Linux Audio

Check our new training course

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2021-2022, NVIDIA CORPORATION & AFFILIATES.
 *
 * The iopt_pages is the center of the storage and motion of PFNs. Each
 * iopt_pages represents a logical linear array of full PFNs. The array is 0
 * based and has npages in it. Accessors use 'index' to refer to the entry in
 * this logical array, regardless of its storage location.
 *
 * PFNs are stored in a tiered scheme:
 *  1) iopt_pages::pinned_pfns xarray
 *  2) An iommu_domain
 *  3) The origin of the PFNs, i.e. the userspace pointer
 *
 * PFN have to be copied between all combinations of tiers, depending on the
 * configuration.
 *
 * When a PFN is taken out of the userspace pointer it is pinned exactly once.
 * The storage locations of the PFN's index are tracked in the two interval
 * trees. If no interval includes the index then it is not pinned.
 *
 * If access_itree includes the PFN's index then an in-kernel access has
 * requested the page. The PFN is stored in the xarray so other requestors can
 * continue to find it.
 *
 * If the domains_itree includes the PFN's index then an iommu_domain is storing
 * the PFN and it can be read back using iommu_iova_to_phys(). To avoid
 * duplicating storage the xarray is not used if only iommu_domains are using
 * the PFN's index.
 *
 * As a general principle this is designed so that destroy never fails. This
 * means removing an iommu_domain or releasing a in-kernel access will not fail
 * due to insufficient memory. In practice this means some cases have to hold
 * PFNs in the xarray even though they are also being stored in an iommu_domain.
 *
 * While the iopt_pages can use an iommu_domain as storage, it does not have an
 * IOVA itself. Instead the iopt_area represents a range of IOVA and uses the
 * iopt_pages as the PFN provider. Multiple iopt_areas can share the iopt_pages
 * and reference their own slice of the PFN array, with sub page granularity.
 *
 * In this file the term 'last' indicates an inclusive and closed interval, eg
 * [0,0] refers to a single PFN. 'end' means an open range, eg [0,0) refers to
 * no PFNs.
 *
 * Be cautious of overflow. An IOVA can go all the way up to U64_MAX, so
 * last_iova + 1 can overflow. An iopt_pages index will always be much less than
 * ULONG_MAX so last_index + 1 cannot overflow.
 */
#include <linux/overflow.h>
#include <linux/slab.h>
#include <linux/iommu.h>
#include <linux/sched/mm.h>
#include <linux/highmem.h>
#include <linux/kthread.h>
#include <linux/iommufd.h>

#include "io_pagetable.h"
#include "double_span.h"

#ifndef CONFIG_IOMMUFD_TEST
#define TEMP_MEMORY_LIMIT 65536
#else
#define TEMP_MEMORY_LIMIT iommufd_test_memory_limit
#endif
#define BATCH_BACKUP_SIZE 32

/*
 * More memory makes pin_user_pages() and the batching more efficient, but as
 * this is only a performance optimization don't try too hard to get it. A 64k
 * allocation can hold about 26M of 4k pages and 13G of 2M pages in an
 * pfn_batch. Various destroy paths cannot fail and provide a small amount of
 * stack memory as a backup contingency. If backup_len is given this cannot
 * fail.
 */
static void *temp_kmalloc(size_t *size, void *backup, size_t backup_len)
{
	void *res;

	if (WARN_ON(*size == 0))
		return NULL;

	if (*size < backup_len)
		return backup;

	if (!backup && iommufd_should_fail())
		return NULL;

	*size = min_t(size_t, *size, TEMP_MEMORY_LIMIT);
	res = kmalloc(*size, GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY);
	if (res)
		return res;
	*size = PAGE_SIZE;
	if (backup_len) {
		res = kmalloc(*size, GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY);
		if (res)
			return res;
		*size = backup_len;
		return backup;
	}
	return kmalloc(*size, GFP_KERNEL);
}

void interval_tree_double_span_iter_update(
	struct interval_tree_double_span_iter *iter)
{
	unsigned long last_hole = ULONG_MAX;
	unsigned int i;

	for (i = 0; i != ARRAY_SIZE(iter->spans); i++) {
		if (interval_tree_span_iter_done(&iter->spans[i])) {
			iter->is_used = -1;
			return;
		}

		if (iter->spans[i].is_hole) {
			last_hole = min(last_hole, iter->spans[i].last_hole);
			continue;
		}

		iter->is_used = i + 1;
		iter->start_used = iter->spans[i].start_used;
		iter->last_used = min(iter->spans[i].last_used, last_hole);
		return;
	}

	iter->is_used = 0;
	iter->start_hole = iter->spans[0].start_hole;
	iter->last_hole =
		min(iter->spans[0].last_hole, iter->spans[1].last_hole);
}

void interval_tree_double_span_iter_first(
	struct interval_tree_double_span_iter *iter,
	struct rb_root_cached *itree1, struct rb_root_cached *itree2,
	unsigned long first_index, unsigned long last_index)
{
	unsigned int i;

	iter->itrees[0] = itree1;
	iter->itrees[1] = itree2;
	for (i = 0; i != ARRAY_SIZE(iter->spans); i++)
		interval_tree_span_iter_first(&iter->spans[i], iter->itrees[i],
					      first_index, last_index);
	interval_tree_double_span_iter_update(iter);
}

void interval_tree_double_span_iter_next(
	struct interval_tree_double_span_iter *iter)
{
	unsigned int i;

	if (iter->is_used == -1 ||
	    iter->last_hole == iter->spans[0].last_index) {
		iter->is_used = -1;
		return;
	}

	for (i = 0; i != ARRAY_SIZE(iter->spans); i++)
		interval_tree_span_iter_advance(
			&iter->spans[i], iter->itrees[i], iter->last_hole + 1);
	interval_tree_double_span_iter_update(iter);
}

static void iopt_pages_add_npinned(struct iopt_pages *pages, size_t npages)
{
	int rc;

	rc = check_add_overflow(pages->npinned, npages, &pages->npinned);
	if (IS_ENABLED(CONFIG_IOMMUFD_TEST))
		WARN_ON(rc || pages->npinned > pages->npages);
}

static void iopt_pages_sub_npinned(struct iopt_pages *pages, size_t npages)
{
	int rc;

	rc = check_sub_overflow(pages->npinned, npages, &pages->npinned);
	if (IS_ENABLED(CONFIG_IOMMUFD_TEST))
		WARN_ON(rc || pages->npinned > pages->npages);
}

static void iopt_pages_err_unpin(struct iopt_pages *pages,
				 unsigned long start_index,
				 unsigned long last_index,
				 struct page **page_list)
{
	unsigned long npages = last_index - start_index + 1;

	unpin_user_pages(page_list, npages);
	iopt_pages_sub_npinned(pages, npages);
}

/*
 * index is the number of PAGE_SIZE units from the start of the area's
 * iopt_pages. If the iova is sub page-size then the area has an iova that
 * covers a portion of the first and last pages in the range.
 */
static unsigned long iopt_area_index_to_iova(struct iopt_area *area,
					     unsigned long index)
{
	if (IS_ENABLED(CONFIG_IOMMUFD_TEST))
		WARN_ON(index < iopt_area_index(area) ||
			index > iopt_area_last_index(area));
	index -= iopt_area_index(area);
	if (index == 0)
		return iopt_area_iova(area);
	return iopt_area_iova(area) - area->page_offset + index * PAGE_SIZE;
}

static unsigned long iopt_area_index_to_iova_last(struct iopt_area *area,
						  unsigned long index)
{
	if (IS_ENABLED(CONFIG_IOMMUFD_TEST))
		WARN_ON(index < iopt_area_index(area) ||
			index > iopt_area_last_index(area));
	if (index == iopt_area_last_index(area))
		return iopt_area_last_iova(area);
	return iopt_area_iova(area) - area->page_offset +
	       (index - iopt_area_index(area) + 1) * PAGE_SIZE - 1;
}

static void iommu_unmap_nofail(struct iommu_domain *domain, unsigned long iova,
			       size_t size)
{
	size_t ret;

	ret = iommu_unmap(domain, iova, size);
	/*
	 * It is a logic error in this code or a driver bug if the IOMMU unmaps
	 * something other than exactly as requested. This implies that the
	 * iommu driver may not fail unmap for reasons beyond bad agruments.
	 * Particularly, the iommu driver may not do a memory allocation on the
	 * unmap path.
	 */
	WARN_ON(ret != size);
}

static void iopt_area_unmap_domain_range(struct iopt_area *area,
					 struct iommu_domain *domain,
					 unsigned long start_index,
					 unsigned long last_index)
{
	unsigned long start_iova = iopt_area_index_to_iova(area, start_index);

	iommu_unmap_nofail(domain, start_iova,
			   iopt_area_index_to_iova_last(area, last_index) -
				   start_iova + 1);
}

static struct iopt_area *iopt_pages_find_domain_area(struct iopt_pages *pages,
						     unsigned long index)
{
	struct interval_tree_node *node;

	node = interval_tree_iter_first(&pages->domains_itree, index, index);
	if (!node)
		return NULL;
	return container_of(node, struct iopt_area, pages_node);
}

/*
 * A simple datastructure to hold a vector of PFNs, optimized for contiguous
 * PFNs. This is used as a temporary holding memory for shuttling pfns from one
 * place to another. Generally everything is made more efficient if operations
 * work on the largest possible grouping of pfns. eg fewer lock/unlock cycles,
 * better cache locality, etc
 */
struct pfn_batch {
	unsigned long *pfns;
	u32 *npfns;
	unsigned int array_size;
	unsigned int end;
	unsigned int total_pfns;
};

static void batch_clear(struct pfn_batch *batch)
{
	batch->total_pfns = 0;
	batch->end = 0;
	batch->pfns[0] = 0;
	batch->npfns[0] = 0;
}

/*
 * Carry means we carry a portion of the final hugepage over to the front of the
 * batch
 */
static void batch_clear_carry(struct pfn_batch *batch, unsigned int keep_pfns)
{
	if (!keep_pfns)
		return batch_clear(batch);

	if (IS_ENABLED(CONFIG_IOMMUFD_TEST))
		WARN_ON(!batch->end ||
			batch->npfns[batch->end - 1] < keep_pfns);

	batch->total_pfns = keep_pfns;
	batch->pfns[0] = batch->pfns[batch->end - 1] +
			 (batch->npfns[batch->end - 1] - keep_pfns);
	batch->npfns[0] = keep_pfns;
	batch->end = 1;
}

static void batch_skip_carry(struct pfn_batch *batch, unsigned int skip_pfns)
{
	if (!batch->total_pfns)
		return;
	if (IS_ENABLED(CONFIG_IOMMUFD_TEST))
		WARN_ON(batch->total_pfns != batch->npfns[0]);
	skip_pfns = min(batch->total_pfns, skip_pfns);
	batch->pfns[0] += skip_pfns;
	batch->npfns[0] -= skip_pfns;
	batch->total_pfns -= skip_pfns;
}

static int __batch_init(struct pfn_batch *batch, size_t max_pages, void *backup,
			size_t backup_len)
{
	const size_t elmsz = sizeof(*batch->pfns) + sizeof(*batch->npfns);
	size_t size = max_pages * elmsz;

	batch->pfns = temp_kmalloc(&size, backup, backup_len);
	if (!batch->pfns)
		return -ENOMEM;
	if (IS_ENABLED(CONFIG_IOMMUFD_TEST) && WARN_ON(size < elmsz))
		return -EINVAL;
	batch->array_size = size / elmsz;
	batch->npfns = (u32 *)(batch->pfns + batch->array_size);
	batch_clear(batch);
	return 0;
}

static int batch_init(struct pfn_batch *batch, size_t max_pages)
{
	return __batch_init(batch, max_pages, NULL, 0);
}

static void batch_init_backup(struct pfn_batch *batch, size_t max_pages,
			      void *backup, size_t backup_len)
{
	__batch_init(batch, max_pages, backup, backup_len);
}

static void batch_destroy(struct pfn_batch *batch, void *backup)
{
	if (batch->pfns != backup)
		kfree(batch->pfns);
}

/* true if the pfn was added, false otherwise */
static bool batch_add_pfn(struct pfn_batch *batch, unsigned long pfn)
{
	const unsigned int MAX_NPFNS = type_max(typeof(*batch->npfns));

	if (batch->end &&
	    pfn == batch->pfns[batch->end - 1] + batch->npfns[batch->end - 1] &&
	    batch->npfns[batch->end - 1] != MAX_NPFNS) {
		batch->npfns[batch->end - 1]++;
		batch->total_pfns++;
		return true;
	}
	if (batch->end == batch->array_size)
		return false;
	batch->total_pfns++;
	batch->pfns[batch->end] = pfn;
	batch->npfns[batch->end] = 1;
	batch->end++;
	return true;
}

/*
 * Fill the batch with pfns from the domain. When the batch is full, or it
 * reaches last_index, the function will return. The caller should use
 * batch->total_pfns to determine the starting point for the next iteration.
 */
static void batch_from_domain(struct pfn_batch *batch,
			      struct iommu_domain *domain,
			      struct iopt_area *area, unsigned long start_index,
			      unsigned long last_index)
{
	unsigned int page_offset = 0;
	unsigned long iova;
	phys_addr_t phys;

	iova = iopt_area_index_to_iova(area, start_index);
	if (start_index == iopt_area_index(area))
		page_offset = area->page_offset;
	while (start_index <= last_index) {
		/*
		 * This is pretty slow, it would be nice to get the page size
		 * back from the driver, or have the driver directly fill the
		 * batch.
		 */
		phys = iommu_iova_to_phys(domain, iova) - page_offset;
		if (!batch_add_pfn(batch, PHYS_PFN(phys)))
			return;
		iova += PAGE_SIZE - page_offset;
		page_offset = 0;
		start_index++;
	}
}

static struct page **raw_pages_from_domain(struct iommu_domain *domain,
					   struct iopt_area *area,
					   unsigned long start_index,
					   unsigned long last_index,
					   struct page **out_pages)
{
	unsigned int page_offset = 0;
	unsigned long iova;
	phys_addr_t phys;

	iova = iopt_area_index_to_iova(area, start_index);
	if (start_index == iopt_area_index(area))
		page_offset = area->page_offset;
	while (start_index <= last_index) {
		phys = iommu_iova_to_phys(domain, iova) - page_offset;
		*(out_pages++) = pfn_to_page(PHYS_PFN(phys));
		iova += PAGE_SIZE - page_offset;
		page_offset = 0;
		start_index++;
	}
	return out_pages;
}

/* Continues reading a domain until we reach a discontinuity in the pfns. */
static void batch_from_domain_continue(struct pfn_batch *batch,
				       struct iommu_domain *domain,
				       struct iopt_area *area,
				       unsigned long start_index,
				       unsigned long last_index)
{
	unsigned int array_size = batch->array_size;

	batch->array_size = batch->end;
	batch_from_domain(batch, domain, area, start_index, last_index);
	batch->array_size = array_size;
}

/*
 * This is part of the VFIO compatibility support for VFIO_TYPE1_IOMMU. That
 * mode permits splitting a mapped area up, and then one of the splits is
 * unmapped. Doing this normally would cause us to violate our invariant of
 * pairing map/unmap. Thus, to support old VFIO compatibility disable support
 * for batching consecutive PFNs. All PFNs mapped into the iommu are done in
 * PAGE_SIZE units, not larger or smaller.
 */
static int batch_iommu_map_small(struct iommu_domain *domain,
				 unsigned long iova, phys_addr_t paddr,
				 size_t size, int prot)
{
	unsigned long start_iova = iova;
	int rc;

	if (IS_ENABLED(CONFIG_IOMMUFD_TEST))
		WARN_ON(paddr % PAGE_SIZE || iova % PAGE_SIZE ||
			size % PAGE_SIZE);

	while (size) {
		rc = iommu_map(domain, iova, paddr, PAGE_SIZE, prot,
			       GFP_KERNEL_ACCOUNT);
		if (rc)
			goto err_unmap;
		iova += PAGE_SIZE;
		paddr += PAGE_SIZE;
		size -= PAGE_SIZE;
	}
	return 0;

err_unmap:
	if (start_iova != iova)
		iommu_unmap_nofail(domain, start_iova, iova - start_iova);
	return rc;
}

static int batch_to_domain(struct pfn_batch *batch, struct iommu_domain *domain,
			   struct iopt_area *area, unsigned long start_index)
{
	bool disable_large_pages = area->iopt->disable_large_pages;
	unsigned long last_iova = iopt_area_last_iova(area);
	unsigned int page_offset = 0;
	unsigned long start_iova;
	unsigned long next_iova;
	unsigned int cur = 0;
	unsigned long iova;
	int rc;

	/* The first index might be a partial page */
	if (start_index == iopt_area_index(area))
		page_offset = area->page_offset;
	next_iova = iova = start_iova =
		iopt_area_index_to_iova(area, start_index);
	while (cur < batch->end) {
		next_iova = min(last_iova + 1,
				next_iova + batch->npfns[cur] * PAGE_SIZE -
					page_offset);
		if (disable_large_pages)
			rc = batch_iommu_map_small(
				domain, iova,
				PFN_PHYS(batch->pfns[cur]) + page_offset,
				next_iova - iova, area->iommu_prot);
		else
			rc = iommu_map(domain, iova,
				       PFN_PHYS(batch->pfns[cur]) + page_offset,
				       next_iova - iova, area->iommu_prot,
				       GFP_KERNEL_ACCOUNT);
		if (rc)
			goto err_unmap;
		iova = next_iova;
		page_offset = 0;
		cur++;
	}
	return 0;
err_unmap:
	if (start_iova != iova)
		iommu_unmap_nofail(domain, start_iova, iova - start_iova);
	return rc;
}

static void batch_from_xarray(struct pfn_batch *batch, struct xarray *xa,
			      unsigned long start_index,
			      unsigned long last_index)
{
	XA_STATE(xas, xa, start_index);
	void *entry;

	rcu_read_lock();
	while (true) {
		entry = xas_next(&xas);
		if (xas_retry(&xas, entry))
			continue;
		WARN_ON(!xa_is_value(entry));
		if (!batch_add_pfn(batch, xa_to_value(entry)) ||
		    start_index == last_index)
			break;
		start_index++;
	}
	rcu_read_unlock();
}

static void batch_from_xarray_clear(struct pfn_batch *batch, struct xarray *xa,
				    unsigned long start_index,
				    unsigned long last_index)
{
	XA_STATE(xas, xa, start_index);
	void *entry;

	xas_lock(&xas);
	while (true) {
		entry = xas_next(&xas);
		if (xas_retry(&xas, entry))
			continue;
		WARN_ON(!xa_is_value(entry));
		if (!batch_add_pfn(batch, xa_to_value(entry)))
			break;
		xas_store(&xas, NULL);
		if (start_index == last_index)
			break;
		start_index++;
	}
	xas_unlock(&xas);
}

static void clear_xarray(struct xarray *xa, unsigned long start_index,
			 unsigned long last_index)
{
	XA_STATE(xas, xa, start_index);
	void *entry;

	xas_lock(&xas);
	xas_for_each(&xas, entry, last_index)
		xas_store(&xas, NULL);
	xas_unlock(&xas);
}

static int pages_to_xarray(struct xarray *xa, unsigned long start_index,
			   unsigned long last_index, struct page **pages)
{
	struct page **end_pages = pages + (last_index - start_index) + 1;
	struct page **half_pages = pages + (end_pages - pages) / 2;
	XA_STATE(xas, xa, start_index);

	do {
		void *old;

		xas_lock(&xas);
		while (pages != end_pages) {
			/* xarray does not participate in fault injection */
			if (pages == half_pages && iommufd_should_fail()) {
				xas_set_err(&xas, -EINVAL);
				xas_unlock(&xas);
				/* aka xas_destroy() */
				xas_nomem(&xas, GFP_KERNEL);
				goto err_clear;
			}

			old = xas_store(&xas, xa_mk_value(page_to_pfn(*pages)));
			if (xas_error(&xas))
				break;
			WARN_ON(old);
			pages++;
			xas_next(&xas);
		}
		xas_unlock(&xas);
	} while (xas_nomem(&xas, GFP_KERNEL));

err_clear:
	if (xas_error(&xas)) {
		if (xas.xa_index != start_index)
			clear_xarray(xa, start_index, xas.xa_index - 1);
		return xas_error(&xas);
	}
	return 0;
}

static void batch_from_pages(struct pfn_batch *batch, struct page **pages,
			     size_t npages)
{
	struct page **end = pages + npages;

	for (; pages != end; pages++)
		if (!batch_add_pfn(batch, page_to_pfn(*pages)))
			break;
}

static void batch_unpin(struct pfn_batch *batch, struct iopt_pages *pages,
			unsigned int first_page_off, size_t npages)
{
	unsigned int cur = 0;

	while (first_page_off) {
		if (batch->npfns[cur] > first_page_off)
			break;
		first_page_off -= batch->npfns[cur];
		cur++;
	}

	while (npages) {
		size_t to_unpin = min_t(size_t, npages,
					batch->npfns[cur] - first_page_off);

		unpin_user_page_range_dirty_lock(
			pfn_to_page(batch->pfns[cur] + first_page_off),
			to_unpin, pages->writable);
		iopt_pages_sub_npinned(pages, to_unpin);
		cur++;
		first_page_off = 0;
		npages -= to_unpin;
	}
}

static void copy_data_page(struct page *page, void *data, unsigned long offset,
			   size_t length, unsigned int flags)
{
	void *mem;

	mem = kmap_local_page(page);
	if (flags & IOMMUFD_ACCESS_RW_WRITE) {
		memcpy(mem + offset, data, length);
		set_page_dirty_lock(page);
	} else {
		memcpy(data, mem + offset, length);
	}
	kunmap_local(mem);
}

static unsigned long batch_rw(struct pfn_batch *batch, void *data,
			      unsigned long offset, unsigned long length,
			      unsigned int flags)
{
	unsigned long copied = 0;
	unsigned int npage = 0;
	unsigned int cur = 0;

	while (cur < batch->end) {
		unsigned long bytes = min(length, PAGE_SIZE - offset);

		copy_data_page(pfn_to_page(batch->pfns[cur] + npage), data,
			       offset, bytes, flags);
		offset = 0;
		length -= bytes;
		data += bytes;
		copied += bytes;
		npage++;
		if (npage == batch->npfns[cur]) {
			npage = 0;
			cur++;
		}
		if (!length)
			break;
	}
	return copied;
}

/* pfn_reader_user is just the pin_user_pages() path */
struct pfn_reader_user {
	struct page **upages;
	size_t upages_len;
	unsigned long upages_start;
	unsigned long upages_end;
	unsigned int gup_flags;
	/*
	 * 1 means mmget() and mmap_read_lock(), 0 means only mmget(), -1 is
	 * neither
	 */
	int locked;
};

static void pfn_reader_user_init(struct pfn_reader_user *user,
				 struct iopt_pages *pages)
{
	user->upages = NULL;
	user->upages_start = 0;
	user->upages_end = 0;
	user->locked = -1;

	user->gup_flags = FOLL_LONGTERM;
	if (pages->writable)
		user->gup_flags |= FOLL_WRITE;
}

static void pfn_reader_user_destroy(struct pfn_reader_user *user,
				    struct iopt_pages *pages)
{
	if (user->locked != -1) {
		if (user->locked)
			mmap_read_unlock(pages->source_mm);
		if (pages->source_mm != current->mm)
			mmput(pages->source_mm);
		user->locked = -1;
	}

	kfree(user->upages);
	user->upages = NULL;
}

static int pfn_reader_user_pin(struct pfn_reader_user *user,
			       struct iopt_pages *pages,
			       unsigned long start_index,
			       unsigned long last_index)
{
	bool remote_mm = pages->source_mm != current->mm;
	unsigned long npages;
	uintptr_t uptr;
	long rc;

	if (IS_ENABLED(CONFIG_IOMMUFD_TEST) &&
	    WARN_ON(last_index < start_index))
		return -EINVAL;

	if (!user->upages) {
		/* All undone in pfn_reader_destroy() */
		user->upages_len =
			(last_index - start_index + 1) * sizeof(*user->upages);
		user->upages = temp_kmalloc(&user->upages_len, NULL, 0);
		if (!user->upages)
			return -ENOMEM;
	}

	if (user->locked == -1) {
		/*
		 * The majority of usages will run the map task within the mm
		 * providing the pages, so we can optimize into
		 * get_user_pages_fast()
		 */
		if (remote_mm) {
			if (!mmget_not_zero(pages->source_mm))
				return -EFAULT;
		}
		user->locked = 0;
	}

	npages = min_t(unsigned long, last_index - start_index + 1,
		       user->upages_len / sizeof(*user->upages));


	if (iommufd_should_fail())
		return -EFAULT;

	uptr = (uintptr_t)(pages->uptr + start_index * PAGE_SIZE);
	if (!remote_mm)
		rc = pin_user_pages_fast(uptr, npages, user->gup_flags,
					 user->upages);
	else {
		if (!user->locked) {
			mmap_read_lock(pages->source_mm);
			user->locked = 1;
		}
		rc = pin_user_pages_remote(pages->source_mm, uptr, npages,
					   user->gup_flags, user->upages,
					   &user->locked);
	}
	if (rc <= 0) {
		if (WARN_ON(!rc))
			return -EFAULT;
		return rc;
	}
	iopt_pages_add_npinned(pages, rc);
	user->upages_start = start_index;
	user->upages_end = start_index + rc;
	return 0;
}

/* This is the "modern" and faster accounting method used by io_uring */
static int incr_user_locked_vm(struct iopt_pages *pages, unsigned long npages)
{
	unsigned long lock_limit;
	unsigned long cur_pages;
	unsigned long new_pages;

	lock_limit = task_rlimit(pages->source_task, RLIMIT_MEMLOCK) >>
		     PAGE_SHIFT;
	do {
		cur_pages = atomic_long_read(&pages->source_user->locked_vm);
		new_pages = cur_pages + npages;
		if (new_pages > lock_limit)
			return -ENOMEM;
	} while (atomic_long_cmpxchg(&pages->source_user->locked_vm, cur_pages,
				     new_pages) != cur_pages);
	return 0;
}

static void decr_user_locked_vm(struct iopt_pages *pages, unsigned long npages)
{
	if (WARN_ON(atomic_long_read(&pages->source_user->locked_vm) < npages))
		return;
	atomic_long_sub(npages, &pages->source_user->locked_vm);
}

/* This is the accounting method used for compatibility with VFIO */
static int update_mm_locked_vm(struct iopt_pages *pages, unsigned long npages,
			       bool inc, struct pfn_reader_user *user)
{
	bool do_put = false;
	int rc;

	if (user && user->locked) {
		mmap_read_unlock(pages->source_mm);
		user->locked = 0;
		/* If we had the lock then we also have a get */
	} else if ((!user || !user->upages) &&
		   pages->source_mm != current->mm) {
		if (!mmget_not_zero(pages->source_mm))
			return -EINVAL;
		do_put = true;
	}

	mmap_write_lock(pages->source_mm);
	rc = __account_locked_vm(pages->source_mm, npages, inc,
				 pages->source_task, false);
	mmap_write_unlock(pages->source_mm);

	if (do_put)
		mmput(pages->source_mm);
	return rc;
}

static int do_update_pinned(struct iopt_pages *pages, unsigned long npages,
			    bool inc, struct pfn_reader_user *user)
{
	int rc = 0;

	switch (pages->account_mode) {
	case IOPT_PAGES_ACCOUNT_NONE:
		break;
	case IOPT_PAGES_ACCOUNT_USER:
		if (inc)
			rc = incr_user_locked_vm(pages, npages);
		else
			decr_user_locked_vm(pages, npages);
		break;
	case IOPT_PAGES_ACCOUNT_MM:
		rc = update_mm_locked_vm(pages, npages, inc, user);
		break;
	}
	if (rc)
		return rc;

	pages->last_npinned = pages->npinned;
	if (inc)
		atomic64_add(npages, &pages->source_mm->pinned_vm);
	else
		atomic64_sub(npages, &pages->source_mm->pinned_vm);
	return 0;
}

static void update_unpinned(struct iopt_pages *pages)
{
	if (WARN_ON(pages->npinned > pages->last_npinned))
		return;
	if (pages->npinned == pages->last_npinned)
		return;
	do_update_pinned(pages, pages->last_npinned - pages->npinned, false,
			 NULL);
}

/*
 * Changes in the number of pages pinned is done after the pages have been read
 * and processed. If the user lacked the limit then the error unwind will unpin
 * everything that was just pinned. This is because it is expensive to calculate
 * how many pages we have already pinned within a range to generate an accurate
 * prediction in advance of doing the work to actually pin them.
 */
static int pfn_reader_user_update_pinned(struct pfn_reader_user *user,
					 struct iopt_pages *pages)
{
	unsigned long npages;
	bool inc;

	lockdep_assert_held(&pages->mutex);

	if (pages->npinned == pages->last_npinned)
		return 0;

	if (pages->npinned < pages->last_npinned) {
		npages = pages->last_npinned - pages->npinned;
		inc = false;
	} else {
		if (iommufd_should_fail())
			return -ENOMEM;
		npages = pages->npinned - pages->last_npinned;
		inc = true;
	}
	return do_update_pinned(pages, npages, inc, user);
}

/*
 * PFNs are stored in three places, in order of preference:
 * - The iopt_pages xarray. This is only populated if there is a
 *   iopt_pages_access
 * - The iommu_domain under an area
 * - The original PFN source, ie pages->source_mm
 *
 * This iterator reads the pfns optimizing to load according to the
 * above order.
 */
struct pfn_reader {
	struct iopt_pages *pages;
	struct interval_tree_double_span_iter span;
	struct pfn_batch batch;
	unsigned long batch_start_index;
	unsigned long batch_end_index;
	unsigned long last_index;

	struct pfn_reader_user user;
};

static int pfn_reader_update_pinned(struct pfn_reader *pfns)
{
	return pfn_reader_user_update_pinned(&pfns->user, pfns->pages);
}

/*
 * The batch can contain a mixture of pages that are still in use and pages that
 * need to be unpinned. Unpin only pages that are not held anywhere else.
 */
static void pfn_reader_unpin(struct pfn_reader *pfns)
{
	unsigned long last = pfns->batch_end_index - 1;
	unsigned long start = pfns->batch_start_index;
	struct interval_tree_double_span_iter span;
	struct iopt_pages *pages = pfns->pages;

	lockdep_assert_held(&pages->mutex);

	interval_tree_for_each_double_span(&span, &pages->access_itree,
					   &pages->domains_itree, start, last) {
		if (span.is_used)
			continue;

		batch_unpin(&pfns->batch, pages, span.start_hole - start,
			    span.last_hole - span.start_hole + 1);
	}
}

/* Process a single span to load it from the proper storage */
static int pfn_reader_fill_span(struct pfn_reader *pfns)
{
	struct interval_tree_double_span_iter *span = &pfns->span;
	unsigned long start_index = pfns->batch_end_index;
	struct iopt_area *area;
	int rc;

	if (IS_ENABLED(CONFIG_IOMMUFD_TEST) &&
	    WARN_ON(span->last_used < start_index))
		return -EINVAL;

	if (span->is_used == 1) {
		batch_from_xarray(&pfns->batch, &pfns->pages->pinned_pfns,
				  start_index, span->last_used);
		return 0;
	}

	if (span->is_used == 2) {
		/*
		 * Pull as many pages from the first domain we find in the
		 * target span. If it is too small then we will be called again
		 * and we'll find another area.
		 */
		area = iopt_pages_find_domain_area(pfns->pages, start_index);
		if (WARN_ON(!area))
			return -EINVAL;

		/* The storage_domain cannot change without the pages mutex */
		batch_from_domain(
			&pfns->batch, area->storage_domain, area, start_index,
			min(iopt_area_last_index(area), span->last_used));
		return 0;
	}

	if (start_index >= pfns->user.upages_end) {
		rc = pfn_reader_user_pin(&pfns->user, pfns->pages, start_index,
					 span->last_hole);
		if (rc)
			return rc;
	}

	batch_from_pages(&pfns->batch,
			 pfns->user.upages +
				 (start_index - pfns->user.upages_start),
			 pfns->user.upages_end - start_index);
	return 0;
}

static bool pfn_reader_done(struct pfn_reader *pfns)
{
	return pfns->batch_start_index == pfns->last_index + 1;
}

static int pfn_reader_next(struct pfn_reader *pfns)
{
	int rc;

	batch_clear(&pfns->batch);
	pfns->batch_start_index = pfns->batch_end_index;

	while (pfns->batch_end_index != pfns->last_index + 1) {
		unsigned int npfns = pfns->batch.total_pfns;

		if (IS_ENABLED(CONFIG_IOMMUFD_TEST) &&
		    WARN_ON(interval_tree_double_span_iter_done(&pfns->span)))
			return -EINVAL;

		rc = pfn_reader_fill_span(pfns);
		if (rc)
			return rc;

		if (WARN_ON(!pfns->batch.total_pfns))
			return -EINVAL;

		pfns->batch_end_index =
			pfns->batch_start_index + pfns->batch.total_pfns;
		if (pfns->batch_end_index == pfns->span.last_used + 1)
			interval_tree_double_span_iter_next(&pfns->span);

		/* Batch is full */
		if (npfns == pfns->batch.total_pfns)
			return 0;
	}
	return 0;
}

static int pfn_reader_init(struct pfn_reader *pfns, struct iopt_pages *pages,
			   unsigned long start_index, unsigned long last_index)
{
	int rc;

	lockdep_assert_held(&pages->mutex);

	pfns->pages = pages;
	pfns->batch_start_index = start_index;
	pfns->batch_end_index = start_index;
	pfns->last_index = last_index;
	pfn_reader_user_init(&pfns->user, pages);
	rc = batch_init(&pfns->batch, last_index - start_index + 1);
	if (rc)
		return rc;
	interval_tree_double_span_iter_first(&pfns->span, &pages->access_itree,
					     &pages->domains_itree, start_index,
					     last_index);
	return 0;
}

/*
 * There are many assertions regarding the state of pages->npinned vs
 * pages->last_pinned, for instance something like unmapping a domain must only
 * decrement the npinned, and pfn_reader_destroy() must be called only after all
 * the pins are updated. This is fine for success flows, but error flows
 * sometimes need to release the pins held inside the pfn_reader before going on
 * to complete unmapping and releasing pins held in domains.
 */
static void pfn_reader_release_pins(struct pfn_reader *pfns)
{
	struct iopt_pages *pages = pfns->pages;

	if (pfns->user.upages_end > pfns->batch_end_index) {
		size_t npages = pfns->user.upages_end - pfns->batch_end_index;

		/* Any pages not transferred to the batch are just unpinned */
		unpin_user_pages(pfns->user.upages + (pfns->batch_end_index -
						      pfns->user.upages_start),
				 npages);
		iopt_pages_sub_npinned(pages, npages);
		pfns->user.upages_end = pfns->batch_end_index;
	}
	if (pfns->batch_start_index != pfns->batch_end_index) {
		pfn_reader_unpin(pfns);
		pfns->batch_start_index = pfns->batch_end_index;
	}
}

static void pfn_reader_destroy(struct pfn_reader *pfns)
{
	struct iopt_pages *pages = pfns->pages;

	pfn_reader_release_pins(pfns);
	pfn_reader_user_destroy(&pfns->user, pfns->pages);
	batch_destroy(&pfns->batch, NULL);
	WARN_ON(pages->last_npinned != pages->npinned);
}

static int pfn_reader_first(struct pfn_reader *pfns, struct iopt_pages *pages,
			    unsigned long start_index, unsigned long last_index)
{
	int rc;

	if (IS_ENABLED(CONFIG_IOMMUFD_TEST) &&
	    WARN_ON(last_index < start_index))
		return -EINVAL;

	rc = pfn_reader_init(pfns, pages, start_index, last_index);
	if (rc)
		return rc;
	rc = pfn_reader_next(pfns);
	if (rc) {
		pfn_reader_destroy(pfns);
		return rc;
	}
	return 0;
}

struct iopt_pages *iopt_alloc_pages(void __user *uptr, unsigned long length,
				    bool writable)
{
	struct iopt_pages *pages;
	unsigned long end;

	/*
	 * The iommu API uses size_t as the length, and protect the DIV_ROUND_UP
	 * below from overflow
	 */
	if (length > SIZE_MAX - PAGE_SIZE || length == 0)
		return ERR_PTR(-EINVAL);

	if (check_add_overflow((unsigned long)uptr, length, &end))
		return ERR_PTR(-EOVERFLOW);

	pages = kzalloc(sizeof(*pages), GFP_KERNEL_ACCOUNT);
	if (!pages)
		return ERR_PTR(-ENOMEM);

	kref_init(&pages->kref);
	xa_init_flags(&pages->pinned_pfns, XA_FLAGS_ACCOUNT);
	mutex_init(&pages->mutex);
	pages->source_mm = current->mm;
	mmgrab(pages->source_mm);
	pages->uptr = (void __user *)ALIGN_DOWN((uintptr_t)uptr, PAGE_SIZE);
	pages->npages = DIV_ROUND_UP(length + (uptr - pages->uptr), PAGE_SIZE);
	pages->access_itree = RB_ROOT_CACHED;
	pages->domains_itree = RB_ROOT_CACHED;
	pages->writable = writable;
	if (capable(CAP_IPC_LOCK))
		pages->account_mode = IOPT_PAGES_ACCOUNT_NONE;
	else
		pages->account_mode = IOPT_PAGES_ACCOUNT_USER;
	pages->source_task = current->group_leader;
	get_task_struct(current->group_leader);
	pages->source_user = get_uid(current_user());
	return pages;
}

void iopt_release_pages(struct kref *kref)
{
	struct iopt_pages *pages = container_of(kref, struct iopt_pages, kref);

	WARN_ON(!RB_EMPTY_ROOT(&pages->access_itree.rb_root));
	WARN_ON(!RB_EMPTY_ROOT(&pages->domains_itree.rb_root));
	WARN_ON(pages->npinned);
	WARN_ON(!xa_empty(&pages->pinned_pfns));
	mmdrop(pages->source_mm);
	mutex_destroy(&pages->mutex);
	put_task_struct(pages->source_task);
	free_uid(pages->source_user);
	kfree(pages);
}

static void
iopt_area_unpin_domain(struct pfn_batch *batch, struct iopt_area *area,
		       struct iopt_pages *pages, struct iommu_domain *domain,
		       unsigned long start_index, unsigned long last_index,
		       unsigned long *unmapped_end_index,
		       unsigned long real_last_index)
{
	while (start_index <= last_index) {
		unsigned long batch_last_index;

		if (*unmapped_end_index <= last_index) {
			unsigned long start =
				max(start_index, *unmapped_end_index);

			if (IS_ENABLED(CONFIG_IOMMUFD_TEST) &&
			    batch->total_pfns)
				WARN_ON(*unmapped_end_index -
						batch->total_pfns !=
					start_index);
			batch_from_domain(batch, domain, area, start,
					  last_index);
			batch_last_index = start_index + batch->total_pfns - 1;
		} else {
			batch_last_index = last_index;
		}

		if (IS_ENABLED(CONFIG_IOMMUFD_TEST))
			WARN_ON(batch_last_index > real_last_index);

		/*
		 * unmaps must always 'cut' at a place where the pfns are not
		 * contiguous to pair with the maps that always install
		 * contiguous pages. Thus, if we have to stop unpinning in the
		 * middle of the domains we need to keep reading pfns until we
		 * find a cut point to do the unmap. The pfns we read are
		 * carried over and either skipped or integrated into the next
		 * batch.
		 */
		if (batch_last_index == last_index &&
		    last_index != real_last_index)
			batch_from_domain_continue(batch, domain, area,
						   last_index + 1,
						   real_last_index);

		if (*unmapped_end_index <= batch_last_index) {
			iopt_area_unmap_domain_range(
				area, domain, *unmapped_end_index,
				start_index + batch->total_pfns - 1);
			*unmapped_end_index = start_index + batch->total_pfns;
		}

		/* unpin must follow unmap */
		batch_unpin(batch, pages, 0,
			    batch_last_index - start_index + 1);
		start_index = batch_last_index + 1;

		batch_clear_carry(batch,
				  *unmapped_end_index - batch_last_index - 1);
	}
}

static void __iopt_area_unfill_domain(struct iopt_area *area,
				      struct iopt_pages *pages,
				      struct iommu_domain *domain,
				      unsigned long last_index)
{
	struct interval_tree_double_span_iter span;
	unsigned long start_index = iopt_area_index(area);
	unsigned long unmapped_end_index = start_index;
	u64 backup[BATCH_BACKUP_SIZE];
	struct pfn_batch batch;

	lockdep_assert_held(&pages->mutex);

	/*
	 * For security we must not unpin something that is still DMA mapped,
	 * so this must unmap any IOVA before we go ahead and unpin the pages.
	 * This creates a complexity where we need to skip over unpinning pages
	 * held in the xarray, but continue to unmap from the domain.
	 *
	 * The domain unmap cannot stop in the middle of a contiguous range of
	 * PFNs. To solve this problem the unpinning step will read ahead to the
	 * end of any contiguous span, unmap that whole span, and then only
	 * unpin the leading part that does not have any accesses. The residual
	 * PFNs that were unmapped but not unpinned are called a "carry" in the
	 * batch as they are moved to the front of the PFN list and continue on
	 * to the next iteration(s).
	 */
	batch_init_backup(&batch, last_index + 1, backup, sizeof(backup));
	interval_tree_for_each_double_span(&span, &pages->domains_itree,
					   &pages->access_itree, start_index,
					   last_index) {
		if (span.is_used) {
			batch_skip_carry(&batch,
					 span.last_used - span.start_used + 1);
			continue;
		}
		iopt_area_unpin_domain(&batch, area, pages, domain,
				       span.start_hole, span.last_hole,
				       &unmapped_end_index, last_index);
	}
	/*
	 * If the range ends in a access then we do the residual unmap without
	 * any unpins.
	 */
	if (unmapped_end_index != last_index + 1)
		iopt_area_unmap_domain_range(area, domain, unmapped_end_index,
					     last_index);
	WARN_ON(batch.total_pfns);
	batch_destroy(&batch, backup);
	update_unpinned(pages);
}

static void iopt_area_unfill_partial_domain(struct iopt_area *area,
					    struct iopt_pages *pages,
					    struct iommu_domain *domain,
					    unsigned long end_index)
{
	if (end_index != iopt_area_index(area))
		__iopt_area_unfill_domain(area, pages, domain, end_index - 1);
}

/**
 * iopt_area_unmap_domain() - Unmap without unpinning PFNs in a domain
 * @area: The IOVA range to unmap
 * @domain: The domain to unmap
 *
 * The caller must know that unpinning is not required, usually because there
 * are other domains in the iopt.
 */
void iopt_area_unmap_domain(struct iopt_area *area, struct iommu_domain *domain)
{
	iommu_unmap_nofail(domain, iopt_area_iova(area),
			   iopt_area_length(area));
}

/**
 * iopt_area_unfill_domain() - Unmap and unpin PFNs in a domain
 * @area: IOVA area to use
 * @pages: page supplier for the area (area->pages is NULL)
 * @domain: Domain to unmap from
 *
 * The domain should be removed from the domains_itree before calling. The
 * domain will always be unmapped, but the PFNs may not be unpinned if there are
 * still accesses.
 */
void iopt_area_unfill_domain(struct iopt_area *area, struct iopt_pages *pages,
			     struct iommu_domain *domain)
{
	__iopt_area_unfill_domain(area, pages, domain,
				  iopt_area_last_index(area));
}

/**
 * iopt_area_fill_domain() - Map PFNs from the area into a domain
 * @area: IOVA area to use
 * @domain: Domain to load PFNs into
 *
 * Read the pfns from the area's underlying iopt_pages and map them into the
 * given domain. Called when attaching a new domain to an io_pagetable.
 */
int iopt_area_fill_domain(struct iopt_area *area, struct iommu_domain *domain)
{
	unsigned long done_end_index;
	struct pfn_reader pfns;
	int rc;

	lockdep_assert_held(&area->pages->mutex);

	rc = pfn_reader_first(&pfns, area->pages, iopt_area_index(area),
			      iopt_area_last_index(area));
	if (rc)
		return rc;

	while (!pfn_reader_done(&pfns)) {
		done_end_index = pfns.batch_start_index;
		rc = batch_to_domain(&pfns.batch, domain, area,
				     pfns.batch_start_index);
		if (rc)
			goto out_unmap;
		done_end_index = pfns.batch_end_index;

		rc = pfn_reader_next(&pfns);
		if (rc)
			goto out_unmap;
	}

	rc = pfn_reader_update_pinned(&pfns);
	if (rc)
		goto out_unmap;
	goto out_destroy;

out_unmap:
	pfn_reader_release_pins(&pfns);
	iopt_area_unfill_partial_domain(area, area->pages, domain,
					done_end_index);
out_destroy:
	pfn_reader_destroy(&pfns);
	return rc;
}

/**
 * iopt_area_fill_domains() - Install PFNs into the area's domains
 * @area: The area to act on
 * @pages: The pages associated with the area (area->pages is NULL)
 *
 * Called during area creation. The area is freshly created and not inserted in
 * the domains_itree yet. PFNs are read and loaded into every domain held in the
 * area's io_pagetable and the area is installed in the domains_itree.
 *
 * On failure all domains are left unchanged.
 */
int iopt_area_fill_domains(struct iopt_area *area, struct iopt_pages *pages)
{
	unsigned long done_first_end_index;
	unsigned long done_all_end_index;
	struct iommu_domain *domain;
	unsigned long unmap_index;
	struct pfn_reader pfns;
	unsigned long index;
	int rc;

	lockdep_assert_held(&area->iopt->domains_rwsem);

	if (xa_empty(&area->iopt->domains))
		return 0;

	mutex_lock(&pages->mutex);
	rc = pfn_reader_first(&pfns, pages, iopt_area_index(area),
			      iopt_area_last_index(area));
	if (rc)
		goto out_unlock;

	while (!pfn_reader_done(&pfns)) {
		done_first_end_index = pfns.batch_end_index;
		done_all_end_index = pfns.batch_start_index;
		xa_for_each(&area->iopt->domains, index, domain) {
			rc = batch_to_domain(&pfns.batch, domain, area,
					     pfns.batch_start_index);
			if (rc)
				goto out_unmap;
		}
		done_all_end_index = done_first_end_index;

		rc = pfn_reader_next(&pfns);
		if (rc)
			goto out_unmap;
	}
	rc = pfn_reader_update_pinned(&pfns);
	if (rc)
		goto out_unmap;

	area->storage_domain = xa_load(&area->iopt->domains, 0);
	interval_tree_insert(&area->pages_node, &pages->domains_itree);
	goto out_destroy;

out_unmap:
	pfn_reader_release_pins(&pfns);
	xa_for_each(&area->iopt->domains, unmap_index, domain) {
		unsigned long end_index;

		if (unmap_index < index)
			end_index = done_first_end_index;
		else
			end_index = done_all_end_index;

		/*
		 * The area is not yet part of the domains_itree so we have to
		 * manage the unpinning specially. The last domain does the
		 * unpin, every other domain is just unmapped.
		 */
		if (unmap_index != area->iopt->next_domain_id - 1) {
			if (end_index != iopt_area_index(area))
				iopt_area_unmap_domain_range(
					area, domain, iopt_area_index(area),
					end_index - 1);
		} else {
			iopt_area_unfill_partial_domain(area, pages, domain,
							end_index);
		}
	}
out_destroy:
	pfn_reader_destroy(&pfns);
out_unlock:
	mutex_unlock(&pages->mutex);
	return rc;
}

/**
 * iopt_area_unfill_domains() - unmap PFNs from the area's domains
 * @area: The area to act on
 * @pages: The pages associated with the area (area->pages is NULL)
 *
 * Called during area destruction. This unmaps the iova's covered by all the
 * area's domains and releases the PFNs.
 */
void iopt_area_unfill_domains(struct iopt_area *area, struct iopt_pages *pages)
{
	struct io_pagetable *iopt = area->iopt;
	struct iommu_domain *domain;
	unsigned long index;

	lockdep_assert_held(&iopt->domains_rwsem);

	mutex_lock(&pages->mutex);
	if (!area->storage_domain)
		goto out_unlock;

	xa_for_each(&iopt->domains, index, domain)
		if (domain != area->storage_domain)
			iopt_area_unmap_domain_range(
				area, domain, iopt_area_index(area),
				iopt_area_last_index(area));

	if (IS_ENABLED(CONFIG_IOMMUFD_TEST))
		WARN_ON(RB_EMPTY_NODE(&area->pages_node.rb));
	interval_tree_remove(&area->pages_node, &pages->domains_itree);
	iopt_area_unfill_domain(area, pages, area->storage_domain);
	area->storage_domain = NULL;
out_unlock:
	mutex_unlock(&pages->mutex);
}

static void iopt_pages_unpin_xarray(struct pfn_batch *batch,
				    struct iopt_pages *pages,
				    unsigned long start_index,
				    unsigned long end_index)
{
	while (start_index <= end_index) {
		batch_from_xarray_clear(batch, &pages->pinned_pfns, start_index,
					end_index);
		batch_unpin(batch, pages, 0, batch->total_pfns);
		start_index += batch->total_pfns;
		batch_clear(batch);
	}
}

/**
 * iopt_pages_unfill_xarray() - Update the xarry after removing an access
 * @pages: The pages to act on
 * @start_index: Starting PFN index
 * @last_index: Last PFN index
 *
 * Called when an iopt_pages_access is removed, removes pages from the itree.
 * The access should already be removed from the access_itree.
 */
void iopt_pages_unfill_xarray(struct iopt_pages *pages,
			      unsigned long start_index,
			      unsigned long last_index)
{
	struct interval_tree_double_span_iter span;
	u64 backup[BATCH_BACKUP_SIZE];
	struct pfn_batch batch;
	bool batch_inited = false;

	lockdep_assert_held(&pages->mutex);

	interval_tree_for_each_double_span(&span, &pages->access_itree,
					   &pages->domains_itree, start_index,
					   last_index) {
		if (!span.is_used) {
			if (!batch_inited) {
				batch_init_backup(&batch,
						  last_index - start_index + 1,
						  backup, sizeof(backup));
				batch_inited = true;
			}
			iopt_pages_unpin_xarray(&batch, pages, span.start_hole,
						span.last_hole);
		} else if (span.is_used == 2) {
			/* Covered by a domain */
			clear_xarray(&pages->pinned_pfns, span.start_used,
				     span.last_used);
		}
		/* Otherwise covered by an existing access */
	}
	if (batch_inited)
		batch_destroy(&batch, backup);
	update_unpinned(pages);
}

/**
 * iopt_pages_fill_from_xarray() - Fast path for reading PFNs
 * @pages: The pages to act on
 * @start_index: The first page index in the range
 * @last_index: The last page index in the range
 * @out_pages: The output array to return the pages
 *
 * This can be called if the caller is holding a refcount on an
 * iopt_pages_access that is known to have already been filled. It quickly reads
 * the pages directly from the xarray.
 *
 * This is part of the SW iommu interface to read pages for in-kernel use.
 */
void iopt_pages_fill_from_xarray(struct iopt_pages *pages,
				 unsigned long start_index,
				 unsigned long last_index,
				 struct page **out_pages)
{
	XA_STATE(xas, &pages->pinned_pfns, start_index);
	void *entry;

	rcu_read_lock();
	while (start_index <= last_index) {
		entry = xas_next(&xas);
		if (xas_retry(&xas, entry))
			continue;
		WARN_ON(!xa_is_value(entry));
		*(out_pages++) = pfn_to_page(xa_to_value(entry));
		start_index++;
	}
	rcu_read_unlock();
}

static int iopt_pages_fill_from_domain(struct iopt_pages *pages,
				       unsigned long start_index,
				       unsigned long last_index,
				       struct page **out_pages)
{
	while (start_index != last_index + 1) {
		unsigned long domain_last;
		struct iopt_area *area;

		area = iopt_pages_find_domain_area(pages, start_index);
		if (WARN_ON(!area))
			return -EINVAL;

		domain_last = min(iopt_area_last_index(area), last_index);
		out_pages = raw_pages_from_domain(area->storage_domain, area,
						  start_index, domain_last,
						  out_pages);
		start_index = domain_last + 1;
	}
	return 0;
}

static int iopt_pages_fill_from_mm(struct iopt_pages *pages,
				   struct pfn_reader_user *user,
				   unsigned long start_index,
				   unsigned long last_index,
				   struct page **out_pages)
{
	unsigned long cur_index = start_index;
	int rc;

	while (cur_index != last_index + 1) {
		user->upages = out_pages + (cur_index - start_index);
		rc = pfn_reader_user_pin(user, pages, cur_index, last_index);
		if (rc)
			goto out_unpin;
		cur_index = user->upages_end;
	}
	return 0;

out_unpin:
	if (start_index != cur_index)
		iopt_pages_err_unpin(pages, start_index, cur_index - 1,
				     out_pages);
	return rc;
}

/**
 * iopt_pages_fill_xarray() - Read PFNs
 * @pages: The pages to act on
 * @start_index: The first page index in the range
 * @last_index: The last page index in the range
 * @out_pages: The output array to return the pages, may be NULL
 *
 * This populates the xarray and returns the pages in out_pages. As the slow
 * path this is able to copy pages from other storage tiers into the xarray.
 *
 * On failure the xarray is left unchanged.
 *
 * This is part of the SW iommu interface to read pages for in-kernel use.
 */
int iopt_pages_fill_xarray(struct iopt_pages *pages, unsigned long start_index,
			   unsigned long last_index, struct page **out_pages)
{
	struct interval_tree_double_span_iter span;
	unsigned long xa_end = start_index;
	struct pfn_reader_user user;
	int rc;

	lockdep_assert_held(&pages->mutex);

	pfn_reader_user_init(&user, pages);
	user.upages_len = (last_index - start_index + 1) * sizeof(*out_pages);
	interval_tree_for_each_double_span(&span, &pages->access_itree,
					   &pages->domains_itree, start_index,
					   last_index) {
		struct page **cur_pages;

		if (span.is_used == 1) {
			cur_pages = out_pages + (span.start_used - start_index);
			iopt_pages_fill_from_xarray(pages, span.start_used,
						    span.last_used, cur_pages);
			continue;
		}

		if (span.is_used == 2) {
			cur_pages = out_pages + (span.start_used - start_index);
			iopt_pages_fill_from_domain(pages, span.start_used,
						    span.last_used, cur_pages);
			rc = pages_to_xarray(&pages->pinned_pfns,
					     span.start_used, span.last_used,
					     cur_pages);
			if (rc)
				goto out_clean_xa;
			xa_end = span.last_used + 1;
			continue;
		}

		/* hole */
		cur_pages = out_pages + (span.start_hole - start_index);
		rc = iopt_pages_fill_from_mm(pages, &user, span.start_hole,
					     span.last_hole, cur_pages);
		if (rc)
			goto out_clean_xa;
		rc = pages_to_xarray(&pages->pinned_pfns, span.start_hole,
				     span.last_hole, cur_pages);
		if (rc) {
			iopt_pages_err_unpin(pages, span.start_hole,
					     span.last_hole, cur_pages);
			goto out_clean_xa;
		}
		xa_end = span.last_hole + 1;
	}
	rc = pfn_reader_user_update_pinned(&user, pages);
	if (rc)
		goto out_clean_xa;
	user.upages = NULL;
	pfn_reader_user_destroy(&user, pages);
	return 0;

out_clean_xa:
	if (start_index != xa_end)
		iopt_pages_unfill_xarray(pages, start_index, xa_end - 1);
	user.upages = NULL;
	pfn_reader_user_destroy(&user, pages);
	return rc;
}

/*
 * This uses the pfn_reader instead of taking a shortcut by using the mm. It can
 * do every scenario and is fully consistent with what an iommu_domain would
 * see.
 */
static int iopt_pages_rw_slow(struct iopt_pages *pages,
			      unsigned long start_index,
			      unsigned long last_index, unsigned long offset,
			      void *data, unsigned long length,
			      unsigned int flags)
{
	struct pfn_reader pfns;
	int rc;

	mutex_lock(&pages->mutex);

	rc = pfn_reader_first(&pfns, pages, start_index, last_index);
	if (rc)
		goto out_unlock;

	while (!pfn_reader_done(&pfns)) {
		unsigned long done;

		done = batch_rw(&pfns.batch, data, offset, length, flags);
		data += done;
		length -= done;
		offset = 0;
		pfn_reader_unpin(&pfns);

		rc = pfn_reader_next(&pfns);
		if (rc)
			goto out_destroy;
	}
	if (WARN_ON(length != 0))
		rc = -EINVAL;
out_destroy:
	pfn_reader_destroy(&pfns);
out_unlock:
	mutex_unlock(&pages->mutex);
	return rc;
}

/*
 * A medium speed path that still allows DMA inconsistencies, but doesn't do any
 * memory allocations or interval tree searches.
 */
static int iopt_pages_rw_page(struct iopt_pages *pages, unsigned long index,
			      unsigned long offset, void *data,
			      unsigned long length, unsigned int flags)
{
	struct page *page = NULL;
	int rc;

	if (!mmget_not_zero(pages->source_mm))
		return iopt_pages_rw_slow(pages, index, index, offset, data,
					  length, flags);

	if (iommufd_should_fail()) {
		rc = -EINVAL;
		goto out_mmput;
	}

	mmap_read_lock(pages->source_mm);
	rc = pin_user_pages_remote(
		pages->source_mm, (uintptr_t)(pages->uptr + index * PAGE_SIZE),
		1, (flags & IOMMUFD_ACCESS_RW_WRITE) ? FOLL_WRITE : 0, &page,
		NULL);
	mmap_read_unlock(pages->source_mm);
	if (rc != 1) {
		if (WARN_ON(rc >= 0))
			rc = -EINVAL;
		goto out_mmput;
	}
	copy_data_page(page, data, offset, length, flags);
	unpin_user_page(page);
	rc = 0;

out_mmput:
	mmput(pages->source_mm);
	return rc;
}

/**
 * iopt_pages_rw_access - Copy to/from a linear slice of the pages
 * @pages: pages to act on
 * @start_byte: First byte of pages to copy to/from
 * @data: Kernel buffer to get/put the data
 * @length: Number of bytes to copy
 * @flags: IOMMUFD_ACCESS_RW_* flags
 *
 * This will find each page in the range, kmap it and then memcpy to/from
 * the given kernel buffer.
 */
int iopt_pages_rw_access(struct iopt_pages *pages, unsigned long start_byte,
			 void *data, unsigned long length, unsigned int flags)
{
	unsigned long start_index = start_byte / PAGE_SIZE;
	unsigned long last_index = (start_byte + length - 1) / PAGE_SIZE;
	bool change_mm = current->mm != pages->source_mm;
	int rc = 0;

	if (IS_ENABLED(CONFIG_IOMMUFD_TEST) &&
	    (flags & __IOMMUFD_ACCESS_RW_SLOW_PATH))
		change_mm = true;

	if ((flags & IOMMUFD_ACCESS_RW_WRITE) && !pages->writable)
		return -EPERM;

	if (!(flags & IOMMUFD_ACCESS_RW_KTHREAD) && change_mm) {
		if (start_index == last_index)
			return iopt_pages_rw_page(pages, start_index,
						  start_byte % PAGE_SIZE, data,
						  length, flags);
		return iopt_pages_rw_slow(pages, start_index, last_index,
					  start_byte % PAGE_SIZE, data, length,
					  flags);
	}

	/*
	 * Try to copy using copy_to_user(). We do this as a fast path and
	 * ignore any pinning inconsistencies, unlike a real DMA path.
	 */
	if (change_mm) {
		if (!mmget_not_zero(pages->source_mm))
			return iopt_pages_rw_slow(pages, start_index,
						  last_index,
						  start_byte % PAGE_SIZE, data,
						  length, flags);
		kthread_use_mm(pages->source_mm);
	}

	if (flags & IOMMUFD_ACCESS_RW_WRITE) {
		if (copy_to_user(pages->uptr + start_byte, data, length))
			rc = -EFAULT;
	} else {
		if (copy_from_user(data, pages->uptr + start_byte, length))
			rc = -EFAULT;
	}

	if (change_mm) {
		kthread_unuse_mm(pages->source_mm);
		mmput(pages->source_mm);
	}

	return rc;
}

static struct iopt_pages_access *
iopt_pages_get_exact_access(struct iopt_pages *pages, unsigned long index,
			    unsigned long last)
{
	struct interval_tree_node *node;

	lockdep_assert_held(&pages->mutex);

	/* There can be overlapping ranges in this interval tree */
	for (node = interval_tree_iter_first(&pages->access_itree, index, last);
	     node; node = interval_tree_iter_next(node, index, last))
		if (node->start == index && node->last == last)
			return container_of(node, struct iopt_pages_access,
					    node);
	return NULL;
}

/**
 * iopt_area_add_access() - Record an in-knerel access for PFNs
 * @area: The source of PFNs
 * @start_index: First page index
 * @last_index: Inclusive last page index
 * @out_pages: Output list of struct page's representing the PFNs
 * @flags: IOMMUFD_ACCESS_RW_* flags
 *
 * Record that an in-kernel access will be accessing the pages, ensure they are
 * pinned, and return the PFNs as a simple list of 'struct page *'.
 *
 * This should be undone through a matching call to iopt_area_remove_access()
 */
int iopt_area_add_access(struct iopt_area *area, unsigned long start_index,
			  unsigned long last_index, struct page **out_pages,
			  unsigned int flags)
{
	struct iopt_pages *pages = area->pages;
	struct iopt_pages_access *access;
	int rc;

	if ((flags & IOMMUFD_ACCESS_RW_WRITE) && !pages->writable)
		return -EPERM;

	mutex_lock(&pages->mutex);
	access = iopt_pages_get_exact_access(pages, start_index, last_index);
	if (access) {
		area->num_accesses++;
		access->users++;
		iopt_pages_fill_from_xarray(pages, start_index, last_index,
					    out_pages);
		mutex_unlock(&pages->mutex);
		return 0;
	}

	access = kzalloc(sizeof(*access), GFP_KERNEL_ACCOUNT);
	if (!access) {
		rc = -ENOMEM;
		goto err_unlock;
	}

	rc = iopt_pages_fill_xarray(pages, start_index, last_index, out_pages);
	if (rc)
		goto err_free;

	access->node.start = start_index;
	access->node.last = last_index;
	access->users = 1;
	area->num_accesses++;
	interval_tree_insert(&access->node, &pages->access_itree);
	mutex_unlock(&pages->mutex);
	return 0;

err_free:
	kfree(access);
err_unlock:
	mutex_unlock(&pages->mutex);
	return rc;
}

/**
 * iopt_area_remove_access() - Release an in-kernel access for PFNs
 * @area: The source of PFNs
 * @start_index: First page index
 * @last_index: Inclusive last page index
 *
 * Undo iopt_area_add_access() and unpin the pages if necessary. The caller
 * must stop using the PFNs before calling this.
 */
void iopt_area_remove_access(struct iopt_area *area, unsigned long start_index,
			     unsigned long last_index)
{
	struct iopt_pages *pages = area->pages;
	struct iopt_pages_access *access;

	mutex_lock(&pages->mutex);
	access = iopt_pages_get_exact_access(pages, start_index, last_index);
	if (WARN_ON(!access))
		goto out_unlock;

	WARN_ON(area->num_accesses == 0 || access->users == 0);
	area->num_accesses--;
	access->users--;
	if (access->users)
		goto out_unlock;

	interval_tree_remove(&access->node, &pages->access_itree);
	iopt_pages_unfill_xarray(pages, start_index, last_index);
	kfree(access);
out_unlock:
	mutex_unlock(&pages->mutex);
}