Linux Audio

Check our new training course

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
// SPDX-License-Identifier: GPL-2.0
/*
 * mlx90635.c - Melexis MLX90635 contactless IR temperature sensor
 *
 * Copyright (c) 2023 Melexis <cmo@melexis.com>
 *
 * Driver for the Melexis MLX90635 I2C 16-bit IR thermopile sensor
 */
#include <linux/bitfield.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/err.h>
#include <linux/gpio/consumer.h>
#include <linux/i2c.h>
#include <linux/iopoll.h>
#include <linux/jiffies.h>
#include <linux/kernel.h>
#include <linux/limits.h>
#include <linux/mod_devicetable.h>
#include <linux/module.h>
#include <linux/math64.h>
#include <linux/pm_runtime.h>
#include <linux/regmap.h>
#include <linux/regulator/consumer.h>

#include <linux/iio/iio.h>

/* Memory sections addresses */
#define MLX90635_ADDR_RAM	0x0000 /* Start address of ram */
#define MLX90635_ADDR_EEPROM	0x0018 /* Start address of user eeprom */

/* EEPROM addresses - used at startup */
#define MLX90635_EE_I2C_CFG	0x0018 /* I2C address register initial value */
#define MLX90635_EE_CTRL1	0x001A /* Control register1 initial value */
#define MLX90635_EE_CTRL2	0x001C /* Control register2 initial value */

#define MLX90635_EE_Ha		0x001E /* Ha customer calib value reg 16bit */
#define MLX90635_EE_Hb		0x0020 /* Hb customer calib value reg 16bit */
#define MLX90635_EE_Fa		0x0026 /* Fa calibration register 32bit */
#define MLX90635_EE_FASCALE	0x002A /* Scaling coefficient for Fa register 16bit */
#define MLX90635_EE_Ga		0x002C /* Ga calibration register 16bit */
#define MLX90635_EE_Fb		0x002E /* Fb calibration register 16bit */
#define MLX90635_EE_Ea		0x0030 /* Ea calibration register 32bit */
#define MLX90635_EE_Eb		0x0034 /* Eb calibration register 32bit */
#define MLX90635_EE_P_G		0x0038 /* P_G calibration register 16bit */
#define MLX90635_EE_P_O		0x003A /* P_O calibration register 16bit */
#define MLX90635_EE_Aa		0x003C /* Aa calibration register 16bit */
#define MLX90635_EE_VERSION	0x003E /* Version bits 4:7 and 12:15 */
#define MLX90635_EE_Gb		0x0040 /* Gb calibration register 16bit */

/* Device status register - volatile */
#define MLX90635_REG_STATUS	0x0000
#define   MLX90635_STAT_BUSY BIT(6) /* Device busy indicator */
#define   MLX90635_STAT_BRST BIT(5) /* Brown out reset indicator */
#define   MLX90635_STAT_CYCLE_POS GENMASK(4, 2) /* Data position */
#define   MLX90635_STAT_END_CONV BIT(1) /* End of conversion indicator */
#define   MLX90635_STAT_DATA_RDY BIT(0) /* Data ready indicator */

/* EEPROM control register address - volatile */
#define MLX90635_REG_EE		0x000C
#define   MLX90635_EE_ACTIVE BIT(4) /* Power-on EEPROM */
#define   MLX90635_EE_BUSY_MASK	BIT(15)

#define MLX90635_REG_CMD	0x0010 /* Command register address */

/* Control register1 address - volatile */
#define MLX90635_REG_CTRL1	0x0014
#define   MLX90635_CTRL1_REFRESH_RATE_MASK GENMASK(2, 0)
#define   MLX90635_CTRL1_RES_CTRL_MASK GENMASK(4, 3)
#define   MLX90635_CTRL1_TABLE_MASK BIT(15) /* Table select */

/* Control register2 address - volatile */
#define   MLX90635_REG_CTRL2	0x0016
#define   MLX90635_CTRL2_BURST_CNT_MASK GENMASK(10, 6) /* Burst count */
#define   MLX90635_CTRL2_MODE_MASK GENMASK(12, 11) /* Power mode */
#define   MLX90635_CTRL2_SOB_MASK BIT(15)

/* PowerModes statuses */
#define MLX90635_PWR_STATUS_HALT 0
#define MLX90635_PWR_STATUS_SLEEP_STEP 1
#define MLX90635_PWR_STATUS_STEP 2
#define MLX90635_PWR_STATUS_CONTINUOUS 3

/* Measurement data addresses */
#define MLX90635_RESULT_1   0x0002
#define MLX90635_RESULT_2   0x0004
#define MLX90635_RESULT_3   0x0006
#define MLX90635_RESULT_4   0x0008
#define MLX90635_RESULT_5   0x000A

/* Timings (ms) */
#define MLX90635_TIMING_RST_MIN 200 /* Minimum time after addressed reset command */
#define MLX90635_TIMING_RST_MAX 250 /* Maximum time after addressed reset command */
#define MLX90635_TIMING_POLLING 10000 /* Time between bit polling*/
#define MLX90635_TIMING_EE_ACTIVE_MIN 100 /* Minimum time after activating the EEPROM for read */
#define MLX90635_TIMING_EE_ACTIVE_MAX 150 /* Maximum time after activating the EEPROM for read */

/* Magic constants */
#define MLX90635_ID_DSPv1 0x01 /* EEPROM DSP version */
#define MLX90635_RESET_CMD  0x0006 /* Reset sensor (address or global) */
#define MLX90635_MAX_MEAS_NUM   31 /* Maximum number of measurements in list */
#define MLX90635_PTAT_DIV 12   /* Used to divide the PTAT value in pre-processing */
#define MLX90635_IR_DIV 24   /* Used to divide the IR value in pre-processing */
#define MLX90635_SLEEP_DELAY_MS 6000 /* Autosleep delay */
#define MLX90635_MEAS_MAX_TIME 2000 /* Max measurement time in ms for the lowest refresh rate */
#define MLX90635_READ_RETRIES 100 /* Number of read retries before quitting with timeout error */
#define MLX90635_VERSION_MASK (GENMASK(15, 12) | GENMASK(7, 4))
#define MLX90635_DSP_VERSION(reg) (((reg & GENMASK(14, 12)) >> 9) | ((reg & GENMASK(6, 4)) >> 4))
#define MLX90635_DSP_FIXED BIT(15)


/**
 * struct mlx90635_data - private data for the MLX90635 device
 * @client: I2C client of the device
 * @lock: Internal mutex because multiple reads are needed for single triggered
 *	  measurement to ensure data consistency
 * @regmap: Regmap of the device registers
 * @regmap_ee: Regmap of the device EEPROM which can be cached
 * @emissivity: Object emissivity from 0 to 1000 where 1000 = 1
 * @regulator: Regulator of the device
 * @powerstatus: Current POWER status of the device
 * @interaction_ts: Timestamp of the last temperature read that is used
 *		    for power management in jiffies
 */
struct mlx90635_data {
	struct i2c_client *client;
	struct mutex lock;
	struct regmap *regmap;
	struct regmap *regmap_ee;
	u16 emissivity;
	struct regulator *regulator;
	int powerstatus;
	unsigned long interaction_ts;
};

static const struct regmap_range mlx90635_volatile_reg_range[] = {
	regmap_reg_range(MLX90635_REG_STATUS, MLX90635_REG_STATUS),
	regmap_reg_range(MLX90635_RESULT_1, MLX90635_RESULT_5),
	regmap_reg_range(MLX90635_REG_EE, MLX90635_REG_EE),
	regmap_reg_range(MLX90635_REG_CMD, MLX90635_REG_CMD),
	regmap_reg_range(MLX90635_REG_CTRL1, MLX90635_REG_CTRL2),
};

static const struct regmap_access_table mlx90635_volatile_regs_tbl = {
	.yes_ranges = mlx90635_volatile_reg_range,
	.n_yes_ranges = ARRAY_SIZE(mlx90635_volatile_reg_range),
};

static const struct regmap_range mlx90635_read_reg_range[] = {
	regmap_reg_range(MLX90635_REG_STATUS, MLX90635_REG_STATUS),
	regmap_reg_range(MLX90635_RESULT_1, MLX90635_RESULT_5),
	regmap_reg_range(MLX90635_REG_EE, MLX90635_REG_EE),
	regmap_reg_range(MLX90635_REG_CMD, MLX90635_REG_CMD),
	regmap_reg_range(MLX90635_REG_CTRL1, MLX90635_REG_CTRL2),
};

static const struct regmap_access_table mlx90635_readable_regs_tbl = {
	.yes_ranges = mlx90635_read_reg_range,
	.n_yes_ranges = ARRAY_SIZE(mlx90635_read_reg_range),
};

static const struct regmap_range mlx90635_no_write_reg_range[] = {
	regmap_reg_range(MLX90635_RESULT_1, MLX90635_RESULT_5),
};

static const struct regmap_access_table mlx90635_writeable_regs_tbl = {
	.no_ranges = mlx90635_no_write_reg_range,
	.n_no_ranges = ARRAY_SIZE(mlx90635_no_write_reg_range),
};

static const struct regmap_config mlx90635_regmap = {
	.name = "mlx90635-registers",
	.reg_stride = 1,
	.reg_bits = 16,
	.val_bits = 16,

	.volatile_table = &mlx90635_volatile_regs_tbl,
	.rd_table = &mlx90635_readable_regs_tbl,
	.wr_table = &mlx90635_writeable_regs_tbl,

	.use_single_read = true,
	.use_single_write = true,
	.can_multi_write = false,
	.reg_format_endian = REGMAP_ENDIAN_BIG,
	.val_format_endian = REGMAP_ENDIAN_BIG,
	.cache_type = REGCACHE_RBTREE,
};

static const struct regmap_range mlx90635_read_ee_range[] = {
	regmap_reg_range(MLX90635_EE_I2C_CFG, MLX90635_EE_CTRL2),
	regmap_reg_range(MLX90635_EE_Ha, MLX90635_EE_Gb),
};

static const struct regmap_access_table mlx90635_readable_ees_tbl = {
	.yes_ranges = mlx90635_read_ee_range,
	.n_yes_ranges = ARRAY_SIZE(mlx90635_read_ee_range),
};

static const struct regmap_range mlx90635_no_write_ee_range[] = {
	regmap_reg_range(MLX90635_ADDR_EEPROM, MLX90635_EE_Gb),
};

static const struct regmap_access_table mlx90635_writeable_ees_tbl = {
	.no_ranges = mlx90635_no_write_ee_range,
	.n_no_ranges = ARRAY_SIZE(mlx90635_no_write_ee_range),
};

static const struct regmap_config mlx90635_regmap_ee = {
	.name = "mlx90635-eeprom",
	.reg_stride = 1,
	.reg_bits = 16,
	.val_bits = 16,

	.volatile_table = NULL,
	.rd_table = &mlx90635_readable_ees_tbl,
	.wr_table = &mlx90635_writeable_ees_tbl,

	.use_single_read = true,
	.use_single_write = true,
	.can_multi_write = false,
	.reg_format_endian = REGMAP_ENDIAN_BIG,
	.val_format_endian = REGMAP_ENDIAN_BIG,
	.cache_type = REGCACHE_RBTREE,
};

/**
 * mlx90635_reset_delay() - Give the mlx90635 some time to reset properly
 * If this is not done, the following I2C command(s) will not be accepted.
 */
static void mlx90635_reset_delay(void)
{
	usleep_range(MLX90635_TIMING_RST_MIN, MLX90635_TIMING_RST_MAX);
}

static int mlx90635_pwr_sleep_step(struct mlx90635_data *data)
{
	int ret;

	if (data->powerstatus == MLX90635_PWR_STATUS_SLEEP_STEP)
		return 0;

	ret = regmap_write_bits(data->regmap, MLX90635_REG_CTRL2, MLX90635_CTRL2_MODE_MASK,
				FIELD_PREP(MLX90635_CTRL2_MODE_MASK, MLX90635_PWR_STATUS_SLEEP_STEP));
	if (ret < 0)
		return ret;

	data->powerstatus = MLX90635_PWR_STATUS_SLEEP_STEP;
	return 0;
}

static int mlx90635_pwr_continuous(struct mlx90635_data *data)
{
	int ret;

	if (data->powerstatus == MLX90635_PWR_STATUS_CONTINUOUS)
		return 0;

	ret = regmap_write_bits(data->regmap, MLX90635_REG_CTRL2, MLX90635_CTRL2_MODE_MASK,
				FIELD_PREP(MLX90635_CTRL2_MODE_MASK, MLX90635_PWR_STATUS_CONTINUOUS));
	if (ret < 0)
		return ret;

	data->powerstatus = MLX90635_PWR_STATUS_CONTINUOUS;
	return 0;
}

static int mlx90635_read_ee_register(struct regmap *regmap, u16 reg_lsb,
				     s32 *reg_value)
{
	unsigned int read;
	u32 value;
	int ret;

	ret = regmap_read(regmap, reg_lsb + 2, &read);
	if (ret < 0)
		return ret;

	value = read;

	ret = regmap_read(regmap, reg_lsb, &read);
	if (ret < 0)
		return ret;

	*reg_value = (read << 16) | (value & 0xffff);

	return 0;
}

static int mlx90635_read_ee_ambient(struct regmap *regmap, s16 *PG, s16 *PO, s16 *Gb)
{
	unsigned int read_tmp;
	int ret;

	ret = regmap_read(regmap, MLX90635_EE_P_O, &read_tmp);
	if (ret < 0)
		return ret;
	*PO = (s16)read_tmp;

	ret = regmap_read(regmap, MLX90635_EE_P_G, &read_tmp);
	if (ret < 0)
		return ret;
	*PG = (s16)read_tmp;

	ret = regmap_read(regmap, MLX90635_EE_Gb, &read_tmp);
	if (ret < 0)
		return ret;
	*Gb = (u16)read_tmp;

	return 0;
}

static int mlx90635_read_ee_object(struct regmap *regmap, u32 *Ea, u32 *Eb, u32 *Fa, s16 *Fb,
				   s16 *Ga, s16 *Gb, s16 *Ha, s16 *Hb, u16 *Fa_scale)
{
	unsigned int read_tmp;
	int ret;

	ret = mlx90635_read_ee_register(regmap, MLX90635_EE_Ea, Ea);
	if (ret < 0)
		return ret;

	ret = mlx90635_read_ee_register(regmap, MLX90635_EE_Eb, Eb);
	if (ret < 0)
		return ret;

	ret = mlx90635_read_ee_register(regmap, MLX90635_EE_Fa, Fa);
	if (ret < 0)
		return ret;

	ret = regmap_read(regmap, MLX90635_EE_Ha, &read_tmp);
	if (ret < 0)
		return ret;
	*Ha = (s16)read_tmp;

	ret = regmap_read(regmap, MLX90635_EE_Hb, &read_tmp);
	if (ret < 0)
		return ret;
	*Hb = (s16)read_tmp;

	ret = regmap_read(regmap, MLX90635_EE_Ga, &read_tmp);
	if (ret < 0)
		return ret;
	*Ga = (s16)read_tmp;

	ret = regmap_read(regmap, MLX90635_EE_Gb, &read_tmp);
	if (ret < 0)
		return ret;
	*Gb = (s16)read_tmp;

	ret = regmap_read(regmap, MLX90635_EE_Fb, &read_tmp);
	if (ret < 0)
		return ret;
	*Fb = (s16)read_tmp;

	ret = regmap_read(regmap, MLX90635_EE_FASCALE, &read_tmp);
	if (ret < 0)
		return ret;
	*Fa_scale = (u16)read_tmp;

	return 0;
}

static int mlx90635_calculate_dataset_ready_time(struct mlx90635_data *data, int *refresh_time)
{
	unsigned int reg;
	int ret;

	ret = regmap_read(data->regmap, MLX90635_REG_CTRL1, &reg);
	if (ret < 0)
		return ret;

	*refresh_time = 2 * (MLX90635_MEAS_MAX_TIME >> FIELD_GET(MLX90635_CTRL1_REFRESH_RATE_MASK, reg)) + 80;

	return 0;
}

static int mlx90635_perform_measurement_burst(struct mlx90635_data *data)
{
	unsigned int reg_status;
	int refresh_time;
	int ret;

	ret = regmap_write_bits(data->regmap, MLX90635_REG_STATUS,
				MLX90635_STAT_END_CONV, MLX90635_STAT_END_CONV);
	if (ret < 0)
		return ret;

	ret = mlx90635_calculate_dataset_ready_time(data, &refresh_time);
	if (ret < 0)
		return ret;

	ret = regmap_write_bits(data->regmap, MLX90635_REG_CTRL2,
				FIELD_PREP(MLX90635_CTRL2_SOB_MASK, 1),
				FIELD_PREP(MLX90635_CTRL2_SOB_MASK, 1));
	if (ret < 0)
		return ret;

	msleep(refresh_time); /* Wait minimum time for dataset to be ready */

	ret = regmap_read_poll_timeout(data->regmap, MLX90635_REG_STATUS, reg_status,
				       (!(reg_status & MLX90635_STAT_END_CONV)) == 0,
				       MLX90635_TIMING_POLLING, MLX90635_READ_RETRIES * 10000);
	if (ret < 0) {
		dev_err(&data->client->dev, "data not ready");
		return -ETIMEDOUT;
	}

	return 0;
}

static int mlx90635_read_ambient_raw(struct regmap *regmap,
				     s16 *ambient_new_raw, s16 *ambient_old_raw)
{
	unsigned int read_tmp;
	int ret;

	ret = regmap_read(regmap, MLX90635_RESULT_2, &read_tmp);
	if (ret < 0)
		return ret;
	*ambient_new_raw = (s16)read_tmp;

	ret = regmap_read(regmap, MLX90635_RESULT_3, &read_tmp);
	if (ret < 0)
		return ret;
	*ambient_old_raw = (s16)read_tmp;

	return 0;
}

static int mlx90635_read_object_raw(struct regmap *regmap, s16 *object_raw)
{
	unsigned int read_tmp;
	s16 read;
	int ret;

	ret = regmap_read(regmap, MLX90635_RESULT_1, &read_tmp);
	if (ret < 0)
		return ret;

	read = (s16)read_tmp;

	ret = regmap_read(regmap, MLX90635_RESULT_4, &read_tmp);
	if (ret < 0)
		return ret;
	*object_raw = (read - (s16)read_tmp) / 2;

	return 0;
}

static int mlx90635_read_all_channel(struct mlx90635_data *data,
				     s16 *ambient_new_raw, s16 *ambient_old_raw,
				     s16 *object_raw)
{
	int ret;

	mutex_lock(&data->lock);
	if (data->powerstatus == MLX90635_PWR_STATUS_SLEEP_STEP) {
		/* Trigger measurement in Sleep Step mode */
		ret = mlx90635_perform_measurement_burst(data);
		if (ret < 0)
			goto read_unlock;
	}

	ret = mlx90635_read_ambient_raw(data->regmap, ambient_new_raw,
					ambient_old_raw);
	if (ret < 0)
		goto read_unlock;

	ret = mlx90635_read_object_raw(data->regmap, object_raw);
read_unlock:
	mutex_unlock(&data->lock);
	return ret;
}

static s64 mlx90635_preprocess_temp_amb(s16 ambient_new_raw,
					s16 ambient_old_raw, s16 Gb)
{
	s64 VR_Ta, kGb, tmp;

	kGb = ((s64)Gb * 1000LL) >> 10ULL;
	VR_Ta = (s64)ambient_old_raw * 1000000LL +
		kGb * div64_s64(((s64)ambient_new_raw * 1000LL),
			(MLX90635_PTAT_DIV));
	tmp = div64_s64(
			 div64_s64(((s64)ambient_new_raw * 1000000000000LL),
				   (MLX90635_PTAT_DIV)), VR_Ta);
	return div64_s64(tmp << 19ULL, 1000LL);
}

static s64 mlx90635_preprocess_temp_obj(s16 object_raw,
					s16 ambient_new_raw,
					s16 ambient_old_raw, s16 Gb)
{
	s64 VR_IR, kGb, tmp;

	kGb = ((s64)Gb * 1000LL) >> 10ULL;
	VR_IR = (s64)ambient_old_raw * 1000000LL +
		kGb * (div64_s64((s64)ambient_new_raw * 1000LL,
			MLX90635_PTAT_DIV));
	tmp = div64_s64(
			div64_s64((s64)(object_raw * 1000000LL),
				   MLX90635_IR_DIV) * 1000000LL,
			VR_IR);
	return div64_s64((tmp << 19ULL), 1000LL);
}

static s32 mlx90635_calc_temp_ambient(s16 ambient_new_raw, s16 ambient_old_raw,
				      u16 P_G, u16 P_O, s16 Gb)
{
	s64 kPG, kPO, AMB;

	AMB = mlx90635_preprocess_temp_amb(ambient_new_raw, ambient_old_raw,
					   Gb);
	kPG = ((s64)P_G * 1000000LL) >> 9ULL;
	kPO = AMB - (((s64)P_O * 1000LL) >> 1ULL);

	return 30 * 1000LL + div64_s64(kPO * 1000000LL, kPG);
}

static s32 mlx90635_calc_temp_object_iteration(s32 prev_object_temp, s64 object,
					       s64 TAdut, s64 TAdut4, s16 Ga,
					       u32 Fa, u16 Fa_scale, s16 Fb,
					       s16 Ha, s16 Hb, u16 emissivity)
{
	s64 calcedGa, calcedGb, calcedFa, Alpha_corr;
	s64 Ha_customer, Hb_customer;

	Ha_customer = ((s64)Ha * 1000000LL) >> 14ULL;
	Hb_customer = ((s64)Hb * 100) >> 10ULL;

	calcedGa = ((s64)((s64)Ga * (prev_object_temp - 35 * 1000LL)
			     * 1000LL)) >> 24LL;
	calcedGb = ((s64)(Fb * (TAdut - 30 * 1000000LL))) >> 24LL;

	Alpha_corr = ((s64)((s64)Fa * Ha_customer * 10000LL) >> Fa_scale);
	Alpha_corr *= ((s64)(1 * 1000000LL + calcedGa + calcedGb));

	Alpha_corr = div64_s64(Alpha_corr, 1000LL);
	Alpha_corr *= emissivity;
	Alpha_corr = div64_s64(Alpha_corr, 100LL);
	calcedFa = div64_s64((s64)object * 100000000000LL, Alpha_corr);

	return (int_sqrt64(int_sqrt64(calcedFa * 100000000LL + TAdut4))
		- 27315 - Hb_customer) * 10;
}

static s64 mlx90635_calc_ta4(s64 TAdut, s64 scale)
{
	return (div64_s64(TAdut, scale) + 27315) *
		(div64_s64(TAdut, scale) + 27315) *
		(div64_s64(TAdut, scale) + 27315) *
		(div64_s64(TAdut, scale) + 27315);
}

static s32 mlx90635_calc_temp_object(s64 object, s64 ambient, u32 Ea, u32 Eb,
				     s16 Ga, u32 Fa, u16 Fa_scale, s16 Fb, s16 Ha, s16 Hb,
				     u16 tmp_emi)
{
	s64 kTA, kTA0, TAdut, TAdut4;
	s64 temp = 35000;
	s8 i;

	kTA = (Ea * 1000LL) >> 16LL;
	kTA0 = (Eb * 1000LL) >> 8LL;
	TAdut = div64_s64(((ambient - kTA0) * 1000000LL), kTA) + 30 * 1000000LL;
	TAdut4 = mlx90635_calc_ta4(TAdut, 10000LL);

	/* Iterations of calculation as described in datasheet */
	for (i = 0; i < 5; ++i) {
		temp = mlx90635_calc_temp_object_iteration(temp, object, TAdut, TAdut4,
							   Ga, Fa, Fa_scale, Fb, Ha, Hb,
							   tmp_emi);
	}
	return temp;
}

static int mlx90635_calc_object(struct mlx90635_data *data, int *val)
{
	s16 ambient_new_raw, ambient_old_raw, object_raw;
	s16 Fb, Ga, Gb, Ha, Hb;
	s64 object, ambient;
	u32 Ea, Eb, Fa;
	u16 Fa_scale;
	int ret;

	ret = mlx90635_read_ee_object(data->regmap_ee, &Ea, &Eb, &Fa, &Fb, &Ga, &Gb, &Ha, &Hb, &Fa_scale);
	if (ret < 0)
		return ret;

	ret = mlx90635_read_all_channel(data,
					&ambient_new_raw, &ambient_old_raw,
					&object_raw);
	if (ret < 0)
		return ret;

	ambient = mlx90635_preprocess_temp_amb(ambient_new_raw,
					       ambient_old_raw, Gb);
	object = mlx90635_preprocess_temp_obj(object_raw,
					      ambient_new_raw,
					      ambient_old_raw, Gb);

	*val = mlx90635_calc_temp_object(object, ambient, Ea, Eb, Ga, Fa, Fa_scale, Fb,
					 Ha, Hb, data->emissivity);
	return 0;
}

static int mlx90635_calc_ambient(struct mlx90635_data *data, int *val)
{
	s16 ambient_new_raw, ambient_old_raw;
	s16 PG, PO, Gb;
	int ret;

	ret = mlx90635_read_ee_ambient(data->regmap_ee, &PG, &PO, &Gb);
	if (ret < 0)
		return ret;

	mutex_lock(&data->lock);
	if (data->powerstatus == MLX90635_PWR_STATUS_SLEEP_STEP) {
		ret = mlx90635_perform_measurement_burst(data);
		if (ret < 0)
			goto read_ambient_unlock;
	}

	ret = mlx90635_read_ambient_raw(data->regmap, &ambient_new_raw,
					&ambient_old_raw);
read_ambient_unlock:
	mutex_unlock(&data->lock);
	if (ret < 0)
		return ret;

	*val = mlx90635_calc_temp_ambient(ambient_new_raw, ambient_old_raw,
					  PG, PO, Gb);
	return ret;
}

static int mlx90635_get_refresh_rate(struct mlx90635_data *data,
				     unsigned int *refresh_rate)
{
	unsigned int reg;
	int ret;

	ret = regmap_read(data->regmap, MLX90635_REG_CTRL1, &reg);
	if (ret < 0)
		return ret;

	*refresh_rate = FIELD_GET(MLX90635_CTRL1_REFRESH_RATE_MASK, reg);

	return 0;
}

static const struct {
	int val;
	int val2;
} mlx90635_freqs[] = {
	{ 0, 200000 },
	{ 0, 500000 },
	{ 0, 900000 },
	{ 1, 700000 },
	{ 3, 0 },
	{ 4, 800000 },
	{ 6, 900000 },
	{ 8, 900000 }
};

/**
 * mlx90635_pm_interaction_wakeup() - Measure time between user interactions to change powermode
 * @data: pointer to mlx90635_data object containing interaction_ts information
 *
 * Switch to continuous mode when interaction is faster than MLX90635_MEAS_MAX_TIME. Update the
 * interaction_ts for each function call with the jiffies to enable measurement between function
 * calls. Initial value of the interaction_ts needs to be set before this function call.
 */
static int mlx90635_pm_interaction_wakeup(struct mlx90635_data *data)
{
	unsigned long now;
	int ret;

	now = jiffies;
	if (time_in_range(now, data->interaction_ts,
			  data->interaction_ts +
			  msecs_to_jiffies(MLX90635_MEAS_MAX_TIME + 100))) {
		ret = mlx90635_pwr_continuous(data);
		if (ret < 0)
			return ret;
	}

	data->interaction_ts = now;

	return 0;
}

static int mlx90635_read_raw(struct iio_dev *indio_dev,
			     struct iio_chan_spec const *channel, int *val,
			     int *val2, long mask)
{
	struct mlx90635_data *data = iio_priv(indio_dev);
	int ret;
	int cr;

	pm_runtime_get_sync(&data->client->dev);
	ret = mlx90635_pm_interaction_wakeup(data);
	if (ret < 0)
		goto mlx90635_read_raw_pm;

	switch (mask) {
	case IIO_CHAN_INFO_PROCESSED:
		switch (channel->channel2) {
		case IIO_MOD_TEMP_AMBIENT:
			ret = mlx90635_calc_ambient(data, val);
			if (ret < 0)
				goto mlx90635_read_raw_pm;

			ret = IIO_VAL_INT;
			break;
		case IIO_MOD_TEMP_OBJECT:
			ret = mlx90635_calc_object(data, val);
			if (ret < 0)
				goto mlx90635_read_raw_pm;

			ret = IIO_VAL_INT;
			break;
		default:
			ret = -EINVAL;
			break;
		}
		break;
	case IIO_CHAN_INFO_CALIBEMISSIVITY:
		if (data->emissivity == 1000) {
			*val = 1;
			*val2 = 0;
		} else {
			*val = 0;
			*val2 = data->emissivity * 1000;
		}
		ret = IIO_VAL_INT_PLUS_MICRO;
		break;
	case IIO_CHAN_INFO_SAMP_FREQ:
		ret = mlx90635_get_refresh_rate(data, &cr);
		if (ret < 0)
			goto mlx90635_read_raw_pm;

		*val = mlx90635_freqs[cr].val;
		*val2 = mlx90635_freqs[cr].val2;
		ret = IIO_VAL_INT_PLUS_MICRO;
		break;
	default:
		ret = -EINVAL;
		break;
	}

mlx90635_read_raw_pm:
	pm_runtime_mark_last_busy(&data->client->dev);
	pm_runtime_put_autosuspend(&data->client->dev);
	return ret;
}

static int mlx90635_write_raw(struct iio_dev *indio_dev,
			      struct iio_chan_spec const *channel, int val,
			      int val2, long mask)
{
	struct mlx90635_data *data = iio_priv(indio_dev);
	int ret;
	int i;

	switch (mask) {
	case IIO_CHAN_INFO_CALIBEMISSIVITY:
		/* Confirm we are within 0 and 1.0 */
		if (val < 0 || val2 < 0 || val > 1 ||
		    (val == 1 && val2 != 0))
			return -EINVAL;
		data->emissivity = val * 1000 + val2 / 1000;
		return 0;
	case IIO_CHAN_INFO_SAMP_FREQ:
		for (i = 0; i < ARRAY_SIZE(mlx90635_freqs); i++) {
			if (val == mlx90635_freqs[i].val &&
			    val2 == mlx90635_freqs[i].val2)
				break;
		}
		if (i == ARRAY_SIZE(mlx90635_freqs))
			return -EINVAL;

		ret = regmap_write_bits(data->regmap, MLX90635_REG_CTRL1,
					MLX90635_CTRL1_REFRESH_RATE_MASK, i);

		return ret;
	default:
		return -EINVAL;
	}
}

static int mlx90635_read_avail(struct iio_dev *indio_dev,
			       struct iio_chan_spec const *chan,
			       const int **vals, int *type, int *length,
			       long mask)
{
	switch (mask) {
	case IIO_CHAN_INFO_SAMP_FREQ:
		*vals = (int *)mlx90635_freqs;
		*type = IIO_VAL_INT_PLUS_MICRO;
		*length = 2 * ARRAY_SIZE(mlx90635_freqs);
		return IIO_AVAIL_LIST;
	default:
		return -EINVAL;
	}
}

static const struct iio_chan_spec mlx90635_channels[] = {
	{
		.type = IIO_TEMP,
		.modified = 1,
		.channel2 = IIO_MOD_TEMP_AMBIENT,
		.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED),
		.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),
		.info_mask_shared_by_all_available = BIT(IIO_CHAN_INFO_SAMP_FREQ),
	},
	{
		.type = IIO_TEMP,
		.modified = 1,
		.channel2 = IIO_MOD_TEMP_OBJECT,
		.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
			BIT(IIO_CHAN_INFO_CALIBEMISSIVITY),
		.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),
		.info_mask_shared_by_all_available = BIT(IIO_CHAN_INFO_SAMP_FREQ),
	},
};

static const struct iio_info mlx90635_info = {
	.read_raw = mlx90635_read_raw,
	.write_raw = mlx90635_write_raw,
	.read_avail = mlx90635_read_avail,
};

static void mlx90635_sleep(void *_data)
{
	struct mlx90635_data *data = _data;

	mlx90635_pwr_sleep_step(data);
}

static int mlx90635_suspend(struct mlx90635_data *data)
{
	return mlx90635_pwr_sleep_step(data);
}

static int mlx90635_wakeup(struct mlx90635_data *data)
{
	s16 Fb, Ga, Gb, Ha, Hb, PG, PO;
	unsigned int dsp_version;
	u32 Ea, Eb, Fa;
	u16 Fa_scale;
	int ret;

	regcache_cache_bypass(data->regmap_ee, false);
	regcache_cache_only(data->regmap_ee, false);
	regcache_cache_only(data->regmap, false);

	ret = mlx90635_pwr_continuous(data);
	if (ret < 0) {
		dev_err(&data->client->dev, "Switch to continuous mode failed\n");
		return ret;
	}
	ret = regmap_write_bits(data->regmap, MLX90635_REG_EE,
				MLX90635_EE_ACTIVE, MLX90635_EE_ACTIVE);
	if (ret < 0) {
		dev_err(&data->client->dev, "Powering EEPROM failed\n");
		return ret;
	}
	usleep_range(MLX90635_TIMING_EE_ACTIVE_MIN, MLX90635_TIMING_EE_ACTIVE_MAX);

	regcache_mark_dirty(data->regmap_ee);

	ret = regcache_sync(data->regmap_ee);
	if (ret < 0) {
		dev_err(&data->client->dev,
			"Failed to sync cache: %d\n", ret);
		return ret;
	}

	ret = mlx90635_read_ee_ambient(data->regmap_ee, &PG, &PO, &Gb);
	if (ret < 0) {
		dev_err(&data->client->dev,
			"Failed to read to cache Ambient coefficients EEPROM region: %d\n", ret);
		return ret;
	}

	ret = mlx90635_read_ee_object(data->regmap_ee, &Ea, &Eb, &Fa, &Fb, &Ga, &Gb, &Ha, &Hb, &Fa_scale);
	if (ret < 0) {
		dev_err(&data->client->dev,
			"Failed to read to cache Object coefficients EEPROM region: %d\n", ret);
		return ret;
	}

	ret = regmap_read(data->regmap_ee, MLX90635_EE_VERSION, &dsp_version);
	if (ret < 0) {
		dev_err(&data->client->dev,
			"Failed to read to cache of EEPROM version: %d\n", ret);
		return ret;
	}

	regcache_cache_only(data->regmap_ee, true);

	return ret;
}

static void mlx90635_disable_regulator(void *_data)
{
	struct mlx90635_data *data = _data;
	int ret;

	ret = regulator_disable(data->regulator);
	if (ret < 0)
		dev_err(regmap_get_device(data->regmap),
			"Failed to disable power regulator: %d\n", ret);
}

static int mlx90635_enable_regulator(struct mlx90635_data *data)
{
	int ret;

	ret = regulator_enable(data->regulator);
	if (ret < 0) {
		dev_err(regmap_get_device(data->regmap), "Failed to enable power regulator!\n");
		return ret;
	}

	mlx90635_reset_delay();

	return ret;
}

static int mlx90635_probe(struct i2c_client *client)
{
	struct mlx90635_data *mlx90635;
	struct iio_dev *indio_dev;
	unsigned int dsp_version;
	struct regmap *regmap;
	struct regmap *regmap_ee;
	int ret;

	indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*mlx90635));
	if (!indio_dev)
		return dev_err_probe(&client->dev, -ENOMEM, "failed to allocate device\n");

	regmap = devm_regmap_init_i2c(client, &mlx90635_regmap);
	if (IS_ERR(regmap))
		return dev_err_probe(&client->dev, PTR_ERR(regmap),
				     "failed to allocate regmap\n");

	regmap_ee = devm_regmap_init_i2c(client, &mlx90635_regmap_ee);
	if (IS_ERR(regmap))
		return dev_err_probe(&client->dev, PTR_ERR(regmap),
				     "failed to allocate regmap\n");

	mlx90635 = iio_priv(indio_dev);
	i2c_set_clientdata(client, indio_dev);
	mlx90635->client = client;
	mlx90635->regmap = regmap;
	mlx90635->regmap_ee = regmap_ee;
	mlx90635->powerstatus = MLX90635_PWR_STATUS_SLEEP_STEP;

	mutex_init(&mlx90635->lock);
	indio_dev->name = "mlx90635";
	indio_dev->modes = INDIO_DIRECT_MODE;
	indio_dev->info = &mlx90635_info;
	indio_dev->channels = mlx90635_channels;
	indio_dev->num_channels = ARRAY_SIZE(mlx90635_channels);

	mlx90635->regulator = devm_regulator_get(&client->dev, "vdd");
	if (IS_ERR(mlx90635->regulator))
		return dev_err_probe(&client->dev, PTR_ERR(mlx90635->regulator),
				     "failed to get vdd regulator");

	ret = mlx90635_enable_regulator(mlx90635);
	if (ret < 0)
		return ret;

	ret = devm_add_action_or_reset(&client->dev, mlx90635_disable_regulator,
				       mlx90635);
	if (ret < 0)
		return dev_err_probe(&client->dev, ret,
				     "failed to setup regulator cleanup action\n");

	ret = mlx90635_wakeup(mlx90635);
	if (ret < 0)
		return dev_err_probe(&client->dev, ret, "wakeup failed\n");

	ret = devm_add_action_or_reset(&client->dev, mlx90635_sleep, mlx90635);
	if (ret < 0)
		return dev_err_probe(&client->dev, ret,
				     "failed to setup low power cleanup\n");

	ret = regmap_read(mlx90635->regmap_ee, MLX90635_EE_VERSION, &dsp_version);
	if (ret < 0)
		return dev_err_probe(&client->dev, ret, "read of version failed\n");

	dsp_version = dsp_version & MLX90635_VERSION_MASK;

	if (FIELD_GET(MLX90635_DSP_FIXED, dsp_version)) {
		if (MLX90635_DSP_VERSION(dsp_version) == MLX90635_ID_DSPv1) {
			dev_dbg(&client->dev,
				"Detected DSP v1 calibration %x\n", dsp_version);
		} else {
			dev_dbg(&client->dev,
				"Detected Unknown EEPROM calibration %lx\n",
				MLX90635_DSP_VERSION(dsp_version));
		}
	} else {
		return dev_err_probe(&client->dev, -EPROTONOSUPPORT,
			"Wrong fixed top bit %x (expected 0x8X0X)\n",
			dsp_version);
	}

	mlx90635->emissivity = 1000;
	mlx90635->interaction_ts = jiffies; /* Set initial value */

	pm_runtime_get_noresume(&client->dev);
	pm_runtime_set_active(&client->dev);

	ret = devm_pm_runtime_enable(&client->dev);
	if (ret)
		return dev_err_probe(&client->dev, ret,
				     "failed to enable powermanagement\n");

	pm_runtime_set_autosuspend_delay(&client->dev, MLX90635_SLEEP_DELAY_MS);
	pm_runtime_use_autosuspend(&client->dev);
	pm_runtime_put_autosuspend(&client->dev);

	return devm_iio_device_register(&client->dev, indio_dev);
}

static const struct i2c_device_id mlx90635_id[] = {
	{ "mlx90635" },
	{ }
};
MODULE_DEVICE_TABLE(i2c, mlx90635_id);

static const struct of_device_id mlx90635_of_match[] = {
	{ .compatible = "melexis,mlx90635" },
	{ }
};
MODULE_DEVICE_TABLE(of, mlx90635_of_match);

static int mlx90635_pm_suspend(struct device *dev)
{
	struct mlx90635_data *data = iio_priv(dev_get_drvdata(dev));
	int ret;

	ret = mlx90635_suspend(data);
	if (ret < 0)
		return ret;

	ret = regulator_disable(data->regulator);
	if (ret < 0)
		dev_err(regmap_get_device(data->regmap),
			"Failed to disable power regulator: %d\n", ret);

	return ret;
}

static int mlx90635_pm_resume(struct device *dev)
{
	struct mlx90635_data *data = iio_priv(dev_get_drvdata(dev));
	int ret;

	ret = mlx90635_enable_regulator(data);
	if (ret < 0)
		return ret;

	return mlx90635_wakeup(data);
}

static int mlx90635_pm_runtime_suspend(struct device *dev)
{
	struct mlx90635_data *data = iio_priv(dev_get_drvdata(dev));

	return mlx90635_pwr_sleep_step(data);
}

static const struct dev_pm_ops mlx90635_pm_ops = {
	SYSTEM_SLEEP_PM_OPS(mlx90635_pm_suspend, mlx90635_pm_resume)
	RUNTIME_PM_OPS(mlx90635_pm_runtime_suspend, NULL, NULL)
};

static struct i2c_driver mlx90635_driver = {
	.driver = {
		.name	= "mlx90635",
		.of_match_table = mlx90635_of_match,
		.pm	= pm_ptr(&mlx90635_pm_ops),
	},
	.probe = mlx90635_probe,
	.id_table = mlx90635_id,
};
module_i2c_driver(mlx90635_driver);

MODULE_AUTHOR("Crt Mori <cmo@melexis.com>");
MODULE_DESCRIPTION("Melexis MLX90635 contactless Infra Red temperature sensor driver");
MODULE_LICENSE("GPL");