Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 | // SPDX-License-Identifier: GPL-2.0-only /* * Copyright 2023 Red Hat */ #include "delta-index.h" #include <linux/bitops.h> #include <linux/bits.h> #include <linux/compiler.h> #include <linux/limits.h> #include <linux/log2.h> #include "cpu.h" #include "errors.h" #include "logger.h" #include "memory-alloc.h" #include "numeric.h" #include "permassert.h" #include "string-utils.h" #include "time-utils.h" #include "config.h" #include "indexer.h" /* * The entries in a delta index could be stored in a single delta list, but to reduce search times * and update costs it uses multiple delta lists. These lists are stored in a single chunk of * memory managed by the delta_zone structure. The delta_zone can move the data around within its * memory, so the location of each delta list is recorded as a bit offset into the memory. Because * the volume index can contain over a million delta lists, we want to be efficient with the size * of the delta list header information. This information is encoded into 16 bytes per list. The * volume index delta list memory can easily exceed 4 gigabits, so a 64 bit value is needed to * address the memory. The volume index delta lists average around 6 kilobits, so 16 bits are * sufficient to store the size of a delta list. * * Each delta list is stored as a bit stream. Within the delta list encoding, bits and bytes are * numbered in little endian order. Within a byte, bit 0 is the least significant bit (0x1), and * bit 7 is the most significant bit (0x80). Within a bit stream, bit 7 is the most significant bit * of byte 0, and bit 8 is the least significant bit of byte 1. Within a byte array, a byte's * number corresponds to its index in the array. * * A standard delta list entry is stored as a fixed length payload (the value) followed by a * variable length key (the delta). A collision entry is used when two block names have the same * delta list address. A collision entry always follows a standard entry for the hash with which it * collides, and is encoded with DELTA == 0 with an additional 256 bits field at the end, * containing the full block name. An entry with a delta of 0 at the beginning of a delta list * indicates a normal entry. * * The delta in each entry is encoded with a variable-length Huffman code to minimize the memory * used by small deltas. The Huffman code is specified by three parameters, which can be computed * from the desired mean delta when the index is full. (See compute_coding_constants() for * details.) * * The bit field utilities used to read and write delta entries assume that it is possible to read * some bytes beyond the end of the bit field, so a delta_zone memory allocation is guarded by two * invalid delta lists to prevent reading outside the delta_zone memory. The valid delta lists are * numbered 1 to N, and the guard lists are numbered 0 and N+1. The function to decode the bit * stream include a step that skips over bits set to 0 until the first 1 bit is found. A corrupted * delta list could cause this step to run off the end of the delta_zone memory, so as extra * protection against this happening, the tail guard list is set to all ones. * * The delta_index supports two different forms. The mutable form is created by * uds_initialize_delta_index(), and is used for the volume index and for open chapter indexes. The * immutable form is created by uds_initialize_delta_index_page(), and is used for closed (and * cached) chapter index pages. The immutable form does not allocate delta list headers or * temporary offsets, and thus is somewhat more memory efficient. */ /* * This is the largest field size supported by get_field() and set_field(). Any field that is * larger is not guaranteed to fit in a single byte-aligned u32. */ #define MAX_FIELD_BITS ((sizeof(u32) - 1) * BITS_PER_BYTE + 1) /* * This is the largest field size supported by get_big_field() and set_big_field(). Any field that * is larger is not guaranteed to fit in a single byte-aligned u64. */ #define MAX_BIG_FIELD_BITS ((sizeof(u64) - 1) * BITS_PER_BYTE + 1) /* * This is the number of guard bytes needed at the end of the memory byte array when using the bit * utilities. These utilities call get_big_field() and set_big_field(), which can access up to 7 * bytes beyond the end of the desired field. The definition is written to make it clear how this * value is derived. */ #define POST_FIELD_GUARD_BYTES (sizeof(u64) - 1) /* The number of guard bits that are needed in the tail guard list */ #define GUARD_BITS (POST_FIELD_GUARD_BYTES * BITS_PER_BYTE) /* * The maximum size of a single delta list in bytes. We count guard bytes in this value because a * buffer of this size can be used with move_bits(). */ #define DELTA_LIST_MAX_BYTE_COUNT \ ((U16_MAX + BITS_PER_BYTE) / BITS_PER_BYTE + POST_FIELD_GUARD_BYTES) /* The number of extra bytes and bits needed to store a collision entry */ #define COLLISION_BYTES UDS_RECORD_NAME_SIZE #define COLLISION_BITS (COLLISION_BYTES * BITS_PER_BYTE) /* * Immutable delta lists are packed into pages containing a header that encodes the delta list * information into 19 bits per list (64KB bit offset). */ #define IMMUTABLE_HEADER_SIZE 19 /* * Constants and structures for the saved delta index. "DI" is for delta_index, and -##### is a * number to increment when the format of the data changes. */ #define MAGIC_SIZE 8 static const char DELTA_INDEX_MAGIC[] = "DI-00002"; struct delta_index_header { char magic[MAGIC_SIZE]; u32 zone_number; u32 zone_count; u32 first_list; u32 list_count; u64 record_count; u64 collision_count; }; /* * Header data used for immutable delta index pages. This data is followed by the delta list offset * table. */ struct delta_page_header { /* Externally-defined nonce */ u64 nonce; /* The virtual chapter number */ u64 virtual_chapter_number; /* Index of the first delta list on the page */ u16 first_list; /* Number of delta lists on the page */ u16 list_count; } __packed; static inline u64 get_delta_list_byte_start(const struct delta_list *delta_list) { return delta_list->start / BITS_PER_BYTE; } static inline u16 get_delta_list_byte_size(const struct delta_list *delta_list) { unsigned int bit_offset = delta_list->start % BITS_PER_BYTE; return BITS_TO_BYTES(bit_offset + delta_list->size); } static void rebalance_delta_zone(const struct delta_zone *delta_zone, u32 first, u32 last) { struct delta_list *delta_list; u64 new_start; if (first == last) { /* Only one list is moving, and we know there is space. */ delta_list = &delta_zone->delta_lists[first]; new_start = delta_zone->new_offsets[first]; if (delta_list->start != new_start) { u64 source; u64 destination; source = get_delta_list_byte_start(delta_list); delta_list->start = new_start; destination = get_delta_list_byte_start(delta_list); memmove(delta_zone->memory + destination, delta_zone->memory + source, get_delta_list_byte_size(delta_list)); } } else { /* * There is more than one list. Divide the problem in half, and use recursive calls * to process each half. Note that after this computation, first <= middle, and * middle < last. */ u32 middle = (first + last) / 2; delta_list = &delta_zone->delta_lists[middle]; new_start = delta_zone->new_offsets[middle]; /* * The direction that our middle list is moving determines which half of the * problem must be processed first. */ if (new_start > delta_list->start) { rebalance_delta_zone(delta_zone, middle + 1, last); rebalance_delta_zone(delta_zone, first, middle); } else { rebalance_delta_zone(delta_zone, first, middle); rebalance_delta_zone(delta_zone, middle + 1, last); } } } static inline size_t get_zone_memory_size(unsigned int zone_count, size_t memory_size) { /* Round up so that each zone is a multiple of 64K in size. */ size_t ALLOC_BOUNDARY = 64 * 1024; return (memory_size / zone_count + ALLOC_BOUNDARY - 1) & -ALLOC_BOUNDARY; } void uds_reset_delta_index(const struct delta_index *delta_index) { unsigned int z; /* * Initialize all delta lists to be empty. We keep 2 extra delta list descriptors, one * before the first real entry and one after so that we don't need to bounds check the * array access when calculating preceding and following gap sizes. */ for (z = 0; z < delta_index->zone_count; z++) { u64 list_bits; u64 spacing; u64 offset; unsigned int i; struct delta_zone *zone = &delta_index->delta_zones[z]; struct delta_list *delta_lists = zone->delta_lists; /* Zeroing the delta list headers initializes the head guard list correctly. */ memset(delta_lists, 0, (zone->list_count + 2) * sizeof(struct delta_list)); /* Set all the bits in the end guard list. */ list_bits = (u64) zone->size * BITS_PER_BYTE - GUARD_BITS; delta_lists[zone->list_count + 1].start = list_bits; delta_lists[zone->list_count + 1].size = GUARD_BITS; memset(zone->memory + (list_bits / BITS_PER_BYTE), ~0, POST_FIELD_GUARD_BYTES); /* Evenly space out the real delta lists by setting regular offsets. */ spacing = list_bits / zone->list_count; offset = spacing / 2; for (i = 1; i <= zone->list_count; i++) { delta_lists[i].start = offset; offset += spacing; } /* Update the statistics. */ zone->discard_count += zone->record_count; zone->record_count = 0; zone->collision_count = 0; } } /* Compute the Huffman coding parameters for the given mean delta. The Huffman code is specified by * three parameters: * * MINBITS The number of bits in the smallest code * BASE The number of values coded using a code of length MINBITS * INCR The number of values coded by using one additional bit * * These parameters are related by this equation: * * BASE + INCR == 1 << MINBITS * * The math for the Huffman code of an exponential distribution says that * * INCR = log(2) * MEAN_DELTA * * Then use the smallest MINBITS value so that * * (1 << MINBITS) > INCR * * And then * * BASE = (1 << MINBITS) - INCR * * Now the index can generate a code such that * - The first BASE values code using MINBITS bits. * - The next INCR values code using MINBITS+1 bits. * - The next INCR values code using MINBITS+2 bits. * - (and so on). */ static void compute_coding_constants(u32 mean_delta, u16 *min_bits, u32 *min_keys, u32 *incr_keys) { /* * We want to compute the rounded value of log(2) * mean_delta. Since we cannot always use * floating point, use a really good integer approximation. */ *incr_keys = (836158UL * mean_delta + 603160UL) / 1206321UL; *min_bits = bits_per(*incr_keys + 1); *min_keys = (1 << *min_bits) - *incr_keys; } void uds_uninitialize_delta_index(struct delta_index *delta_index) { unsigned int z; if (delta_index->delta_zones == NULL) return; for (z = 0; z < delta_index->zone_count; z++) { vdo_free(vdo_forget(delta_index->delta_zones[z].new_offsets)); vdo_free(vdo_forget(delta_index->delta_zones[z].delta_lists)); vdo_free(vdo_forget(delta_index->delta_zones[z].memory)); } vdo_free(delta_index->delta_zones); memset(delta_index, 0, sizeof(struct delta_index)); } static int initialize_delta_zone(struct delta_zone *delta_zone, size_t size, u32 first_list, u32 list_count, u32 mean_delta, u32 payload_bits, u8 tag) { int result; result = vdo_allocate(size, u8, "delta list", &delta_zone->memory); if (result != VDO_SUCCESS) return result; result = vdo_allocate(list_count + 2, u64, "delta list temp", &delta_zone->new_offsets); if (result != VDO_SUCCESS) return result; /* Allocate the delta lists. */ result = vdo_allocate(list_count + 2, struct delta_list, "delta lists", &delta_zone->delta_lists); if (result != VDO_SUCCESS) return result; compute_coding_constants(mean_delta, &delta_zone->min_bits, &delta_zone->min_keys, &delta_zone->incr_keys); delta_zone->value_bits = payload_bits; delta_zone->buffered_writer = NULL; delta_zone->size = size; delta_zone->rebalance_time = 0; delta_zone->rebalance_count = 0; delta_zone->record_count = 0; delta_zone->collision_count = 0; delta_zone->discard_count = 0; delta_zone->overflow_count = 0; delta_zone->first_list = first_list; delta_zone->list_count = list_count; delta_zone->tag = tag; return UDS_SUCCESS; } int uds_initialize_delta_index(struct delta_index *delta_index, unsigned int zone_count, u32 list_count, u32 mean_delta, u32 payload_bits, size_t memory_size, u8 tag) { int result; unsigned int z; size_t zone_memory; result = vdo_allocate(zone_count, struct delta_zone, "Delta Index Zones", &delta_index->delta_zones); if (result != VDO_SUCCESS) return result; delta_index->zone_count = zone_count; delta_index->list_count = list_count; delta_index->lists_per_zone = DIV_ROUND_UP(list_count, zone_count); delta_index->memory_size = 0; delta_index->mutable = true; delta_index->tag = tag; for (z = 0; z < zone_count; z++) { u32 lists_in_zone = delta_index->lists_per_zone; u32 first_list_in_zone = z * lists_in_zone; if (z == zone_count - 1) { /* * The last zone gets fewer lists if zone_count doesn't evenly divide * list_count. We'll have an underflow if the assertion below doesn't hold. */ if (delta_index->list_count <= first_list_in_zone) { uds_uninitialize_delta_index(delta_index); return vdo_log_error_strerror(UDS_INVALID_ARGUMENT, "%u delta lists not enough for %u zones", list_count, zone_count); } lists_in_zone = delta_index->list_count - first_list_in_zone; } zone_memory = get_zone_memory_size(zone_count, memory_size); result = initialize_delta_zone(&delta_index->delta_zones[z], zone_memory, first_list_in_zone, lists_in_zone, mean_delta, payload_bits, tag); if (result != UDS_SUCCESS) { uds_uninitialize_delta_index(delta_index); return result; } delta_index->memory_size += (sizeof(struct delta_zone) + zone_memory + (lists_in_zone + 2) * (sizeof(struct delta_list) + sizeof(u64))); } uds_reset_delta_index(delta_index); return UDS_SUCCESS; } /* Read a bit field from an arbitrary bit boundary. */ static inline u32 get_field(const u8 *memory, u64 offset, u8 size) { const void *addr = memory + offset / BITS_PER_BYTE; return (get_unaligned_le32(addr) >> (offset % BITS_PER_BYTE)) & ((1 << size) - 1); } /* Write a bit field to an arbitrary bit boundary. */ static inline void set_field(u32 value, u8 *memory, u64 offset, u8 size) { void *addr = memory + offset / BITS_PER_BYTE; int shift = offset % BITS_PER_BYTE; u32 data = get_unaligned_le32(addr); data &= ~(((1 << size) - 1) << shift); data |= value << shift; put_unaligned_le32(data, addr); } /* Get the bit offset to the immutable delta list header. */ static inline u32 get_immutable_header_offset(u32 list_number) { return sizeof(struct delta_page_header) * BITS_PER_BYTE + list_number * IMMUTABLE_HEADER_SIZE; } /* Get the bit offset to the start of the immutable delta list bit stream. */ static inline u32 get_immutable_start(const u8 *memory, u32 list_number) { return get_field(memory, get_immutable_header_offset(list_number), IMMUTABLE_HEADER_SIZE); } /* Set the bit offset to the start of the immutable delta list bit stream. */ static inline void set_immutable_start(u8 *memory, u32 list_number, u32 start) { set_field(start, memory, get_immutable_header_offset(list_number), IMMUTABLE_HEADER_SIZE); } static bool verify_delta_index_page(u64 nonce, u16 list_count, u64 expected_nonce, u8 *memory, size_t memory_size) { unsigned int i; /* * Verify the nonce. A mismatch can happen here during rebuild if we haven't written the * entire volume at least once. */ if (nonce != expected_nonce) return false; /* Verify that the number of delta lists can fit in the page. */ if (list_count > ((memory_size - sizeof(struct delta_page_header)) * BITS_PER_BYTE / IMMUTABLE_HEADER_SIZE)) return false; /* * Verify that the first delta list is immediately after the last delta * list header. */ if (get_immutable_start(memory, 0) != get_immutable_header_offset(list_count + 1)) return false; /* Verify that the lists are in the correct order. */ for (i = 0; i < list_count; i++) { if (get_immutable_start(memory, i) > get_immutable_start(memory, i + 1)) return false; } /* * Verify that the last list ends on the page, and that there is room * for the post-field guard bits. */ if (get_immutable_start(memory, list_count) > (memory_size - POST_FIELD_GUARD_BYTES) * BITS_PER_BYTE) return false; /* Verify that the guard bytes are correctly set to all ones. */ for (i = 0; i < POST_FIELD_GUARD_BYTES; i++) { if (memory[memory_size - POST_FIELD_GUARD_BYTES + i] != (u8) ~0) return false; } /* All verifications passed. */ return true; } /* Initialize a delta index page to refer to a supplied page. */ int uds_initialize_delta_index_page(struct delta_index_page *delta_index_page, u64 expected_nonce, u32 mean_delta, u32 payload_bits, u8 *memory, size_t memory_size) { u64 nonce; u64 vcn; u64 first_list; u64 list_count; struct delta_page_header *header = (struct delta_page_header *) memory; struct delta_zone *delta_zone = &delta_index_page->delta_zone; const u8 *nonce_addr = (const u8 *) &header->nonce; const u8 *vcn_addr = (const u8 *) &header->virtual_chapter_number; const u8 *first_list_addr = (const u8 *) &header->first_list; const u8 *list_count_addr = (const u8 *) &header->list_count; /* First assume that the header is little endian. */ nonce = get_unaligned_le64(nonce_addr); vcn = get_unaligned_le64(vcn_addr); first_list = get_unaligned_le16(first_list_addr); list_count = get_unaligned_le16(list_count_addr); if (!verify_delta_index_page(nonce, list_count, expected_nonce, memory, memory_size)) { /* If that fails, try big endian. */ nonce = get_unaligned_be64(nonce_addr); vcn = get_unaligned_be64(vcn_addr); first_list = get_unaligned_be16(first_list_addr); list_count = get_unaligned_be16(list_count_addr); if (!verify_delta_index_page(nonce, list_count, expected_nonce, memory, memory_size)) { /* * Both attempts failed. Do not log this as an error, because it can happen * during a rebuild if we haven't written the entire volume at least once. */ return UDS_CORRUPT_DATA; } } delta_index_page->delta_index.delta_zones = delta_zone; delta_index_page->delta_index.zone_count = 1; delta_index_page->delta_index.list_count = list_count; delta_index_page->delta_index.lists_per_zone = list_count; delta_index_page->delta_index.mutable = false; delta_index_page->delta_index.tag = 'p'; delta_index_page->virtual_chapter_number = vcn; delta_index_page->lowest_list_number = first_list; delta_index_page->highest_list_number = first_list + list_count - 1; compute_coding_constants(mean_delta, &delta_zone->min_bits, &delta_zone->min_keys, &delta_zone->incr_keys); delta_zone->value_bits = payload_bits; delta_zone->memory = memory; delta_zone->delta_lists = NULL; delta_zone->new_offsets = NULL; delta_zone->buffered_writer = NULL; delta_zone->size = memory_size; delta_zone->rebalance_time = 0; delta_zone->rebalance_count = 0; delta_zone->record_count = 0; delta_zone->collision_count = 0; delta_zone->discard_count = 0; delta_zone->overflow_count = 0; delta_zone->first_list = 0; delta_zone->list_count = list_count; delta_zone->tag = 'p'; return UDS_SUCCESS; } /* Read a large bit field from an arbitrary bit boundary. */ static inline u64 get_big_field(const u8 *memory, u64 offset, u8 size) { const void *addr = memory + offset / BITS_PER_BYTE; return (get_unaligned_le64(addr) >> (offset % BITS_PER_BYTE)) & ((1UL << size) - 1); } /* Write a large bit field to an arbitrary bit boundary. */ static inline void set_big_field(u64 value, u8 *memory, u64 offset, u8 size) { void *addr = memory + offset / BITS_PER_BYTE; u8 shift = offset % BITS_PER_BYTE; u64 data = get_unaligned_le64(addr); data &= ~(((1UL << size) - 1) << shift); data |= value << shift; put_unaligned_le64(data, addr); } /* Set a sequence of bits to all zeros. */ static inline void set_zero(u8 *memory, u64 offset, u32 size) { if (size > 0) { u8 *addr = memory + offset / BITS_PER_BYTE; u8 shift = offset % BITS_PER_BYTE; u32 count = size + shift > BITS_PER_BYTE ? (u32) BITS_PER_BYTE - shift : size; *addr++ &= ~(((1 << count) - 1) << shift); for (size -= count; size > BITS_PER_BYTE; size -= BITS_PER_BYTE) *addr++ = 0; if (size > 0) *addr &= 0xFF << size; } } /* * Move several bits from a higher to a lower address, moving the lower addressed bits first. The * size and memory offsets are measured in bits. */ static void move_bits_down(const u8 *from, u64 from_offset, u8 *to, u64 to_offset, u32 size) { const u8 *source; u8 *destination; u8 offset; u8 count; u64 field; /* Start by moving one field that ends on a to int boundary. */ count = (MAX_BIG_FIELD_BITS - ((to_offset + MAX_BIG_FIELD_BITS) % BITS_PER_TYPE(u32))); field = get_big_field(from, from_offset, count); set_big_field(field, to, to_offset, count); from_offset += count; to_offset += count; size -= count; /* Now do the main loop to copy 32 bit chunks that are int-aligned at the destination. */ offset = from_offset % BITS_PER_TYPE(u32); source = from + (from_offset - offset) / BITS_PER_BYTE; destination = to + to_offset / BITS_PER_BYTE; while (size > MAX_BIG_FIELD_BITS) { put_unaligned_le32(get_unaligned_le64(source) >> offset, destination); source += sizeof(u32); destination += sizeof(u32); from_offset += BITS_PER_TYPE(u32); to_offset += BITS_PER_TYPE(u32); size -= BITS_PER_TYPE(u32); } /* Finish up by moving any remaining bits. */ if (size > 0) { field = get_big_field(from, from_offset, size); set_big_field(field, to, to_offset, size); } } /* * Move several bits from a lower to a higher address, moving the higher addressed bits first. The * size and memory offsets are measured in bits. */ static void move_bits_up(const u8 *from, u64 from_offset, u8 *to, u64 to_offset, u32 size) { const u8 *source; u8 *destination; u8 offset; u8 count; u64 field; /* Start by moving one field that begins on a destination int boundary. */ count = (to_offset + size) % BITS_PER_TYPE(u32); if (count > 0) { size -= count; field = get_big_field(from, from_offset + size, count); set_big_field(field, to, to_offset + size, count); } /* Now do the main loop to copy 32 bit chunks that are int-aligned at the destination. */ offset = (from_offset + size) % BITS_PER_TYPE(u32); source = from + (from_offset + size - offset) / BITS_PER_BYTE; destination = to + (to_offset + size) / BITS_PER_BYTE; while (size > MAX_BIG_FIELD_BITS) { source -= sizeof(u32); destination -= sizeof(u32); size -= BITS_PER_TYPE(u32); put_unaligned_le32(get_unaligned_le64(source) >> offset, destination); } /* Finish up by moving any remaining bits. */ if (size > 0) { field = get_big_field(from, from_offset, size); set_big_field(field, to, to_offset, size); } } /* * Move bits from one field to another. When the fields overlap, behave as if we first move all the * bits from the source to a temporary value, and then move all the bits from the temporary value * to the destination. The size and memory offsets are measured in bits. */ static void move_bits(const u8 *from, u64 from_offset, u8 *to, u64 to_offset, u32 size) { u64 field; /* A small move doesn't require special handling. */ if (size <= MAX_BIG_FIELD_BITS) { if (size > 0) { field = get_big_field(from, from_offset, size); set_big_field(field, to, to_offset, size); } return; } if (from_offset > to_offset) move_bits_down(from, from_offset, to, to_offset, size); else move_bits_up(from, from_offset, to, to_offset, size); } /* * Pack delta lists from a mutable delta index into an immutable delta index page. A range of delta * lists (starting with a specified list index) is copied from the mutable delta index into a * memory page used in the immutable index. The number of lists copied onto the page is returned in * list_count. */ int uds_pack_delta_index_page(const struct delta_index *delta_index, u64 header_nonce, u8 *memory, size_t memory_size, u64 virtual_chapter_number, u32 first_list, u32 *list_count) { const struct delta_zone *delta_zone; struct delta_list *delta_lists; u32 max_lists; u32 n_lists = 0; u32 offset; u32 i; int free_bits; int bits; struct delta_page_header *header; delta_zone = &delta_index->delta_zones[0]; delta_lists = &delta_zone->delta_lists[first_list + 1]; max_lists = delta_index->list_count - first_list; /* * Compute how many lists will fit on the page. Subtract the size of the fixed header, one * delta list offset, and the guard bytes from the page size to determine how much space is * available for delta lists. */ free_bits = memory_size * BITS_PER_BYTE; free_bits -= get_immutable_header_offset(1); free_bits -= GUARD_BITS; if (free_bits < IMMUTABLE_HEADER_SIZE) { /* This page is too small to store any delta lists. */ return vdo_log_error_strerror(UDS_OVERFLOW, "Chapter Index Page of %zu bytes is too small", memory_size); } while (n_lists < max_lists) { /* Each list requires a delta list offset and the list data. */ bits = IMMUTABLE_HEADER_SIZE + delta_lists[n_lists].size; if (bits > free_bits) break; n_lists++; free_bits -= bits; } *list_count = n_lists; header = (struct delta_page_header *) memory; put_unaligned_le64(header_nonce, (u8 *) &header->nonce); put_unaligned_le64(virtual_chapter_number, (u8 *) &header->virtual_chapter_number); put_unaligned_le16(first_list, (u8 *) &header->first_list); put_unaligned_le16(n_lists, (u8 *) &header->list_count); /* Construct the delta list offset table. */ offset = get_immutable_header_offset(n_lists + 1); set_immutable_start(memory, 0, offset); for (i = 0; i < n_lists; i++) { offset += delta_lists[i].size; set_immutable_start(memory, i + 1, offset); } /* Copy the delta list data onto the memory page. */ for (i = 0; i < n_lists; i++) { move_bits(delta_zone->memory, delta_lists[i].start, memory, get_immutable_start(memory, i), delta_lists[i].size); } /* Set all the bits in the guard bytes. */ memset(memory + memory_size - POST_FIELD_GUARD_BYTES, ~0, POST_FIELD_GUARD_BYTES); return UDS_SUCCESS; } /* Compute the new offsets of the delta lists. */ static void compute_new_list_offsets(struct delta_zone *delta_zone, u32 growing_index, size_t growing_size, size_t used_space) { size_t spacing; u32 i; struct delta_list *delta_lists = delta_zone->delta_lists; u32 tail_guard_index = delta_zone->list_count + 1; spacing = (delta_zone->size - used_space) / delta_zone->list_count; delta_zone->new_offsets[0] = 0; for (i = 0; i <= delta_zone->list_count; i++) { delta_zone->new_offsets[i + 1] = (delta_zone->new_offsets[i] + get_delta_list_byte_size(&delta_lists[i]) + spacing); delta_zone->new_offsets[i] *= BITS_PER_BYTE; delta_zone->new_offsets[i] += delta_lists[i].start % BITS_PER_BYTE; if (i == 0) delta_zone->new_offsets[i + 1] -= spacing / 2; if (i + 1 == growing_index) delta_zone->new_offsets[i + 1] += growing_size; } delta_zone->new_offsets[tail_guard_index] = (delta_zone->size * BITS_PER_BYTE - delta_lists[tail_guard_index].size); } static void rebalance_lists(struct delta_zone *delta_zone) { struct delta_list *delta_lists; u32 i; size_t used_space = 0; /* Extend and balance memory to receive the delta lists */ delta_lists = delta_zone->delta_lists; for (i = 0; i <= delta_zone->list_count + 1; i++) used_space += get_delta_list_byte_size(&delta_lists[i]); compute_new_list_offsets(delta_zone, 0, 0, used_space); for (i = 1; i <= delta_zone->list_count + 1; i++) delta_lists[i].start = delta_zone->new_offsets[i]; } /* Start restoring a delta index from multiple input streams. */ int uds_start_restoring_delta_index(struct delta_index *delta_index, struct buffered_reader **buffered_readers, unsigned int reader_count) { int result; unsigned int zone_count = reader_count; u64 record_count = 0; u64 collision_count = 0; u32 first_list[MAX_ZONES]; u32 list_count[MAX_ZONES]; unsigned int z; u32 list_next = 0; const struct delta_zone *delta_zone; /* Read and validate each header. */ for (z = 0; z < zone_count; z++) { struct delta_index_header header; u8 buffer[sizeof(struct delta_index_header)]; size_t offset = 0; result = uds_read_from_buffered_reader(buffered_readers[z], buffer, sizeof(buffer)); if (result != UDS_SUCCESS) { return vdo_log_warning_strerror(result, "failed to read delta index header"); } memcpy(&header.magic, buffer, MAGIC_SIZE); offset += MAGIC_SIZE; decode_u32_le(buffer, &offset, &header.zone_number); decode_u32_le(buffer, &offset, &header.zone_count); decode_u32_le(buffer, &offset, &header.first_list); decode_u32_le(buffer, &offset, &header.list_count); decode_u64_le(buffer, &offset, &header.record_count); decode_u64_le(buffer, &offset, &header.collision_count); result = VDO_ASSERT(offset == sizeof(struct delta_index_header), "%zu bytes decoded of %zu expected", offset, sizeof(struct delta_index_header)); if (result != VDO_SUCCESS) { return vdo_log_warning_strerror(result, "failed to read delta index header"); } if (memcmp(header.magic, DELTA_INDEX_MAGIC, MAGIC_SIZE) != 0) { return vdo_log_warning_strerror(UDS_CORRUPT_DATA, "delta index file has bad magic number"); } if (zone_count != header.zone_count) { return vdo_log_warning_strerror(UDS_CORRUPT_DATA, "delta index files contain mismatched zone counts (%u,%u)", zone_count, header.zone_count); } if (header.zone_number != z) { return vdo_log_warning_strerror(UDS_CORRUPT_DATA, "delta index zone %u found in slot %u", header.zone_number, z); } first_list[z] = header.first_list; list_count[z] = header.list_count; record_count += header.record_count; collision_count += header.collision_count; if (first_list[z] != list_next) { return vdo_log_warning_strerror(UDS_CORRUPT_DATA, "delta index file for zone %u starts with list %u instead of list %u", z, first_list[z], list_next); } list_next += list_count[z]; } if (list_next != delta_index->list_count) { return vdo_log_warning_strerror(UDS_CORRUPT_DATA, "delta index files contain %u delta lists instead of %u delta lists", list_next, delta_index->list_count); } if (collision_count > record_count) { return vdo_log_warning_strerror(UDS_CORRUPT_DATA, "delta index files contain %llu collisions and %llu records", (unsigned long long) collision_count, (unsigned long long) record_count); } uds_reset_delta_index(delta_index); delta_index->delta_zones[0].record_count = record_count; delta_index->delta_zones[0].collision_count = collision_count; /* Read the delta lists and distribute them to the proper zones. */ for (z = 0; z < zone_count; z++) { u32 i; delta_index->load_lists[z] = 0; for (i = 0; i < list_count[z]; i++) { u16 delta_list_size; u32 list_number; unsigned int zone_number; u8 size_data[sizeof(u16)]; result = uds_read_from_buffered_reader(buffered_readers[z], size_data, sizeof(size_data)); if (result != UDS_SUCCESS) { return vdo_log_warning_strerror(result, "failed to read delta index size"); } delta_list_size = get_unaligned_le16(size_data); if (delta_list_size > 0) delta_index->load_lists[z] += 1; list_number = first_list[z] + i; zone_number = list_number / delta_index->lists_per_zone; delta_zone = &delta_index->delta_zones[zone_number]; list_number -= delta_zone->first_list; delta_zone->delta_lists[list_number + 1].size = delta_list_size; } } /* Prepare each zone to start receiving the delta list data. */ for (z = 0; z < delta_index->zone_count; z++) rebalance_lists(&delta_index->delta_zones[z]); return UDS_SUCCESS; } static int restore_delta_list_to_zone(struct delta_zone *delta_zone, const struct delta_list_save_info *save_info, const u8 *data) { struct delta_list *delta_list; u16 bit_count; u16 byte_count; u32 list_number = save_info->index - delta_zone->first_list; if (list_number >= delta_zone->list_count) { return vdo_log_warning_strerror(UDS_CORRUPT_DATA, "invalid delta list number %u not in range [%u,%u)", save_info->index, delta_zone->first_list, delta_zone->first_list + delta_zone->list_count); } delta_list = &delta_zone->delta_lists[list_number + 1]; if (delta_list->size == 0) { return vdo_log_warning_strerror(UDS_CORRUPT_DATA, "unexpected delta list number %u", save_info->index); } bit_count = delta_list->size + save_info->bit_offset; byte_count = BITS_TO_BYTES(bit_count); if (save_info->byte_count != byte_count) { return vdo_log_warning_strerror(UDS_CORRUPT_DATA, "unexpected delta list size %u != %u", save_info->byte_count, byte_count); } move_bits(data, save_info->bit_offset, delta_zone->memory, delta_list->start, delta_list->size); return UDS_SUCCESS; } static int restore_delta_list_data(struct delta_index *delta_index, unsigned int load_zone, struct buffered_reader *buffered_reader, u8 *data) { int result; struct delta_list_save_info save_info; u8 buffer[sizeof(struct delta_list_save_info)]; unsigned int new_zone; result = uds_read_from_buffered_reader(buffered_reader, buffer, sizeof(buffer)); if (result != UDS_SUCCESS) { return vdo_log_warning_strerror(result, "failed to read delta list data"); } save_info = (struct delta_list_save_info) { .tag = buffer[0], .bit_offset = buffer[1], .byte_count = get_unaligned_le16(&buffer[2]), .index = get_unaligned_le32(&buffer[4]), }; if ((save_info.bit_offset >= BITS_PER_BYTE) || (save_info.byte_count > DELTA_LIST_MAX_BYTE_COUNT)) { return vdo_log_warning_strerror(UDS_CORRUPT_DATA, "corrupt delta list data"); } /* Make sure the data is intended for this delta index. */ if (save_info.tag != delta_index->tag) return UDS_CORRUPT_DATA; if (save_info.index >= delta_index->list_count) { return vdo_log_warning_strerror(UDS_CORRUPT_DATA, "invalid delta list number %u of %u", save_info.index, delta_index->list_count); } result = uds_read_from_buffered_reader(buffered_reader, data, save_info.byte_count); if (result != UDS_SUCCESS) { return vdo_log_warning_strerror(result, "failed to read delta list data"); } delta_index->load_lists[load_zone] -= 1; new_zone = save_info.index / delta_index->lists_per_zone; return restore_delta_list_to_zone(&delta_index->delta_zones[new_zone], &save_info, data); } /* Restore delta lists from saved data. */ int uds_finish_restoring_delta_index(struct delta_index *delta_index, struct buffered_reader **buffered_readers, unsigned int reader_count) { int result; int saved_result = UDS_SUCCESS; unsigned int z; u8 *data; result = vdo_allocate(DELTA_LIST_MAX_BYTE_COUNT, u8, __func__, &data); if (result != VDO_SUCCESS) return result; for (z = 0; z < reader_count; z++) { while (delta_index->load_lists[z] > 0) { result = restore_delta_list_data(delta_index, z, buffered_readers[z], data); if (result != UDS_SUCCESS) { saved_result = result; break; } } } vdo_free(data); return saved_result; } int uds_check_guard_delta_lists(struct buffered_reader **buffered_readers, unsigned int reader_count) { int result; unsigned int z; u8 buffer[sizeof(struct delta_list_save_info)]; for (z = 0; z < reader_count; z++) { result = uds_read_from_buffered_reader(buffered_readers[z], buffer, sizeof(buffer)); if (result != UDS_SUCCESS) return result; if (buffer[0] != 'z') return UDS_CORRUPT_DATA; } return UDS_SUCCESS; } static int flush_delta_list(struct delta_zone *zone, u32 flush_index) { struct delta_list *delta_list; u8 buffer[sizeof(struct delta_list_save_info)]; int result; delta_list = &zone->delta_lists[flush_index + 1]; buffer[0] = zone->tag; buffer[1] = delta_list->start % BITS_PER_BYTE; put_unaligned_le16(get_delta_list_byte_size(delta_list), &buffer[2]); put_unaligned_le32(zone->first_list + flush_index, &buffer[4]); result = uds_write_to_buffered_writer(zone->buffered_writer, buffer, sizeof(buffer)); if (result != UDS_SUCCESS) { vdo_log_warning_strerror(result, "failed to write delta list memory"); return result; } result = uds_write_to_buffered_writer(zone->buffered_writer, zone->memory + get_delta_list_byte_start(delta_list), get_delta_list_byte_size(delta_list)); if (result != UDS_SUCCESS) vdo_log_warning_strerror(result, "failed to write delta list memory"); return result; } /* Start saving a delta index zone to a buffered output stream. */ int uds_start_saving_delta_index(const struct delta_index *delta_index, unsigned int zone_number, struct buffered_writer *buffered_writer) { int result; u32 i; struct delta_zone *delta_zone; u8 buffer[sizeof(struct delta_index_header)]; size_t offset = 0; delta_zone = &delta_index->delta_zones[zone_number]; memcpy(buffer, DELTA_INDEX_MAGIC, MAGIC_SIZE); offset += MAGIC_SIZE; encode_u32_le(buffer, &offset, zone_number); encode_u32_le(buffer, &offset, delta_index->zone_count); encode_u32_le(buffer, &offset, delta_zone->first_list); encode_u32_le(buffer, &offset, delta_zone->list_count); encode_u64_le(buffer, &offset, delta_zone->record_count); encode_u64_le(buffer, &offset, delta_zone->collision_count); result = VDO_ASSERT(offset == sizeof(struct delta_index_header), "%zu bytes encoded of %zu expected", offset, sizeof(struct delta_index_header)); if (result != VDO_SUCCESS) return result; result = uds_write_to_buffered_writer(buffered_writer, buffer, offset); if (result != UDS_SUCCESS) return vdo_log_warning_strerror(result, "failed to write delta index header"); for (i = 0; i < delta_zone->list_count; i++) { u8 data[sizeof(u16)]; struct delta_list *delta_list; delta_list = &delta_zone->delta_lists[i + 1]; put_unaligned_le16(delta_list->size, data); result = uds_write_to_buffered_writer(buffered_writer, data, sizeof(data)); if (result != UDS_SUCCESS) return vdo_log_warning_strerror(result, "failed to write delta list size"); } delta_zone->buffered_writer = buffered_writer; return UDS_SUCCESS; } int uds_finish_saving_delta_index(const struct delta_index *delta_index, unsigned int zone_number) { int result; int first_error = UDS_SUCCESS; u32 i; struct delta_zone *delta_zone; struct delta_list *delta_list; delta_zone = &delta_index->delta_zones[zone_number]; for (i = 0; i < delta_zone->list_count; i++) { delta_list = &delta_zone->delta_lists[i + 1]; if (delta_list->size > 0) { result = flush_delta_list(delta_zone, i); if ((result != UDS_SUCCESS) && (first_error == UDS_SUCCESS)) first_error = result; } } delta_zone->buffered_writer = NULL; return first_error; } int uds_write_guard_delta_list(struct buffered_writer *buffered_writer) { int result; u8 buffer[sizeof(struct delta_list_save_info)]; memset(buffer, 0, sizeof(struct delta_list_save_info)); buffer[0] = 'z'; result = uds_write_to_buffered_writer(buffered_writer, buffer, sizeof(buffer)); if (result != UDS_SUCCESS) vdo_log_warning_strerror(result, "failed to write guard delta list"); return UDS_SUCCESS; } size_t uds_compute_delta_index_save_bytes(u32 list_count, size_t memory_size) { /* One zone will use at least as much memory as other zone counts. */ return (sizeof(struct delta_index_header) + list_count * (sizeof(struct delta_list_save_info) + 1) + get_zone_memory_size(1, memory_size)); } static int assert_not_at_end(const struct delta_index_entry *delta_entry) { int result = VDO_ASSERT(!delta_entry->at_end, "operation is invalid because the list entry is at the end of the delta list"); if (result != VDO_SUCCESS) result = UDS_BAD_STATE; return result; } /* * Prepare to search for an entry in the specified delta list. * * This is always the first function to be called when dealing with delta index entries. It is * always followed by calls to uds_next_delta_index_entry() to iterate through a delta list. The * fields of the delta_index_entry argument will be set up for iteration, but will not contain an * entry from the list. */ int uds_start_delta_index_search(const struct delta_index *delta_index, u32 list_number, u32 key, struct delta_index_entry *delta_entry) { int result; unsigned int zone_number; struct delta_zone *delta_zone; struct delta_list *delta_list; result = VDO_ASSERT((list_number < delta_index->list_count), "Delta list number (%u) is out of range (%u)", list_number, delta_index->list_count); if (result != VDO_SUCCESS) return UDS_CORRUPT_DATA; zone_number = list_number / delta_index->lists_per_zone; delta_zone = &delta_index->delta_zones[zone_number]; list_number -= delta_zone->first_list; result = VDO_ASSERT((list_number < delta_zone->list_count), "Delta list number (%u) is out of range (%u) for zone (%u)", list_number, delta_zone->list_count, zone_number); if (result != VDO_SUCCESS) return UDS_CORRUPT_DATA; if (delta_index->mutable) { delta_list = &delta_zone->delta_lists[list_number + 1]; } else { u32 end_offset; /* * Translate the immutable delta list header into a temporary * full delta list header. */ delta_list = &delta_entry->temp_delta_list; delta_list->start = get_immutable_start(delta_zone->memory, list_number); end_offset = get_immutable_start(delta_zone->memory, list_number + 1); delta_list->size = end_offset - delta_list->start; delta_list->save_key = 0; delta_list->save_offset = 0; } if (key > delta_list->save_key) { delta_entry->key = delta_list->save_key; delta_entry->offset = delta_list->save_offset; } else { delta_entry->key = 0; delta_entry->offset = 0; if (key == 0) { /* * This usually means we're about to walk the entire delta list, so get all * of it into the CPU cache. */ uds_prefetch_range(&delta_zone->memory[delta_list->start / BITS_PER_BYTE], delta_list->size / BITS_PER_BYTE, false); } } delta_entry->at_end = false; delta_entry->delta_zone = delta_zone; delta_entry->delta_list = delta_list; delta_entry->entry_bits = 0; delta_entry->is_collision = false; delta_entry->list_number = list_number; delta_entry->list_overflow = false; delta_entry->value_bits = delta_zone->value_bits; return UDS_SUCCESS; } static inline u64 get_delta_entry_offset(const struct delta_index_entry *delta_entry) { return delta_entry->delta_list->start + delta_entry->offset; } /* * Decode a delta index entry delta value. The delta_index_entry basically describes the previous * list entry, and has had its offset field changed to point to the subsequent entry. We decode the * bit stream and update the delta_list_entry to describe the entry. */ static inline void decode_delta(struct delta_index_entry *delta_entry) { int key_bits; u32 delta; const struct delta_zone *delta_zone = delta_entry->delta_zone; const u8 *memory = delta_zone->memory; u64 delta_offset = get_delta_entry_offset(delta_entry) + delta_entry->value_bits; const u8 *addr = memory + delta_offset / BITS_PER_BYTE; int offset = delta_offset % BITS_PER_BYTE; u32 data = get_unaligned_le32(addr) >> offset; addr += sizeof(u32); key_bits = delta_zone->min_bits; delta = data & ((1 << key_bits) - 1); if (delta >= delta_zone->min_keys) { data >>= key_bits; if (data == 0) { key_bits = sizeof(u32) * BITS_PER_BYTE - offset; while ((data = get_unaligned_le32(addr)) == 0) { addr += sizeof(u32); key_bits += sizeof(u32) * BITS_PER_BYTE; } } key_bits += ffs(data); delta += ((key_bits - delta_zone->min_bits - 1) * delta_zone->incr_keys); } delta_entry->delta = delta; delta_entry->key += delta; /* Check for a collision, a delta of zero after the start. */ if (unlikely((delta == 0) && (delta_entry->offset > 0))) { delta_entry->is_collision = true; delta_entry->entry_bits = delta_entry->value_bits + key_bits + COLLISION_BITS; } else { delta_entry->is_collision = false; delta_entry->entry_bits = delta_entry->value_bits + key_bits; } } noinline int uds_next_delta_index_entry(struct delta_index_entry *delta_entry) { int result; const struct delta_list *delta_list; u32 next_offset; u16 size; result = assert_not_at_end(delta_entry); if (result != UDS_SUCCESS) return result; delta_list = delta_entry->delta_list; delta_entry->offset += delta_entry->entry_bits; size = delta_list->size; if (unlikely(delta_entry->offset >= size)) { delta_entry->at_end = true; delta_entry->delta = 0; delta_entry->is_collision = false; result = VDO_ASSERT((delta_entry->offset == size), "next offset past end of delta list"); if (result != VDO_SUCCESS) result = UDS_CORRUPT_DATA; return result; } decode_delta(delta_entry); next_offset = delta_entry->offset + delta_entry->entry_bits; if (next_offset > size) { /* * This is not an assertion because uds_validate_chapter_index_page() wants to * handle this error. */ vdo_log_warning("Decoded past the end of the delta list"); return UDS_CORRUPT_DATA; } return UDS_SUCCESS; } int uds_remember_delta_index_offset(const struct delta_index_entry *delta_entry) { int result; struct delta_list *delta_list = delta_entry->delta_list; result = VDO_ASSERT(!delta_entry->is_collision, "entry is not a collision"); if (result != VDO_SUCCESS) return result; delta_list->save_key = delta_entry->key - delta_entry->delta; delta_list->save_offset = delta_entry->offset; return UDS_SUCCESS; } static void set_delta(struct delta_index_entry *delta_entry, u32 delta) { const struct delta_zone *delta_zone = delta_entry->delta_zone; u32 key_bits = (delta_zone->min_bits + ((delta_zone->incr_keys - delta_zone->min_keys + delta) / delta_zone->incr_keys)); delta_entry->delta = delta; delta_entry->entry_bits = delta_entry->value_bits + key_bits; } static void get_collision_name(const struct delta_index_entry *entry, u8 *name) { u64 offset = get_delta_entry_offset(entry) + entry->entry_bits - COLLISION_BITS; const u8 *addr = entry->delta_zone->memory + offset / BITS_PER_BYTE; int size = COLLISION_BYTES; int shift = offset % BITS_PER_BYTE; while (--size >= 0) *name++ = get_unaligned_le16(addr++) >> shift; } static void set_collision_name(const struct delta_index_entry *entry, const u8 *name) { u64 offset = get_delta_entry_offset(entry) + entry->entry_bits - COLLISION_BITS; u8 *addr = entry->delta_zone->memory + offset / BITS_PER_BYTE; int size = COLLISION_BYTES; int shift = offset % BITS_PER_BYTE; u16 mask = ~((u16) 0xFF << shift); u16 data; while (--size >= 0) { data = (get_unaligned_le16(addr) & mask) | (*name++ << shift); put_unaligned_le16(data, addr++); } } int uds_get_delta_index_entry(const struct delta_index *delta_index, u32 list_number, u32 key, const u8 *name, struct delta_index_entry *delta_entry) { int result; result = uds_start_delta_index_search(delta_index, list_number, key, delta_entry); if (result != UDS_SUCCESS) return result; do { result = uds_next_delta_index_entry(delta_entry); if (result != UDS_SUCCESS) return result; } while (!delta_entry->at_end && (key > delta_entry->key)); result = uds_remember_delta_index_offset(delta_entry); if (result != UDS_SUCCESS) return result; if (!delta_entry->at_end && (key == delta_entry->key)) { struct delta_index_entry collision_entry = *delta_entry; for (;;) { u8 full_name[COLLISION_BYTES]; result = uds_next_delta_index_entry(&collision_entry); if (result != UDS_SUCCESS) return result; if (collision_entry.at_end || !collision_entry.is_collision) break; get_collision_name(&collision_entry, full_name); if (memcmp(full_name, name, COLLISION_BYTES) == 0) { *delta_entry = collision_entry; break; } } } return UDS_SUCCESS; } int uds_get_delta_entry_collision(const struct delta_index_entry *delta_entry, u8 *name) { int result; result = assert_not_at_end(delta_entry); if (result != UDS_SUCCESS) return result; result = VDO_ASSERT(delta_entry->is_collision, "Cannot get full block name from a non-collision delta index entry"); if (result != VDO_SUCCESS) return UDS_BAD_STATE; get_collision_name(delta_entry, name); return UDS_SUCCESS; } u32 uds_get_delta_entry_value(const struct delta_index_entry *delta_entry) { return get_field(delta_entry->delta_zone->memory, get_delta_entry_offset(delta_entry), delta_entry->value_bits); } static int assert_mutable_entry(const struct delta_index_entry *delta_entry) { int result = VDO_ASSERT((delta_entry->delta_list != &delta_entry->temp_delta_list), "delta index is mutable"); if (result != VDO_SUCCESS) result = UDS_BAD_STATE; return result; } int uds_set_delta_entry_value(const struct delta_index_entry *delta_entry, u32 value) { int result; u32 value_mask = (1 << delta_entry->value_bits) - 1; result = assert_mutable_entry(delta_entry); if (result != UDS_SUCCESS) return result; result = assert_not_at_end(delta_entry); if (result != UDS_SUCCESS) return result; result = VDO_ASSERT((value & value_mask) == value, "Value (%u) being set in a delta index is too large (must fit in %u bits)", value, delta_entry->value_bits); if (result != VDO_SUCCESS) return UDS_INVALID_ARGUMENT; set_field(value, delta_entry->delta_zone->memory, get_delta_entry_offset(delta_entry), delta_entry->value_bits); return UDS_SUCCESS; } /* * Extend the memory used by the delta lists by adding growing_size bytes before the list indicated * by growing_index, then rebalancing the lists in the new chunk. */ static int extend_delta_zone(struct delta_zone *delta_zone, u32 growing_index, size_t growing_size) { ktime_t start_time; ktime_t end_time; struct delta_list *delta_lists; u32 i; size_t used_space; /* Calculate the amount of space that is or will be in use. */ start_time = current_time_ns(CLOCK_MONOTONIC); delta_lists = delta_zone->delta_lists; used_space = growing_size; for (i = 0; i <= delta_zone->list_count + 1; i++) used_space += get_delta_list_byte_size(&delta_lists[i]); if (delta_zone->size < used_space) return UDS_OVERFLOW; /* Compute the new offsets of the delta lists. */ compute_new_list_offsets(delta_zone, growing_index, growing_size, used_space); /* * When we rebalance the delta list, we will include the end guard list in the rebalancing. * It contains the end guard data, which must be copied. */ rebalance_delta_zone(delta_zone, 1, delta_zone->list_count + 1); end_time = current_time_ns(CLOCK_MONOTONIC); delta_zone->rebalance_count++; delta_zone->rebalance_time += ktime_sub(end_time, start_time); return UDS_SUCCESS; } static int insert_bits(struct delta_index_entry *delta_entry, u16 size) { u64 free_before; u64 free_after; u64 source; u64 destination; u32 count; bool before_flag; u8 *memory; struct delta_zone *delta_zone = delta_entry->delta_zone; struct delta_list *delta_list = delta_entry->delta_list; /* Compute bits in use before and after the inserted bits. */ u32 total_size = delta_list->size; u32 before_size = delta_entry->offset; u32 after_size = total_size - delta_entry->offset; if (total_size + size > U16_MAX) { delta_entry->list_overflow = true; delta_zone->overflow_count++; return UDS_OVERFLOW; } /* Compute bits available before and after the delta list. */ free_before = (delta_list[0].start - (delta_list[-1].start + delta_list[-1].size)); free_after = (delta_list[1].start - (delta_list[0].start + delta_list[0].size)); if ((size <= free_before) && (size <= free_after)) { /* * We have enough space to use either before or after the list. Select the smaller * amount of data. If it is exactly the same, try to take from the larger amount of * free space. */ if (before_size < after_size) before_flag = true; else if (after_size < before_size) before_flag = false; else before_flag = free_before > free_after; } else if (size <= free_before) { /* There is space before but not after. */ before_flag = true; } else if (size <= free_after) { /* There is space after but not before. */ before_flag = false; } else { /* * Neither of the surrounding spaces is large enough for this request. Extend * and/or rebalance the delta list memory choosing to move the least amount of * data. */ int result; u32 growing_index = delta_entry->list_number + 1; before_flag = before_size < after_size; if (!before_flag) growing_index++; result = extend_delta_zone(delta_zone, growing_index, BITS_TO_BYTES(size)); if (result != UDS_SUCCESS) return result; } delta_list->size += size; if (before_flag) { source = delta_list->start; destination = source - size; delta_list->start -= size; count = before_size; } else { source = delta_list->start + delta_entry->offset; destination = source + size; count = after_size; } memory = delta_zone->memory; move_bits(memory, source, memory, destination, count); return UDS_SUCCESS; } static void encode_delta(const struct delta_index_entry *delta_entry) { u32 temp; u32 t1; u32 t2; u64 offset; const struct delta_zone *delta_zone = delta_entry->delta_zone; u8 *memory = delta_zone->memory; offset = get_delta_entry_offset(delta_entry) + delta_entry->value_bits; if (delta_entry->delta < delta_zone->min_keys) { set_field(delta_entry->delta, memory, offset, delta_zone->min_bits); return; } temp = delta_entry->delta - delta_zone->min_keys; t1 = (temp % delta_zone->incr_keys) + delta_zone->min_keys; t2 = temp / delta_zone->incr_keys; set_field(t1, memory, offset, delta_zone->min_bits); set_zero(memory, offset + delta_zone->min_bits, t2); set_field(1, memory, offset + delta_zone->min_bits + t2, 1); } static void encode_entry(const struct delta_index_entry *delta_entry, u32 value, const u8 *name) { u8 *memory = delta_entry->delta_zone->memory; u64 offset = get_delta_entry_offset(delta_entry); set_field(value, memory, offset, delta_entry->value_bits); encode_delta(delta_entry); if (name != NULL) set_collision_name(delta_entry, name); } /* * Create a new entry in the delta index. If the entry is a collision, the full 256 bit name must * be provided. */ int uds_put_delta_index_entry(struct delta_index_entry *delta_entry, u32 key, u32 value, const u8 *name) { int result; struct delta_zone *delta_zone; result = assert_mutable_entry(delta_entry); if (result != UDS_SUCCESS) return result; if (delta_entry->is_collision) { /* * The caller wants us to insert a collision entry onto a collision entry. This * happens when we find a collision and attempt to add the name again to the index. * This is normally a fatal error unless we are replaying a closed chapter while we * are rebuilding a volume index. */ return UDS_DUPLICATE_NAME; } if (delta_entry->offset < delta_entry->delta_list->save_offset) { /* * The saved entry offset is after the new entry and will no longer be valid, so * replace it with the insertion point. */ result = uds_remember_delta_index_offset(delta_entry); if (result != UDS_SUCCESS) return result; } if (name != NULL) { /* Insert a collision entry which is placed after this entry. */ result = assert_not_at_end(delta_entry); if (result != UDS_SUCCESS) return result; result = VDO_ASSERT((key == delta_entry->key), "incorrect key for collision entry"); if (result != VDO_SUCCESS) return result; delta_entry->offset += delta_entry->entry_bits; set_delta(delta_entry, 0); delta_entry->is_collision = true; delta_entry->entry_bits += COLLISION_BITS; result = insert_bits(delta_entry, delta_entry->entry_bits); } else if (delta_entry->at_end) { /* Insert a new entry at the end of the delta list. */ result = VDO_ASSERT((key >= delta_entry->key), "key past end of list"); if (result != VDO_SUCCESS) return result; set_delta(delta_entry, key - delta_entry->key); delta_entry->key = key; delta_entry->at_end = false; result = insert_bits(delta_entry, delta_entry->entry_bits); } else { u16 old_entry_size; u16 additional_size; struct delta_index_entry next_entry; u32 next_value; /* * Insert a new entry which requires the delta in the following entry to be * updated. */ result = VDO_ASSERT((key < delta_entry->key), "key precedes following entry"); if (result != VDO_SUCCESS) return result; result = VDO_ASSERT((key >= delta_entry->key - delta_entry->delta), "key effects following entry's delta"); if (result != VDO_SUCCESS) return result; old_entry_size = delta_entry->entry_bits; next_entry = *delta_entry; next_value = uds_get_delta_entry_value(&next_entry); set_delta(delta_entry, key - (delta_entry->key - delta_entry->delta)); delta_entry->key = key; set_delta(&next_entry, next_entry.key - key); next_entry.offset += delta_entry->entry_bits; /* The two new entries are always bigger than the single entry being replaced. */ additional_size = (delta_entry->entry_bits + next_entry.entry_bits - old_entry_size); result = insert_bits(delta_entry, additional_size); if (result != UDS_SUCCESS) return result; encode_entry(&next_entry, next_value, NULL); } if (result != UDS_SUCCESS) return result; encode_entry(delta_entry, value, name); delta_zone = delta_entry->delta_zone; delta_zone->record_count++; delta_zone->collision_count += delta_entry->is_collision ? 1 : 0; return UDS_SUCCESS; } static void delete_bits(const struct delta_index_entry *delta_entry, int size) { u64 source; u64 destination; u32 count; bool before_flag; struct delta_list *delta_list = delta_entry->delta_list; u8 *memory = delta_entry->delta_zone->memory; /* Compute bits retained before and after the deleted bits. */ u32 total_size = delta_list->size; u32 before_size = delta_entry->offset; u32 after_size = total_size - delta_entry->offset - size; /* * Determine whether to add to the available space either before or after the delta list. * We prefer to move the least amount of data. If it is exactly the same, try to add to the * smaller amount of free space. */ if (before_size < after_size) { before_flag = true; } else if (after_size < before_size) { before_flag = false; } else { u64 free_before = (delta_list[0].start - (delta_list[-1].start + delta_list[-1].size)); u64 free_after = (delta_list[1].start - (delta_list[0].start + delta_list[0].size)); before_flag = (free_before < free_after); } delta_list->size -= size; if (before_flag) { source = delta_list->start; destination = source + size; delta_list->start += size; count = before_size; } else { destination = delta_list->start + delta_entry->offset; source = destination + size; count = after_size; } move_bits(memory, source, memory, destination, count); } int uds_remove_delta_index_entry(struct delta_index_entry *delta_entry) { int result; struct delta_index_entry next_entry; struct delta_zone *delta_zone; struct delta_list *delta_list; result = assert_mutable_entry(delta_entry); if (result != UDS_SUCCESS) return result; next_entry = *delta_entry; result = uds_next_delta_index_entry(&next_entry); if (result != UDS_SUCCESS) return result; delta_zone = delta_entry->delta_zone; if (delta_entry->is_collision) { /* This is a collision entry, so just remove it. */ delete_bits(delta_entry, delta_entry->entry_bits); next_entry.offset = delta_entry->offset; delta_zone->collision_count -= 1; } else if (next_entry.at_end) { /* This entry is at the end of the list, so just remove it. */ delete_bits(delta_entry, delta_entry->entry_bits); next_entry.key -= delta_entry->delta; next_entry.offset = delta_entry->offset; } else { /* The delta in the next entry needs to be updated. */ u32 next_value = uds_get_delta_entry_value(&next_entry); u16 old_size = delta_entry->entry_bits + next_entry.entry_bits; if (next_entry.is_collision) { next_entry.is_collision = false; delta_zone->collision_count -= 1; } set_delta(&next_entry, delta_entry->delta + next_entry.delta); next_entry.offset = delta_entry->offset; /* The one new entry is always smaller than the two entries being replaced. */ delete_bits(delta_entry, old_size - next_entry.entry_bits); encode_entry(&next_entry, next_value, NULL); } delta_zone->record_count--; delta_zone->discard_count++; *delta_entry = next_entry; delta_list = delta_entry->delta_list; if (delta_entry->offset < delta_list->save_offset) { /* The saved entry offset is no longer valid. */ delta_list->save_key = 0; delta_list->save_offset = 0; } return UDS_SUCCESS; } void uds_get_delta_index_stats(const struct delta_index *delta_index, struct delta_index_stats *stats) { unsigned int z; const struct delta_zone *delta_zone; memset(stats, 0, sizeof(struct delta_index_stats)); for (z = 0; z < delta_index->zone_count; z++) { delta_zone = &delta_index->delta_zones[z]; stats->rebalance_time += delta_zone->rebalance_time; stats->rebalance_count += delta_zone->rebalance_count; stats->record_count += delta_zone->record_count; stats->collision_count += delta_zone->collision_count; stats->discard_count += delta_zone->discard_count; stats->overflow_count += delta_zone->overflow_count; stats->list_count += delta_zone->list_count; } } size_t uds_compute_delta_index_size(u32 entry_count, u32 mean_delta, u32 payload_bits) { u16 min_bits; u32 incr_keys; u32 min_keys; compute_coding_constants(mean_delta, &min_bits, &min_keys, &incr_keys); /* On average, each delta is encoded into about min_bits + 1.5 bits. */ return entry_count * (payload_bits + min_bits + 1) + entry_count / 2; } u32 uds_get_delta_index_page_count(u32 entry_count, u32 list_count, u32 mean_delta, u32 payload_bits, size_t bytes_per_page) { unsigned int bits_per_delta_list; unsigned int bits_per_page; size_t bits_per_index; /* Compute the expected number of bits needed for all the entries. */ bits_per_index = uds_compute_delta_index_size(entry_count, mean_delta, payload_bits); bits_per_delta_list = bits_per_index / list_count; /* Add in the immutable delta list headers. */ bits_per_index += list_count * IMMUTABLE_HEADER_SIZE; /* Compute the number of usable bits on an immutable index page. */ bits_per_page = ((bytes_per_page - sizeof(struct delta_page_header)) * BITS_PER_BYTE); /* * Reduce the bits per page by one immutable delta list header and one delta list to * account for internal fragmentation. */ bits_per_page -= IMMUTABLE_HEADER_SIZE + bits_per_delta_list; /* Now compute the number of pages needed. */ return DIV_ROUND_UP(bits_per_index, bits_per_page); } void uds_log_delta_index_entry(struct delta_index_entry *delta_entry) { vdo_log_ratelimit(vdo_log_info, "List 0x%X Key 0x%X Offset 0x%X%s%s List_size 0x%X%s", delta_entry->list_number, delta_entry->key, delta_entry->offset, delta_entry->at_end ? " end" : "", delta_entry->is_collision ? " collision" : "", delta_entry->delta_list->size, delta_entry->list_overflow ? " overflow" : ""); delta_entry->list_overflow = false; } |