct volume *volume; u16 record_page_number; u32 chapter; result = uds_search_sparse_cache(zone, &request->record_name, &virtual_chapter, &record_page_number); if ((result != UDS_SUCCESS) || (virtual_chapter == NO_CHAPTER)) return result; request->virtual_chapter = virtual_chapter; volume = zone->index->volume; chapter = uds_map_to_physical_chapter(volume->geometry, virtual_chapter); return uds_search_cached_record_page(volume, request, chapter, record_page_number, found); } static int get_record_from_zone(struct index_zone *zone, struct uds_request *request, bool *found) { struct volume *volume; if (request->location == UDS_LOCATION_RECORD_PAGE_LOOKUP) { *found = true; return UDS_SUCCESS; } else if (request->location == UDS_LOCATION_UNAVAILABLE) { *found = false; return UDS_SUCCESS; } if (request->virtual_chapter == zone->newest_virtual_chapter) { uds_search_open_chapter(zone->open_chapter, &request->record_name, &request->old_metadata, found); return UDS_SUCCESS; } if ((zone->newest_virtual_chapter > 0) && (request->virtual_chapter == (zone->newest_virtual_chapter - 1)) && (zone->writing_chapter->size > 0)) { uds_search_open_chapter(zone->writing_chapter, &request->record_name, &request->old_metadata, found); return UDS_SUCCESS; } volume = zone->index->volume; if (is_zone_chapter_sparse(zone, request->virtual_chapter) && uds_sparse_cache_contains(volume->sparse_cache, request->virtual_chapter, request->zone_number)) return search_sparse_cache_in_zone(zone, request, request->virtual_chapter, found); return uds_search_volume_page_cache(volume, request, found); } static int put_record_in_zone(struct index_zone *zone, struct uds_request *request, const struct uds_record_data *metadata) { unsigned int remaining; remaining = uds_put_open_chapter(zone->open_chapter, &request->record_name, metadata); if (remaining == 0) return open_next_chapter(zone); return UDS_SUCCESS; } static int search_index_zone(struct index_zone *zone, struct uds_request *request) { int result; struct volume_index_record record; bool overflow_record, found = false; struct uds_record_data *metadata; u64 chapter; result = uds_get_volume_index_record(zone->index->volume_index, &request->record_name, &record); if (result != UDS_SUCCESS) return result; if (record.is_found) { if (request->requeued && request->virtual_chapter != record.virtual_chapter) set_request_location(request, UDS_LOCATION_UNKNOWN); request->virtual_chapter = record.virtual_chapter; result = get_record_from_zone(zone, request, &found); if (result != UDS_SUCCESS) return result; } if (found) set_chapter_location(request, zone, record.virtual_chapter); /* * If a record has overflowed a chapter index in more than one chapter (or overflowed in * one chapter and collided with an existing record), it will exist as a collision record * in the volume index, but we won't find it in the volume. This case needs special * handling. */ overflow_record = (record.is_found && record.is_collision && !found); chapter = zone->newest_virtual_chapter; if (found || overflow_record) { if ((request->type == UDS_QUERY_NO_UPDATE) || ((request->type == UDS_QUERY) && overflow_record)) { /* There is nothing left to do. */ return UDS_SUCCESS; } if (record.virtual_chapter != chapter) { /* * Update the volume index to reference the new chapter for the block. If * the record had been deleted or dropped from the chapter index, it will * be back. */ result = uds_set_volume_index_record_chapter(&record, chapter); } else if (request->type != UDS_UPDATE) { /* The record is already in the open chapter. */ return UDS_SUCCESS; } } else { /* * The record wasn't in the volume index, so check whether the * name is in a cached sparse chapter. If we found the name on * a previous search, use that result instead. */ if (request->location == UDS_LOCATION_RECORD_PAGE_LOOKUP) { found = true; } else if (request->location == UDS_LOCATION_UNAVAILABLE) { found = false; } else if (uds_is_sparse_index_geometry(zone->index->volume->geometry) && !uds_is_volume_index_sample(zone->index->volume_index, &request->record_name)) { result = search_sparse_cache_in_zone(zone, request, NO_CHAPTER, &found); if (result != UDS_SUCCESS) return result; } if (found) set_request_location(request, UDS_LOCATION_IN_SPARSE); if ((request->type == UDS_QUERY_NO_UPDATE) || ((request->type == UDS_QUERY) && !found)) { /* There is nothing left to do. */ return UDS_SUCCESS; } /* * Add a new entry to the volume index referencing the open chapter. This needs to * be done both for new records, and for records from cached sparse chapters. */ result = uds_put_volume_index_record(&record, chapter); } if (result == UDS_OVERFLOW) { /* * The volume index encountered a delta list overflow. The condition was already * logged. We will go on without adding the record to the open chapter. */ return UDS_SUCCESS; } if (result != UDS_SUCCESS) return result; if (!found || (request->type == UDS_UPDATE)) { /* This is a new record or we're updating an existing record. */ metadata = &request->new_metadata; } else { /* Move the existing record to the open chapter. */ metadata = &request->old_metadata; } return put_record_in_zone(zone, request, metadata); } static int remove_from_index_zone(struct index_zone *zone, struct uds_request *request) { int result; struct volume_index_record record; result = uds_get_volume_index_record(zone->index->volume_index, &request->record_name, &record); if (result != UDS_SUCCESS) return result; if (!record.is_found) return UDS_SUCCESS; /* If the request was requeued, check whether the saved state is still valid. */ if (record.is_collision) { set_chapter_location(request, zone, record.virtual_chapter); } else { /* Non-collision records are hints, so resolve the name in the chapter. */ bool found; if (request->requeued && request->virtual_chapter != record.virtual_chapter) set_request_location(request, UDS_LOCATION_UNKNOWN); request->virtual_chapter = record.virtual_chapter; result = get_record_from_zone(zone, request, &found); if (result != UDS_SUCCESS) return result; if (!found) { /* There is no record to remove. */ return UDS_SUCCESS; } } set_chapter_location(request, zone, record.virtual_chapter); /* * Delete the volume index entry for the named record only. Note that a later search might * later return stale advice if there is a colliding name in the same chapter, but it's a * very rare case (1 in 2^21). */ result = uds_remove_volume_index_record(&record); if (result != UDS_SUCCESS) return result; /* * If the record is in the open chapter, we must remove it or mark it deleted to avoid * trouble if the record is added again later. */ if (request->location == UDS_LOCATION_IN_OPEN_CHAPTER) uds_remove_from_open_chapter(zone->open_chapter, &request->record_name); return UDS_SUCCESS; } static int dispatch_index_request(struct uds_index *index, struct uds_request *request) { int result; struct index_zone *zone = index->zones[request->zone_number]; if (!request->requeued) { result = simulate_index_zone_barrier_message(zone, request); if (result != UDS_SUCCESS) return result; } switch (request->type) { case UDS_POST: case UDS_UPDATE: case UDS_QUERY: case UDS_QUERY_NO_UPDATE: result = search_index_zone(zone, request); break; case UDS_DELETE: result = remove_from_index_zone(zone, request); break; default: result = vdo_log_warning_strerror(UDS_INVALID_ARGUMENT, "invalid request type: %d", request->type); break; } return result; } /* This is the request processing function invoked by each zone's thread. */ static void execute_zone_request(struct uds_request *request) { int result; struct uds_index *index = request->index; if (request->zone_message.type != UDS_MESSAGE_NONE) { result = dispatch_index_zone_control_request(request); if (result != UDS_SUCCESS) { vdo_log_error_strerror(result, "error executing message: %d", request->zone_message.type); } /* Once the message is processed it can be freed. */ vdo_free(vdo_forget(request)); return; } index->need_to_save = true; if (request->requeued && (request->status != UDS_SUCCESS)) { set_request_location(request, UDS_LOCATION_UNAVAILABLE); index->callback(request); return; } result = dispatch_index_request(index, request); if (result == UDS_QUEUED) { /* The request has been requeued so don't let it complete. */ return; } if (!request->found) set_request_location(request, UDS_LOCATION_UNAVAILABLE); request->status = result; index->callback(request); } static int initialize_index_queues(struct uds_index *index, const struct index_geometry *geometry) { int result; unsigned int i; for (i = 0; i < index->zone_count; i++) { result = uds_make_request_queue("indexW", &execute_zone_request, &index->zone_queues[i]); if (result != UDS_SUCCESS) return result; } /* The triage queue is only needed for sparse multi-zone indexes. */ if ((index->zone_count > 1) && uds_is_sparse_index_geometry(geometry)) { result = uds_make_request_queue("triageW", &triage_request, &index->triage_queue); if (result != UDS_SUCCESS) return result; } return UDS_SUCCESS; } /* This is the driver function for the chapter writer thread. */ static void close_chapters(void *arg) { int result; struct chapter_writer *writer = arg; struct uds_index *index = writer->index; vdo_log_debug("chapter writer starting"); mutex_lock(&writer->mutex); for (;;) { while (writer->zones_to_write < index->zone_count) { if (writer->stop && (writer->zones_to_write == 0)) { /* * We've been told to stop, and all of the zones are in the same * open chapter, so we can exit now. */ mutex_unlock(&writer->mutex); vdo_log_debug("chapter writer stopping"); return; } uds_wait_cond(&writer->cond, &writer->mutex); } /* * Release the lock while closing a chapter. We probably don't need to do this, but * it seems safer in principle. It's OK to access the chapter and chapter_number * fields without the lock since those aren't allowed to change until we're done. */ mutex_unlock(&writer->mutex); if (index->has_saved_open_chapter) { /* * Remove the saved open chapter the first time we close an open chapter * after loading from a clean shutdown, or after doing a clean save. The * lack of the saved open chapter will indicate that a recovery is * necessary. */ index->has_saved_open_chapter = false; result = uds_discard_open_chapter(index->layout); if (result == UDS_SUCCESS) vdo_log_debug("Discarding saved open chapter"); } result = uds_close_open_chapter(writer->chapters, index->zone_count, index->volume, writer->open_chapter_index, writer->collated_records, index->newest_virtual_chapter); mutex_lock(&writer->mutex); index->newest_virtual_chapter++; index->oldest_virtual_chapter += uds_chapters_to_expire(index->volume->geometry, index->newest_virtual_chapter); writer->result = result; writer->zones_to_write = 0; uds_broadcast_cond(&writer->cond); } } static void stop_chapter_writer(struct chapter_writer *writer) { struct thread *writer_thread = NULL; mutex_lock(&writer->mutex); if (writer->thread != NULL) { writer_thread = writer->thread; writer->thread = NULL; writer->stop = true; uds_broadcast_cond(&writer->cond); } mutex_unlock(&writer->mutex); if (writer_thread != NULL) vdo_join_threads(writer_thread); } static void free_chapter_writer(struct chapter_writer *writer) { if (writer == NULL) return; stop_chapter_writer(writer); uds_free_open_chapter_index(writer->open_chapter_index); vdo_free(writer->collated_records); vdo_free(writer); } static int make_chapter_writer(struct uds_index *index, struct chapter_writer **writer_ptr) { int result; struct chapter_writer *writer; size_t collated_records_size = (sizeof(struct uds_volume_record) * index->volume->geometry->records_per_chapter); result = vdo_allocate_extended(struct chapter_writer, index->zone_count, struct open_chapter_zone *, "Chapter Writer", &writer); if (result != VDO_SUCCESS) return result; writer->index = index; mutex_init(&writer->mutex); uds_init_cond(&writer->cond); result = vdo_allocate_cache_aligned(collated_records_size, "collated records", &writer->collated_records); if (result != VDO_SUCCESS) { free_chapter_writer(writer); return result; } result = uds_make_open_chapter_index(&writer->open_chapter_index, index->volume->geometry, index->volume->nonce); if (result != UDS_SUCCESS) { free_chapter_writer(writer); return result; } writer->memory_size = (sizeof(struct chapter_writer) + index->zone_count * sizeof(struct open_chapter_zone *) + collated_records_size + writer->open_chapter_index->memory_size); result = vdo_create_thread(close_chapters, writer, "writer", &writer->thread); if (result != VDO_SUCCESS) { free_chapter_writer(writer); return result; } *writer_ptr = writer; return UDS_SUCCESS; } static int load_index(struct uds_index *index) { int result; u64 last_save_chapter; result = uds_load_index_state(index->layout, index); if (result != UDS_SUCCESS) return UDS_INDEX_NOT_SAVED_CLEANLY; last_save_chapter = ((index->last_save != NO_LAST_SAVE) ? index->last_save : 0); vdo_log_info("loaded index from chapter %llu through chapter %llu", (unsigned long long) index->oldest_virtual_chapter, (unsigned long long) last_save_chapter); return UDS_SUCCESS; } static int rebuild_index_page_map(struct uds_index *index, u64 vcn) { int result; struct delta_index_page *chapter_index_page; struct index_geometry *geometry = index->volume->geometry; u32 chapter = uds_map_to_physical_chapter(geometry, vcn); u32 expected_list_number = 0; u32 index_page_number; u32 lowest_delta_list; u32 highest_delta_list; for (index_page_number = 0; index_page_number < geometry->index_pages_per_chapter; index_page_number++) { result = uds_get_volume_index_page(index->volume, chapter, index_page_number, &chapter_index_page); if (result != UDS_SUCCESS) { return vdo_log_error_strerror(result, "failed to read index page %u in chapter %u", index_page_number, chapter); } lowest_delta_list = chapter_index_page->lowest_list_number; highest_delta_list = chapter_index_page->highest_list_number; if (lowest_delta_list != expected_list_number) { return vdo_log_error_strerror(UDS_CORRUPT_DATA, "chapter %u index page %u is corrupt", chapter, index_page_number); } uds_update_index_page_map(index->volume->index_page_map, vcn, chapter, index_page_number, highest_delta_list); expected_list_number = highest_delta_list + 1; } return UDS_SUCCESS; } static int replay_record(struct uds_index *index, const struct uds_record_name *name, u64 virtual_chapter, bool will_be_sparse_chapter) { int result; struct volume_index_record record; bool update_record; if (will_be_sparse_chapter && !uds_is_volume_index_sample(index->volume_index, name)) { /* * This entry will be in a sparse chapter after the rebuild completes, and it is * not a sample, so just skip over it. */ return UDS_SUCCESS; } result = uds_get_volume_index_record(index->volume_index, name, &record); if (result != UDS_SUCCESS) return result; if (record.is_found) { if (record.is_collision) { if (record.virtual_chapter == virtual_chapter) { /* The record is already correct. */ return UDS_SUCCESS; } update_record = true; } else if (record.virtual_chapter == virtual_chapter) { /* * There is a volume index entry pointing to the current chapter, but we * don't know if it is for the same name as the one we are currently * working on or not. For now, we're just going to assume that it isn't. * This will create one extra collision record if there was a deleted * record in the current chapter. */ update_record = false; } else { /* * If we're rebuilding, we don't normally want to go to disk to see if the * record exists, since we will likely have just read the record from disk * (i.e. we know it's there). The exception to this is when we find an * entry in the volume index that has a different chapter. In this case, we * need to search that chapter to determine if the volume index entry was * for the same record or a different one. */ result = uds_search_volume_page_cache_for_rebuild(index->volume, name, record.virtual_chapter, &update_record); if (result != UDS_SUCCESS) return result; } } else { update_record = false; } if (update_record) { /* * Update the volume index to reference the new chapter for the block. If the * record had been deleted or dropped from the chapter index, it will be back. */ result = uds_set_volume_index_record_chapter(&record, virtual_chapter); } else { /* * Add a new entry to the volume index referencing the open chapter. This should be * done regardless of whether we are a brand new record or a sparse record, i.e. * one that doesn't exist in the index but does on disk, since for a sparse record, * we would want to un-sparsify if it did exist. */ result = uds_put_volume_index_record(&record, virtual_chapter); } if ((result == UDS_DUPLICATE_NAME) || (result == UDS_OVERFLOW)) { /* The rebuilt index will lose these records. */ return UDS_SUCCESS; } return result; } static bool check_for_suspend(struct uds_index *index) { bool closing; if (index->load_context == NULL) return false; mutex_lock(&index->load_context->mutex); if (index->load_context->status != INDEX_SUSPENDING) { mutex_unlock(&index->load_context->mutex); return false; } /* Notify that we are suspended and wait for the resume. */ index->load_context->status = INDEX_SUSPENDED; uds_broadcast_cond(&index->load_context->cond); while ((index->load_context->status != INDEX_OPENING) && (index->load_context->status != INDEX_FREEING)) uds_wait_cond(&index->load_context->cond, &index->load_context->mutex); closing = (index->load_context->status == INDEX_FREEING); mutex_unlock(&index->load_context->mutex); return closing; } static int replay_chapter(struct uds_index *index, u64 virtual, bool sparse) { int result; u32 i; u32 j; const struct index_geometry *geometry; u32 physical_chapter; if (check_for_suspend(index)) { vdo_log_info("Replay interrupted by index shutdown at chapter %llu", (unsigned long long) virtual); return -EBUSY; } geometry = index->volume->geometry; physical_chapter = uds_map_to_physical_chapter(geometry, virtual); uds_prefetch_volume_chapter(index->volume, physical_chapter); uds_set_volume_index_open_chapter(index->volume_index, virtual); result = rebuild_index_page_map(index, virtual); if (result != UDS_SUCCESS) { return vdo_log_error_strerror(result, "could not rebuild index page map for chapter %u", physical_chapter); } for (i = 0; i < geometry->record_pages_per_chapter; i++) { u8 *record_page; u32 record_page_number; record_page_number = geometry->index_pages_per_chapter + i; result = uds_get_volume_record_page(index->volume, physical_chapter, record_page_number, &record_page); if (result != UDS_SUCCESS) { return vdo_log_error_strerror(result, "could not get page %d", record_page_number); } for (j = 0; j < geometry->records_per_page; j++) { const u8 *name_bytes; struct uds_record_name name; name_bytes = record_page + (j * BYTES_PER_RECORD); memcpy(&name.name, name_bytes, UDS_RECORD_NAME_SIZE); result = replay_record(index, &name, virtual, sparse); if (result != UDS_SUCCESS) return result; } } return UDS_SUCCESS; } static int replay_volume(struct uds_index *index) { int result; u64 old_map_update; u64 new_map_update; u64 virtual; u64 from_virtual = index->oldest_virtual_chapter; u64 upto_virtual = index->newest_virtual_chapter; bool will_be_sparse; vdo_log_info("Replaying volume from chapter %llu through chapter %llu", (unsigned long long) from_virtual, (unsigned long long) upto_virtual); /* * The index failed to load, so the volume index is empty. Add records to the volume index * in order, skipping non-hooks in chapters which will be sparse to save time. * * Go through each record page of each chapter and add the records back to the volume * index. This should not cause anything to be written to either the open chapter or the * on-disk volume. Also skip the on-disk chapter corresponding to upto_virtual, as this * would have already been purged from the volume index when the chapter was opened. * * Also, go through each index page for each chapter and rebuild the index page map. */ old_map_update = index->volume->index_page_map->last_update; for (virtual = from_virtual; virtual < upto_virtual; virtual++) { will_be_sparse = uds_is_chapter_sparse(index->volume->geometry, from_virtual, upto_virtual, virtual); result = replay_chapter(index, virtual, will_be_sparse); if (result != UDS_SUCCESS) return result; } /* Also reap the chapter being replaced by the open chapter. */ uds_set_volume_index_open_chapter(index->volume_index, upto_virtual); new_map_update = index->volume->index_page_map->last_update; if (new_map_update != old_map_update) { vdo_log_info("replay changed index page map update from %llu to %llu", (unsigned long long) old_map_update, (unsigned long long) new_map_update); } return UDS_SUCCESS; } static int rebuild_index(struct uds_index *index) { int result; u64 lowest; u64 highest; bool is_empty = false; u32 chapters_per_volume = index->volume->geometry->chapters_per_volume; index->volume->lookup_mode = LOOKUP_FOR_REBUILD; result = uds_find_volume_chapter_boundaries(index->volume, &lowest, &highest, &is_empty); if (result != UDS_SUCCESS) { return vdo_log_fatal_strerror(result, "cannot rebuild index: unknown volume chapter boundaries"); } if (is_empty) { index->newest_virtual_chapter = 0; index->oldest_virtual_chapter = 0; index->volume->lookup_mode = LOOKUP_NORMAL; return UDS_SUCCESS; } index->newest_virtual_chapter = highest + 1; index->oldest_virtual_chapter = lowest; if (index->newest_virtual_chapter == (index->oldest_virtual_chapter + chapters_per_volume)) { /* Skip the chapter shadowed by the open chapter. */ index->oldest_virtual_chapter++; } result = replay_volume(index); if (result != UDS_SUCCESS) return result; index->volume->lookup_mode = LOOKUP_NORMAL; return UDS_SUCCESS; } static void free_index_zone(struct index_zone *zone) { if (zone == NULL) return; uds_free_open_chapter(zone->open_chapter); uds_free_open_chapter(zone->writing_chapter); vdo_free(zone); } static int make_index_zone(struct uds_index *index, unsigned int zone_number) { int result; struct index_zone *zone; result = vdo_allocate(1, struct index_zone, "index zone", &zone); if (result != VDO_SUCCESS) return result; result = uds_make_open_chapter(index->volume->geometry, index->zone_count, &zone->open_chapter); if (result != UDS_SUCCESS) { free_index_zone(zone); return result; } result = uds_make_open_chapter(index->volume->geometry, index->zone_count, &zone->writing_chapter); if (result != UDS_SUCCESS) { free_index_zone(zone); return result; } zone->index = index; zone->id = zone_number; index->zones[zone_number] = zone; return UDS_SUCCESS; } int uds_make_index(struct uds_configuration *config, enum uds_open_index_type open_type, struct index_load_context *load_context, index_callback_fn callback, struct uds_index **new_index) { int result; bool loaded = false; bool new = (open_type == UDS_CREATE); struct uds_index *index = NULL; struct index_zone *zone; u64 nonce; unsigned int z; result = vdo_allocate_extended(struct uds_index, config->zone_count, struct uds_request_queue *, "index", &index); if (result != VDO_SUCCESS) return result; index->zone_count = config->zone_count; result = uds_make_index_layout(config, new, &index->layout); if (result != UDS_SUCCESS) { uds_free_index(index); return result; } result = vdo_allocate(index->zone_count, struct index_zone *, "zones", &index->zones); if (result != VDO_SUCCESS) { uds_free_index(index); return result; } result = uds_make_volume(config, index->layout, &index->volume); if (result != UDS_SUCCESS) { uds_free_index(index); return result; } index->volume->lookup_mode = LOOKUP_NORMAL; for (z = 0; z < index->zone_count; z++) { result = make_index_zone(index, z); if (result != UDS_SUCCESS) { uds_free_index(index); return vdo_log_error_strerror(result, "Could not create index zone"); } } nonce = uds_get_volume_nonce(index->layout); result = uds_make_volume_index(config, nonce, &index->volume_index); if (result != UDS_SUCCESS) { uds_free_index(index); return vdo_log_error_strerror(result, "could not make volume index"); } index->load_context = load_context; index->callback = callback; result = initialize_index_queues(index, config->geometry); if (result != UDS_SUCCESS) { uds_free_index(index); return result; } result = make_chapter_writer(index, &index->chapter_writer); if (result != UDS_SUCCESS) { uds_free_index(index); return result; } if (!new) { result = load_index(index); switch (result) { case UDS_SUCCESS: loaded = true; break; case -ENOMEM: /* We should not try a rebuild for this error. */ vdo_log_error_strerror(result, "index could not be loaded"); break; default: vdo_log_error_strerror(result, "index could not be loaded"); if (open_type == UDS_LOAD) { result = rebuild_index(index); if (result != UDS_SUCCESS) { vdo_log_error_strerror(result, "index could not be rebuilt"); } } break; } } if (result != UDS_SUCCESS) { uds_free_index(index); return vdo_log_error_strerror(result, "fatal error in %s()", __func__); } for (z = 0; z < index->zone_count; z++) { zone = index->zones[z]; zone->oldest_virtual_chapter = index->oldest_virtual_chapter; zone->newest_virtual_chapter = index->newest_virtual_chapter; } if (index->load_context != NULL) { mutex_lock(&index->load_context->mutex); index->load_context->status = INDEX_READY; /* * If we get here, suspend is meaningless, but notify any thread trying to suspend * us so it doesn't hang. */ uds_broadcast_cond(&index->load_context->cond); mutex_unlock(&index->load_context->mutex); } index->has_saved_open_chapter = loaded; index->need_to_save = !loaded; *new_index = index; return UDS_SUCCESS; } void uds_free_index(struct uds_index *index) { unsigned int i; if (index == NULL) return; uds_request_queue_finish(index->triage_queue); for (i = 0; i < index->zone_count; i++) uds_request_queue_finish(index->zone_queues[i]); free_chapter_writer(index->chapter_writer); uds_free_volume_index(index->volume_index); if (index->zones != NULL) { for (i = 0; i < index->zone_count; i++) free_index_zone(index->zones[i]); vdo_free(index->zones); } uds_free_volume(index->volume); uds_free_index_layout(vdo_forget(index->layout)); vdo_free(index); } /* Wait for the chapter writer to complete any outstanding writes. */ void uds_wait_for_idle_index(struct uds_index *index) { struct chapter_writer *writer = index->chapter_writer; mutex_lock(&writer->mutex); while (writer->zones_to_write > 0) uds_wait_cond(&writer->cond, &writer->mutex); mutex_unlock(&writer->mutex); } /* This function assumes that all requests have been drained. */ int uds_save_index(struct uds_index *index) { int result; if (!index->need_to_save) return UDS_SUCCESS; uds_wait_for_idle_index(index); index->prev_save = index->last_save; index->last_save = ((index->newest_virtual_chapter == 0) ? NO_LAST_SAVE : index->newest_virtual_chapter - 1); vdo_log_info("beginning save (vcn %llu)", (unsigned long long) index->last_save); result = uds_save_index_state(index->layout, index); if (result != UDS_SUCCESS) { vdo_log_info("save index failed"); index->last_save = index->prev_save; } else { index->has_saved_open_chapter = true; index->need_to_save = false; vdo_log_info("finished save (vcn %llu)", (unsigned long long) index->last_save); } return result; } int uds_replace_index_storage(struct uds_index *index, struct block_device *bdev) { return uds_replace_volume_storage(index->volume, index->layout, bdev); } /* Accessing statistics should be safe from any thread. */ void uds_get_index_stats(struct uds_index *index, struct uds_index_stats *counters) { struct volume_index_stats stats; uds_get_volume_index_stats(index->volume_index, &stats); counters->entries_indexed = stats.record_count; counters->collisions = stats.collision_count; counters->entries_discarded = stats.discard_count; counters->memory_used = (index->volume_index->memory_size + index->volume->cache_size + index->chapter_writer->memory_size); } void uds_enqueue_request(struct uds_request *request, enum request_stage stage) { struct uds_index *index = request->index; struct uds_request_queue *queue; switch (stage) { case STAGE_TRIAGE: if (index->triage_queue != NULL) { queue = index->triage_queue; break; } fallthrough; case STAGE_INDEX: request->zone_number = uds_get_volume_index_zone(index->volume_index, &request->record_name); fallthrough; case STAGE_MESSAGE: queue = index->zone_queues[request->zone_number]; break; default: VDO_ASSERT_LOG_ONLY(false, "invalid index stage: %d", stage); return; } uds_request_queue_enqueue(queue, request); } |