Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 | // SPDX-License-Identifier: GPL-2.0-only /* * ROHM Colour Sensor driver for * - BU27008 RGBC sensor * - BU27010 RGBC + Flickering sensor * * Copyright (c) 2023, ROHM Semiconductor. */ #include <linux/bitfield.h> #include <linux/bitops.h> #include <linux/device.h> #include <linux/i2c.h> #include <linux/interrupt.h> #include <linux/module.h> #include <linux/property.h> #include <linux/regmap.h> #include <linux/regulator/consumer.h> #include <linux/units.h> #include <linux/iio/iio.h> #include <linux/iio/iio-gts-helper.h> #include <linux/iio/trigger.h> #include <linux/iio/trigger_consumer.h> #include <linux/iio/triggered_buffer.h> /* * A word about register address and mask definitions. * * At a quick glance to the data-sheet register tables, the BU27010 has all the * registers that the BU27008 has. On top of that the BU27010 adds couple of new * ones. * * So, all definitions BU27008_REG_* are there also for BU27010 but none of the * BU27010_REG_* are present on BU27008. This makes sense as BU27010 just adds * some features (Flicker FIFO, more power control) on top of the BU27008. * * Unfortunately, some of the wheel has been re-invented. Even though the names * of the registers have stayed the same, pretty much all of the functionality * provided by the registers has changed place. Contents of all MODE_CONTROL * registers on BU27008 and BU27010 are different. * * Chip-specific mapping from register addresses/bits to functionality is done * in bu27_chip_data structures. */ #define BU27008_REG_SYSTEM_CONTROL 0x40 #define BU27008_MASK_SW_RESET BIT(7) #define BU27008_MASK_PART_ID GENMASK(5, 0) #define BU27008_ID 0x1a #define BU27008_REG_MODE_CONTROL1 0x41 #define BU27008_MASK_MEAS_MODE GENMASK(2, 0) #define BU27008_MASK_CHAN_SEL GENMASK(3, 2) #define BU27008_REG_MODE_CONTROL2 0x42 #define BU27008_MASK_RGBC_GAIN GENMASK(7, 3) #define BU27008_MASK_IR_GAIN_LO GENMASK(2, 0) #define BU27008_SHIFT_IR_GAIN 3 #define BU27008_REG_MODE_CONTROL3 0x43 #define BU27008_MASK_VALID BIT(7) #define BU27008_MASK_INT_EN BIT(1) #define BU27008_INT_EN BU27008_MASK_INT_EN #define BU27008_INT_DIS 0 #define BU27008_MASK_MEAS_EN BIT(0) #define BU27008_MEAS_EN BIT(0) #define BU27008_MEAS_DIS 0 #define BU27008_REG_DATA0_LO 0x50 #define BU27008_REG_DATA1_LO 0x52 #define BU27008_REG_DATA2_LO 0x54 #define BU27008_REG_DATA3_LO 0x56 #define BU27008_REG_DATA3_HI 0x57 #define BU27008_REG_MANUFACTURER_ID 0x92 #define BU27008_REG_MAX BU27008_REG_MANUFACTURER_ID /* BU27010 specific definitions */ #define BU27010_MASK_SW_RESET BIT(7) #define BU27010_ID 0x1b #define BU27010_REG_POWER 0x3e #define BU27010_MASK_POWER BIT(0) #define BU27010_REG_RESET 0x3f #define BU27010_MASK_RESET BIT(0) #define BU27010_RESET_RELEASE BU27010_MASK_RESET #define BU27010_MASK_MEAS_EN BIT(1) #define BU27010_MASK_CHAN_SEL GENMASK(7, 6) #define BU27010_MASK_MEAS_MODE GENMASK(5, 4) #define BU27010_MASK_RGBC_GAIN GENMASK(3, 0) #define BU27010_MASK_DATA3_GAIN GENMASK(7, 6) #define BU27010_MASK_DATA2_GAIN GENMASK(5, 4) #define BU27010_MASK_DATA1_GAIN GENMASK(3, 2) #define BU27010_MASK_DATA0_GAIN GENMASK(1, 0) #define BU27010_MASK_FLC_MODE BIT(7) #define BU27010_MASK_FLC_GAIN GENMASK(4, 0) #define BU27010_REG_MODE_CONTROL4 0x44 /* If flicker is ever to be supported the IRQ must be handled as a field */ #define BU27010_IRQ_DIS_ALL GENMASK(1, 0) #define BU27010_DRDY_EN BIT(0) #define BU27010_MASK_INT_SEL GENMASK(1, 0) #define BU27010_REG_MODE_CONTROL5 0x45 #define BU27010_MASK_RGB_VALID BIT(7) #define BU27010_MASK_FLC_VALID BIT(6) #define BU27010_MASK_WAIT_EN BIT(3) #define BU27010_MASK_FIFO_EN BIT(2) #define BU27010_MASK_RGB_EN BIT(1) #define BU27010_MASK_FLC_EN BIT(0) #define BU27010_REG_DATA_FLICKER_LO 0x56 #define BU27010_MASK_DATA_FLICKER_HI GENMASK(2, 0) #define BU27010_REG_FLICKER_COUNT 0x5a #define BU27010_REG_FIFO_LEVEL_LO 0x5b #define BU27010_MASK_FIFO_LEVEL_HI BIT(0) #define BU27010_REG_FIFO_DATA_LO 0x5d #define BU27010_REG_FIFO_DATA_HI 0x5e #define BU27010_MASK_FIFO_DATA_HI GENMASK(2, 0) #define BU27010_REG_MANUFACTURER_ID 0x92 #define BU27010_REG_MAX BU27010_REG_MANUFACTURER_ID /** * enum bu27008_chan_type - BU27008 channel types * @BU27008_RED: Red channel. Always via data0. * @BU27008_GREEN: Green channel. Always via data1. * @BU27008_BLUE: Blue channel. Via data2 (when used). * @BU27008_CLEAR: Clear channel. Via data2 or data3 (when used). * @BU27008_IR: IR channel. Via data3 (when used). * @BU27008_LUX: Illuminance channel, computed using RGB and IR. * @BU27008_NUM_CHANS: Number of channel types. */ enum bu27008_chan_type { BU27008_RED, BU27008_GREEN, BU27008_BLUE, BU27008_CLEAR, BU27008_IR, BU27008_LUX, BU27008_NUM_CHANS }; /** * enum bu27008_chan - BU27008 physical data channel * @BU27008_DATA0: Always red. * @BU27008_DATA1: Always green. * @BU27008_DATA2: Blue or clear. * @BU27008_DATA3: IR or clear. * @BU27008_NUM_HW_CHANS: Number of physical channels */ enum bu27008_chan { BU27008_DATA0, BU27008_DATA1, BU27008_DATA2, BU27008_DATA3, BU27008_NUM_HW_CHANS }; /* We can always measure red and green at same time */ #define ALWAYS_SCANNABLE (BIT(BU27008_RED) | BIT(BU27008_GREEN)) /* We use these data channel configs. Ensure scan_masks below follow them too */ #define BU27008_BLUE2_CLEAR3 0x0 /* buffer is R, G, B, C */ #define BU27008_CLEAR2_IR3 0x1 /* buffer is R, G, C, IR */ #define BU27008_BLUE2_IR3 0x2 /* buffer is R, G, B, IR */ static const unsigned long bu27008_scan_masks[] = { /* buffer is R, G, B, C */ ALWAYS_SCANNABLE | BIT(BU27008_BLUE) | BIT(BU27008_CLEAR), /* buffer is R, G, C, IR */ ALWAYS_SCANNABLE | BIT(BU27008_CLEAR) | BIT(BU27008_IR), /* buffer is R, G, B, IR */ ALWAYS_SCANNABLE | BIT(BU27008_BLUE) | BIT(BU27008_IR), /* buffer is R, G, B, IR, LUX */ ALWAYS_SCANNABLE | BIT(BU27008_BLUE) | BIT(BU27008_IR) | BIT(BU27008_LUX), 0 }; /* * Available scales with gain 1x - 1024x, timings 55, 100, 200, 400 mS * Time impacts to gain: 1x, 2x, 4x, 8x. * * => Max total gain is HWGAIN * gain by integration time (8 * 1024) = 8192 * * Max amplification is (HWGAIN * MAX integration-time multiplier) 1024 * 8 * = 8192. With NANO scale we get rid of accuracy loss when we start with the * scale 16.0 for HWGAIN1, INT-TIME 55 mS. This way the nano scale for MAX * total gain 8192 will be 1953125 */ #define BU27008_SCALE_1X 16 /* * On BU27010 available scales with gain 1x - 4096x, * timings 55, 100, 200, 400 mS. Time impacts to gain: 1x, 2x, 4x, 8x. * * => Max total gain is HWGAIN * gain by integration time (8 * 4096) * * Using NANO precision for scale we must use scale 64x corresponding gain 1x * to avoid precision loss. */ #define BU27010_SCALE_1X 64 /* See the data sheet for the "Gain Setting" table */ #define BU27008_GSEL_1X 0x00 #define BU27008_GSEL_4X 0x08 #define BU27008_GSEL_8X 0x09 #define BU27008_GSEL_16X 0x0a #define BU27008_GSEL_32X 0x0b #define BU27008_GSEL_64X 0x0c #define BU27008_GSEL_256X 0x18 #define BU27008_GSEL_512X 0x19 #define BU27008_GSEL_1024X 0x1a static const struct iio_gain_sel_pair bu27008_gains[] = { GAIN_SCALE_GAIN(1, BU27008_GSEL_1X), GAIN_SCALE_GAIN(4, BU27008_GSEL_4X), GAIN_SCALE_GAIN(8, BU27008_GSEL_8X), GAIN_SCALE_GAIN(16, BU27008_GSEL_16X), GAIN_SCALE_GAIN(32, BU27008_GSEL_32X), GAIN_SCALE_GAIN(64, BU27008_GSEL_64X), GAIN_SCALE_GAIN(256, BU27008_GSEL_256X), GAIN_SCALE_GAIN(512, BU27008_GSEL_512X), GAIN_SCALE_GAIN(1024, BU27008_GSEL_1024X), }; static const struct iio_gain_sel_pair bu27008_gains_ir[] = { GAIN_SCALE_GAIN(2, BU27008_GSEL_1X), GAIN_SCALE_GAIN(4, BU27008_GSEL_4X), GAIN_SCALE_GAIN(8, BU27008_GSEL_8X), GAIN_SCALE_GAIN(16, BU27008_GSEL_16X), GAIN_SCALE_GAIN(32, BU27008_GSEL_32X), GAIN_SCALE_GAIN(64, BU27008_GSEL_64X), GAIN_SCALE_GAIN(256, BU27008_GSEL_256X), GAIN_SCALE_GAIN(512, BU27008_GSEL_512X), GAIN_SCALE_GAIN(1024, BU27008_GSEL_1024X), }; #define BU27010_GSEL_1X 0x00 /* 000000 */ #define BU27010_GSEL_4X 0x08 /* 001000 */ #define BU27010_GSEL_16X 0x09 /* 001001 */ #define BU27010_GSEL_64X 0x0e /* 001110 */ #define BU27010_GSEL_256X 0x1e /* 011110 */ #define BU27010_GSEL_1024X 0x2e /* 101110 */ #define BU27010_GSEL_4096X 0x3f /* 111111 */ static const struct iio_gain_sel_pair bu27010_gains[] = { GAIN_SCALE_GAIN(1, BU27010_GSEL_1X), GAIN_SCALE_GAIN(4, BU27010_GSEL_4X), GAIN_SCALE_GAIN(16, BU27010_GSEL_16X), GAIN_SCALE_GAIN(64, BU27010_GSEL_64X), GAIN_SCALE_GAIN(256, BU27010_GSEL_256X), GAIN_SCALE_GAIN(1024, BU27010_GSEL_1024X), GAIN_SCALE_GAIN(4096, BU27010_GSEL_4096X), }; static const struct iio_gain_sel_pair bu27010_gains_ir[] = { GAIN_SCALE_GAIN(2, BU27010_GSEL_1X), GAIN_SCALE_GAIN(4, BU27010_GSEL_4X), GAIN_SCALE_GAIN(16, BU27010_GSEL_16X), GAIN_SCALE_GAIN(64, BU27010_GSEL_64X), GAIN_SCALE_GAIN(256, BU27010_GSEL_256X), GAIN_SCALE_GAIN(1024, BU27010_GSEL_1024X), GAIN_SCALE_GAIN(4096, BU27010_GSEL_4096X), }; #define BU27008_MEAS_MODE_100MS 0x00 #define BU27008_MEAS_MODE_55MS 0x01 #define BU27008_MEAS_MODE_200MS 0x02 #define BU27008_MEAS_MODE_400MS 0x04 #define BU27010_MEAS_MODE_100MS 0x00 #define BU27010_MEAS_MODE_55MS 0x03 #define BU27010_MEAS_MODE_200MS 0x01 #define BU27010_MEAS_MODE_400MS 0x02 #define BU27008_MEAS_TIME_MAX_MS 400 static const struct iio_itime_sel_mul bu27008_itimes[] = { GAIN_SCALE_ITIME_US(400000, BU27008_MEAS_MODE_400MS, 8), GAIN_SCALE_ITIME_US(200000, BU27008_MEAS_MODE_200MS, 4), GAIN_SCALE_ITIME_US(100000, BU27008_MEAS_MODE_100MS, 2), GAIN_SCALE_ITIME_US(55000, BU27008_MEAS_MODE_55MS, 1), }; static const struct iio_itime_sel_mul bu27010_itimes[] = { GAIN_SCALE_ITIME_US(400000, BU27010_MEAS_MODE_400MS, 8), GAIN_SCALE_ITIME_US(200000, BU27010_MEAS_MODE_200MS, 4), GAIN_SCALE_ITIME_US(100000, BU27010_MEAS_MODE_100MS, 2), GAIN_SCALE_ITIME_US(55000, BU27010_MEAS_MODE_55MS, 1), }; /* * All the RGBC channels share the same gain. * IR gain can be fine-tuned from the gain set for the RGBC by 2 bit, but this * would yield quite complex gain setting. Especially since not all bit * compinations are supported. And in any case setting GAIN for RGBC will * always also change the IR-gain. * * On top of this, the selector '0' which corresponds to hw-gain 1X on RGBC, * corresponds to gain 2X on IR. Rest of the selctors correspond to same gains * though. This, however, makes it not possible to use shared gain for all * RGBC and IR settings even though they are all changed at the one go. */ #define BU27008_CHAN(color, data, separate_avail) \ { \ .type = IIO_INTENSITY, \ .modified = 1, \ .channel2 = IIO_MOD_LIGHT_##color, \ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \ BIT(IIO_CHAN_INFO_SCALE), \ .info_mask_separate_available = (separate_avail), \ .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_INT_TIME), \ .info_mask_shared_by_all_available = BIT(IIO_CHAN_INFO_INT_TIME), \ .address = BU27008_REG_##data##_LO, \ .scan_index = BU27008_##color, \ .scan_type = { \ .sign = 'u', \ .realbits = 16, \ .storagebits = 16, \ .endianness = IIO_LE, \ }, \ } /* For raw reads we always configure DATA3 for CLEAR */ static const struct iio_chan_spec bu27008_channels[] = { BU27008_CHAN(RED, DATA0, BIT(IIO_CHAN_INFO_SCALE)), BU27008_CHAN(GREEN, DATA1, BIT(IIO_CHAN_INFO_SCALE)), BU27008_CHAN(BLUE, DATA2, BIT(IIO_CHAN_INFO_SCALE)), BU27008_CHAN(CLEAR, DATA2, BIT(IIO_CHAN_INFO_SCALE)), /* * We don't allow setting scale for IR (because of shared gain bits). * Hence we don't advertise available ones either. */ BU27008_CHAN(IR, DATA3, 0), { .type = IIO_LIGHT, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE), .channel = BU27008_LUX, .scan_index = BU27008_LUX, .scan_type = { .sign = 'u', .realbits = 64, .storagebits = 64, .endianness = IIO_CPU, }, }, IIO_CHAN_SOFT_TIMESTAMP(BU27008_NUM_CHANS), }; struct bu27008_data; struct bu27_chip_data { const char *name; int (*chip_init)(struct bu27008_data *data); int (*get_gain_sel)(struct bu27008_data *data, int *sel); int (*write_gain_sel)(struct bu27008_data *data, int sel); const struct regmap_config *regmap_cfg; const struct iio_gain_sel_pair *gains; const struct iio_gain_sel_pair *gains_ir; const struct iio_itime_sel_mul *itimes; int num_gains; int num_gains_ir; int num_itimes; int scale1x; int drdy_en_reg; int drdy_en_mask; int meas_en_reg; int meas_en_mask; int valid_reg; int chan_sel_reg; int chan_sel_mask; int int_time_mask; u8 part_id; }; struct bu27008_data { const struct bu27_chip_data *cd; struct regmap *regmap; struct iio_trigger *trig; struct device *dev; struct iio_gts gts; struct iio_gts gts_ir; int irq; /* * Prevent changing gain/time config when scale is read/written. * Similarly, protect the integration_time read/change sequence. * Prevent changing gain/time when data is read. */ struct mutex mutex; }; static const struct regmap_range bu27008_volatile_ranges[] = { { .range_min = BU27008_REG_SYSTEM_CONTROL, /* SWRESET */ .range_max = BU27008_REG_SYSTEM_CONTROL, }, { .range_min = BU27008_REG_MODE_CONTROL3, /* VALID */ .range_max = BU27008_REG_MODE_CONTROL3, }, { .range_min = BU27008_REG_DATA0_LO, /* DATA */ .range_max = BU27008_REG_DATA3_HI, }, }; static const struct regmap_range bu27010_volatile_ranges[] = { { .range_min = BU27010_REG_RESET, /* RSTB */ .range_max = BU27008_REG_SYSTEM_CONTROL, /* RESET */ }, { .range_min = BU27010_REG_MODE_CONTROL5, /* VALID bits */ .range_max = BU27010_REG_MODE_CONTROL5, }, { .range_min = BU27008_REG_DATA0_LO, .range_max = BU27010_REG_FIFO_DATA_HI, }, }; static const struct regmap_access_table bu27008_volatile_regs = { .yes_ranges = &bu27008_volatile_ranges[0], .n_yes_ranges = ARRAY_SIZE(bu27008_volatile_ranges), }; static const struct regmap_access_table bu27010_volatile_regs = { .yes_ranges = &bu27010_volatile_ranges[0], .n_yes_ranges = ARRAY_SIZE(bu27010_volatile_ranges), }; static const struct regmap_range bu27008_read_only_ranges[] = { { .range_min = BU27008_REG_DATA0_LO, .range_max = BU27008_REG_DATA3_HI, }, { .range_min = BU27008_REG_MANUFACTURER_ID, .range_max = BU27008_REG_MANUFACTURER_ID, }, }; static const struct regmap_range bu27010_read_only_ranges[] = { { .range_min = BU27008_REG_DATA0_LO, .range_max = BU27010_REG_FIFO_DATA_HI, }, { .range_min = BU27010_REG_MANUFACTURER_ID, .range_max = BU27010_REG_MANUFACTURER_ID, } }; static const struct regmap_access_table bu27008_ro_regs = { .no_ranges = &bu27008_read_only_ranges[0], .n_no_ranges = ARRAY_SIZE(bu27008_read_only_ranges), }; static const struct regmap_access_table bu27010_ro_regs = { .no_ranges = &bu27010_read_only_ranges[0], .n_no_ranges = ARRAY_SIZE(bu27010_read_only_ranges), }; static const struct regmap_config bu27008_regmap = { .reg_bits = 8, .val_bits = 8, .max_register = BU27008_REG_MAX, .cache_type = REGCACHE_RBTREE, .volatile_table = &bu27008_volatile_regs, .wr_table = &bu27008_ro_regs, /* * All register writes are serialized by the mutex which protects the * scale setting/getting. This is needed because scale is combined by * gain and integration time settings and we need to ensure those are * not read / written when scale is being computed. * * As a result of this serializing, we don't need regmap locking. Note, * this is not true if we add any configurations which are not * serialized by the mutex and which may need for example a protected * read-modify-write cycle (eg. regmap_update_bits()). Please, revise * this when adding features to the driver. */ .disable_locking = true, }; static const struct regmap_config bu27010_regmap = { .reg_bits = 8, .val_bits = 8, .max_register = BU27010_REG_MAX, .cache_type = REGCACHE_RBTREE, .volatile_table = &bu27010_volatile_regs, .wr_table = &bu27010_ro_regs, .disable_locking = true, }; static int bu27008_write_gain_sel(struct bu27008_data *data, int sel) { int regval; regval = FIELD_PREP(BU27008_MASK_RGBC_GAIN, sel); /* * We do always set also the LOW bits of IR-gain because othervice we * would risk resulting an invalid GAIN register value. * * We could allow setting separate gains for RGBC and IR when the * values were such that HW could support both gain settings. * Eg, when the shared bits were same for both gain values. * * This, however, has a negligible benefit compared to the increased * software complexity when we would need to go through the gains * for both channels separately when the integration time changes. * This would end up with nasty logic for computing gain values for * both channels - and rejecting them if shared bits changed. * * We should then build the logic by guessing what a user prefers. * RGBC or IR gains correctly set while other jumps to odd value? * Maybe look-up a value where both gains are somehow optimized * <what this somehow is, is ATM unknown to us>. Or maybe user would * expect us to reject changes when optimal gains can't be set to both * channels w/given integration time. At best that would result * solution that works well for a very specific subset of * configurations but causes unexpected corner-cases. * * So, we keep it simple. Always set same selector to IR and RGBC. * We disallow setting IR (as I expect that most of the users are * interested in RGBC). This way we can show the user that the scales * for RGBC and IR channels are different (1X Vs 2X with sel 0) while * still keeping the operation deterministic. */ regval |= FIELD_PREP(BU27008_MASK_IR_GAIN_LO, sel); return regmap_update_bits(data->regmap, BU27008_REG_MODE_CONTROL2, BU27008_MASK_RGBC_GAIN, regval); } static int bu27010_write_gain_sel(struct bu27008_data *data, int sel) { unsigned int regval; int ret, chan_selector; /* * Gain 'selector' is composed of two registers. Selector is 6bit value, * 4 high bits being the RGBC gain fieild in MODE_CONTROL1 register and * two low bits being the channel specific gain in MODE_CONTROL2. * * Let's take the 4 high bits of whole 6 bit selector, and prepare * the MODE_CONTROL1 value (RGBC gain part). */ regval = FIELD_PREP(BU27010_MASK_RGBC_GAIN, (sel >> 2)); ret = regmap_update_bits(data->regmap, BU27008_REG_MODE_CONTROL1, BU27010_MASK_RGBC_GAIN, regval); if (ret) return ret; /* * Two low two bits of the selector must be written for all 4 * channels in the MODE_CONTROL2 register. Copy these two bits for * all channels. */ chan_selector = sel & GENMASK(1, 0); regval = FIELD_PREP(BU27010_MASK_DATA0_GAIN, chan_selector); regval |= FIELD_PREP(BU27010_MASK_DATA1_GAIN, chan_selector); regval |= FIELD_PREP(BU27010_MASK_DATA2_GAIN, chan_selector); regval |= FIELD_PREP(BU27010_MASK_DATA3_GAIN, chan_selector); return regmap_write(data->regmap, BU27008_REG_MODE_CONTROL2, regval); } static int bu27008_get_gain_sel(struct bu27008_data *data, int *sel) { int ret; /* * If we always "lock" the gain selectors for all channels to prevent * unsupported configs, then it does not matter which channel is used * we can just return selector from any of them. * * This, however is not true if we decide to support only 4X and 16X * and then individual gains for channels. Currently this is not the * case. * * If we some day decide to support individual gains, then we need to * have channel information here. */ ret = regmap_read(data->regmap, BU27008_REG_MODE_CONTROL2, sel); if (ret) return ret; *sel = FIELD_GET(BU27008_MASK_RGBC_GAIN, *sel); return 0; } static int bu27010_get_gain_sel(struct bu27008_data *data, int *sel) { int ret, tmp; /* * We always "lock" the gain selectors for all channels to prevent * unsupported configs. It does not matter which channel is used * we can just return selector from any of them. * * Read the channel0 gain. */ ret = regmap_read(data->regmap, BU27008_REG_MODE_CONTROL2, sel); if (ret) return ret; *sel = FIELD_GET(BU27010_MASK_DATA0_GAIN, *sel); /* Read the shared gain */ ret = regmap_read(data->regmap, BU27008_REG_MODE_CONTROL1, &tmp); if (ret) return ret; /* * The gain selector is made as a combination of common RGBC gain and * the channel specific gain. The channel specific gain forms the low * bits of selector and RGBC gain is appended right after it. * * Compose the selector from channel0 gain and shared RGBC gain. */ *sel |= FIELD_GET(BU27010_MASK_RGBC_GAIN, tmp) << fls(BU27010_MASK_DATA0_GAIN); return ret; } static int bu27008_chip_init(struct bu27008_data *data) { int ret; ret = regmap_write_bits(data->regmap, BU27008_REG_SYSTEM_CONTROL, BU27008_MASK_SW_RESET, BU27008_MASK_SW_RESET); if (ret) return dev_err_probe(data->dev, ret, "Sensor reset failed\n"); /* * The data-sheet does not tell how long performing the IC reset takes. * However, the data-sheet says the minimum time it takes the IC to be * able to take inputs after power is applied, is 100 uS. I'd assume * > 1 mS is enough. */ msleep(1); ret = regmap_reinit_cache(data->regmap, data->cd->regmap_cfg); if (ret) dev_err(data->dev, "Failed to reinit reg cache\n"); return ret; } static int bu27010_chip_init(struct bu27008_data *data) { int ret; ret = regmap_write_bits(data->regmap, BU27008_REG_SYSTEM_CONTROL, BU27010_MASK_SW_RESET, BU27010_MASK_SW_RESET); if (ret) return dev_err_probe(data->dev, ret, "Sensor reset failed\n"); msleep(1); /* Power ON*/ ret = regmap_write_bits(data->regmap, BU27010_REG_POWER, BU27010_MASK_POWER, BU27010_MASK_POWER); if (ret) return dev_err_probe(data->dev, ret, "Sensor power-on failed\n"); msleep(1); /* Release blocks from reset */ ret = regmap_write_bits(data->regmap, BU27010_REG_RESET, BU27010_MASK_RESET, BU27010_RESET_RELEASE); if (ret) return dev_err_probe(data->dev, ret, "Sensor powering failed\n"); msleep(1); /* * The IRQ enabling on BU27010 is done in a peculiar way. The IRQ * enabling is not a bit mask where individual IRQs could be enabled but * a field which values are: * 00 => IRQs disabled * 01 => Data-ready (RGBC/IR) * 10 => Data-ready (flicker) * 11 => Flicker FIFO * * So, only one IRQ can be enabled at a time and enabling for example * flicker FIFO would automagically disable data-ready IRQ. * * Currently the driver does not support the flicker. Hence, we can * just treat the RGBC data-ready as single bit which can be enabled / * disabled. This works for as long as the second bit in the field * stays zero. Here we ensure it gets zeroed. */ return regmap_clear_bits(data->regmap, BU27010_REG_MODE_CONTROL4, BU27010_IRQ_DIS_ALL); } static const struct bu27_chip_data bu27010_chip = { .name = "bu27010", .chip_init = bu27010_chip_init, .get_gain_sel = bu27010_get_gain_sel, .write_gain_sel = bu27010_write_gain_sel, .regmap_cfg = &bu27010_regmap, .gains = &bu27010_gains[0], .gains_ir = &bu27010_gains_ir[0], .itimes = &bu27010_itimes[0], .num_gains = ARRAY_SIZE(bu27010_gains), .num_gains_ir = ARRAY_SIZE(bu27010_gains_ir), .num_itimes = ARRAY_SIZE(bu27010_itimes), .scale1x = BU27010_SCALE_1X, .drdy_en_reg = BU27010_REG_MODE_CONTROL4, .drdy_en_mask = BU27010_DRDY_EN, .meas_en_reg = BU27010_REG_MODE_CONTROL5, .meas_en_mask = BU27010_MASK_MEAS_EN, .valid_reg = BU27010_REG_MODE_CONTROL5, .chan_sel_reg = BU27008_REG_MODE_CONTROL1, .chan_sel_mask = BU27010_MASK_CHAN_SEL, .int_time_mask = BU27010_MASK_MEAS_MODE, .part_id = BU27010_ID, }; static const struct bu27_chip_data bu27008_chip = { .name = "bu27008", .chip_init = bu27008_chip_init, .get_gain_sel = bu27008_get_gain_sel, .write_gain_sel = bu27008_write_gain_sel, .regmap_cfg = &bu27008_regmap, .gains = &bu27008_gains[0], .gains_ir = &bu27008_gains_ir[0], .itimes = &bu27008_itimes[0], .num_gains = ARRAY_SIZE(bu27008_gains), .num_gains_ir = ARRAY_SIZE(bu27008_gains_ir), .num_itimes = ARRAY_SIZE(bu27008_itimes), .scale1x = BU27008_SCALE_1X, .drdy_en_reg = BU27008_REG_MODE_CONTROL3, .drdy_en_mask = BU27008_MASK_INT_EN, .valid_reg = BU27008_REG_MODE_CONTROL3, .meas_en_reg = BU27008_REG_MODE_CONTROL3, .meas_en_mask = BU27008_MASK_MEAS_EN, .chan_sel_reg = BU27008_REG_MODE_CONTROL3, .chan_sel_mask = BU27008_MASK_CHAN_SEL, .int_time_mask = BU27008_MASK_MEAS_MODE, .part_id = BU27008_ID, }; #define BU27008_MAX_VALID_RESULT_WAIT_US 50000 #define BU27008_VALID_RESULT_WAIT_QUANTA_US 1000 static int bu27008_chan_read_data(struct bu27008_data *data, int reg, int *val) { int ret, valid; __le16 tmp; ret = regmap_read_poll_timeout(data->regmap, data->cd->valid_reg, valid, (valid & BU27008_MASK_VALID), BU27008_VALID_RESULT_WAIT_QUANTA_US, BU27008_MAX_VALID_RESULT_WAIT_US); if (ret) return ret; ret = regmap_bulk_read(data->regmap, reg, &tmp, sizeof(tmp)); if (ret) dev_err(data->dev, "Reading channel data failed\n"); *val = le16_to_cpu(tmp); return ret; } static int bu27008_get_gain(struct bu27008_data *data, struct iio_gts *gts, int *gain) { int ret, sel; ret = data->cd->get_gain_sel(data, &sel); if (ret) return ret; ret = iio_gts_find_gain_by_sel(gts, sel); if (ret < 0) { dev_err(data->dev, "unknown gain value 0x%x\n", sel); return ret; } *gain = ret; return 0; } static int bu27008_set_gain(struct bu27008_data *data, int gain) { int ret; ret = iio_gts_find_sel_by_gain(&data->gts, gain); if (ret < 0) return ret; return data->cd->write_gain_sel(data, ret); } static int bu27008_get_int_time_sel(struct bu27008_data *data, int *sel) { int ret, val; ret = regmap_read(data->regmap, BU27008_REG_MODE_CONTROL1, &val); if (ret) return ret; val &= data->cd->int_time_mask; val >>= ffs(data->cd->int_time_mask) - 1; *sel = val; return 0; } static int bu27008_set_int_time_sel(struct bu27008_data *data, int sel) { sel <<= ffs(data->cd->int_time_mask) - 1; return regmap_update_bits(data->regmap, BU27008_REG_MODE_CONTROL1, data->cd->int_time_mask, sel); } static int bu27008_get_int_time_us(struct bu27008_data *data) { int ret, sel; ret = bu27008_get_int_time_sel(data, &sel); if (ret) return ret; return iio_gts_find_int_time_by_sel(&data->gts, sel); } static int _bu27008_get_scale(struct bu27008_data *data, bool ir, int *val, int *val2) { struct iio_gts *gts; int gain, ret; if (ir) gts = &data->gts_ir; else gts = &data->gts; ret = bu27008_get_gain(data, gts, &gain); if (ret) return ret; ret = bu27008_get_int_time_us(data); if (ret < 0) return ret; return iio_gts_get_scale(gts, gain, ret, val, val2); } static int bu27008_get_scale(struct bu27008_data *data, bool ir, int *val, int *val2) { int ret; mutex_lock(&data->mutex); ret = _bu27008_get_scale(data, ir, val, val2); mutex_unlock(&data->mutex); return ret; } static int bu27008_set_int_time(struct bu27008_data *data, int time) { int ret; ret = iio_gts_find_sel_by_int_time(&data->gts, time); if (ret < 0) return ret; return bu27008_set_int_time_sel(data, ret); } /* Try to change the time so that the scale is maintained */ static int bu27008_try_set_int_time(struct bu27008_data *data, int int_time_new) { int ret, old_time_sel, new_time_sel, old_gain, new_gain; mutex_lock(&data->mutex); ret = bu27008_get_int_time_sel(data, &old_time_sel); if (ret < 0) goto unlock_out; if (!iio_gts_valid_time(&data->gts, int_time_new)) { dev_dbg(data->dev, "Unsupported integration time %u\n", int_time_new); ret = -EINVAL; goto unlock_out; } /* If we already use requested time, then we're done */ new_time_sel = iio_gts_find_sel_by_int_time(&data->gts, int_time_new); if (new_time_sel == old_time_sel) goto unlock_out; ret = bu27008_get_gain(data, &data->gts, &old_gain); if (ret) goto unlock_out; ret = iio_gts_find_new_gain_sel_by_old_gain_time(&data->gts, old_gain, old_time_sel, new_time_sel, &new_gain); if (ret) { int scale1, scale2; bool ok; _bu27008_get_scale(data, false, &scale1, &scale2); dev_dbg(data->dev, "Can't support time %u with current scale %u %u\n", int_time_new, scale1, scale2); if (new_gain < 0) goto unlock_out; /* * If caller requests for integration time change and we * can't support the scale - then the caller should be * prepared to 'pick up the pieces and deal with the * fact that the scale changed'. */ ret = iio_find_closest_gain_low(&data->gts, new_gain, &ok); if (!ok) dev_dbg(data->dev, "optimal gain out of range\n"); if (ret < 0) { dev_dbg(data->dev, "Total gain increase. Risk of saturation"); ret = iio_gts_get_min_gain(&data->gts); if (ret < 0) goto unlock_out; } new_gain = ret; dev_dbg(data->dev, "scale changed, new gain %u\n", new_gain); } ret = bu27008_set_gain(data, new_gain); if (ret) goto unlock_out; ret = bu27008_set_int_time(data, int_time_new); unlock_out: mutex_unlock(&data->mutex); return ret; } static int bu27008_meas_set(struct bu27008_data *data, bool enable) { if (enable) return regmap_set_bits(data->regmap, data->cd->meas_en_reg, data->cd->meas_en_mask); return regmap_clear_bits(data->regmap, data->cd->meas_en_reg, data->cd->meas_en_mask); } static int bu27008_chan_cfg(struct bu27008_data *data, struct iio_chan_spec const *chan) { int chan_sel; if (chan->scan_index == BU27008_BLUE) chan_sel = BU27008_BLUE2_CLEAR3; else chan_sel = BU27008_CLEAR2_IR3; /* * prepare bitfield for channel sel. The FIELD_PREP works only when * mask is constant. In our case the mask is assigned based on the * chip type. Hence the open-coded FIELD_PREP here. We don't bother * zeroing the irrelevant bits though - update_bits takes care of that. */ chan_sel <<= ffs(data->cd->chan_sel_mask) - 1; return regmap_update_bits(data->regmap, data->cd->chan_sel_reg, BU27008_MASK_CHAN_SEL, chan_sel); } static int bu27008_read_one(struct bu27008_data *data, struct iio_dev *idev, struct iio_chan_spec const *chan, int *val, int *val2) { int ret, int_time; ret = bu27008_chan_cfg(data, chan); if (ret) return ret; ret = bu27008_meas_set(data, true); if (ret) return ret; ret = bu27008_get_int_time_us(data); if (ret < 0) int_time = BU27008_MEAS_TIME_MAX_MS; else int_time = ret / USEC_PER_MSEC; msleep(int_time); ret = bu27008_chan_read_data(data, chan->address, val); if (!ret) ret = IIO_VAL_INT; if (bu27008_meas_set(data, false)) dev_warn(data->dev, "measurement disabling failed\n"); return ret; } #define BU27008_LUX_DATA_RED 0 #define BU27008_LUX_DATA_GREEN 1 #define BU27008_LUX_DATA_BLUE 2 #define BU27008_LUX_DATA_IR 3 #define LUX_DATA_SIZE (BU27008_NUM_HW_CHANS * sizeof(__le16)) static int bu27008_read_lux_chans(struct bu27008_data *data, unsigned int time, __le16 *chan_data) { int ret, chan_sel, tmpret, valid; chan_sel = BU27008_BLUE2_IR3 << (ffs(data->cd->chan_sel_mask) - 1); ret = regmap_update_bits(data->regmap, data->cd->chan_sel_reg, data->cd->chan_sel_mask, chan_sel); if (ret) return ret; ret = bu27008_meas_set(data, true); if (ret) return ret; msleep(time / USEC_PER_MSEC); ret = regmap_read_poll_timeout(data->regmap, data->cd->valid_reg, valid, (valid & BU27008_MASK_VALID), BU27008_VALID_RESULT_WAIT_QUANTA_US, BU27008_MAX_VALID_RESULT_WAIT_US); if (ret) goto out; ret = regmap_bulk_read(data->regmap, BU27008_REG_DATA0_LO, chan_data, LUX_DATA_SIZE); if (ret) goto out; out: tmpret = bu27008_meas_set(data, false); if (tmpret) dev_warn(data->dev, "Stopping measurement failed\n"); return ret; } /* * Following equation for computing lux out of register values was given by * ROHM HW colleagues; * * Red = RedData*1024 / Gain * 20 / meas_mode * Green = GreenData* 1024 / Gain * 20 / meas_mode * Blue = BlueData* 1024 / Gain * 20 / meas_mode * IR = IrData* 1024 / Gain * 20 / meas_mode * * where meas_mode is the integration time in mS / 10 * * IRratio = (IR > 0.18 * Green) ? 0 : 1 * * Lx = max(c1*Red + c2*Green + c3*Blue,0) * * for * IRratio 0: c1 = -0.00002237, c2 = 0.0003219, c3 = -0.000120371 * IRratio 1: c1 = -0.00001074, c2 = 0.000305415, c3 = -0.000129367 */ /* * The max chan data is 0xffff. When we multiply it by 1024 * 20, we'll get * 0x4FFFB000 which still fits in 32-bit integer. This won't overflow. */ #define NORM_CHAN_DATA_FOR_LX_CALC(chan, gain, time) (le16_to_cpu(chan) * \ 1024 * 20 / (gain) / (time)) static u64 bu27008_calc_nlux(struct bu27008_data *data, __le16 *lux_data, unsigned int gain, unsigned int gain_ir, unsigned int time) { unsigned int red, green, blue, ir; s64 c1, c2, c3, nlux; time /= 10000; ir = NORM_CHAN_DATA_FOR_LX_CALC(lux_data[BU27008_LUX_DATA_IR], gain_ir, time); red = NORM_CHAN_DATA_FOR_LX_CALC(lux_data[BU27008_LUX_DATA_RED], gain, time); green = NORM_CHAN_DATA_FOR_LX_CALC(lux_data[BU27008_LUX_DATA_GREEN], gain, time); blue = NORM_CHAN_DATA_FOR_LX_CALC(lux_data[BU27008_LUX_DATA_BLUE], gain, time); if ((u64)ir * 100LLU > (u64)green * 18LLU) { c1 = -22370; c2 = 321900; c3 = -120371; } else { c1 = -10740; c2 = 305415; c3 = -129367; } nlux = c1 * red + c2 * green + c3 * blue; return max_t(s64, 0, nlux); } static int bu27008_get_time_n_gains(struct bu27008_data *data, unsigned int *gain, unsigned int *gain_ir, unsigned int *time) { int ret; ret = bu27008_get_gain(data, &data->gts, gain); if (ret < 0) return ret; ret = bu27008_get_gain(data, &data->gts_ir, gain_ir); if (ret < 0) return ret; ret = bu27008_get_int_time_us(data); if (ret < 0) return ret; /* Max integration time is 400000. Fits in signed int. */ *time = ret; return 0; } struct bu27008_buf { __le16 chan[BU27008_NUM_HW_CHANS]; u64 lux __aligned(8); s64 ts __aligned(8); }; static int bu27008_buffer_fill_lux(struct bu27008_data *data, struct bu27008_buf *raw) { unsigned int gain, gain_ir, time; int ret; ret = bu27008_get_time_n_gains(data, &gain, &gain_ir, &time); if (ret) return ret; raw->lux = bu27008_calc_nlux(data, raw->chan, gain, gain_ir, time); return 0; } static int bu27008_read_lux(struct bu27008_data *data, struct iio_dev *idev, struct iio_chan_spec const *chan, int *val, int *val2) { __le16 lux_data[BU27008_NUM_HW_CHANS]; unsigned int gain, gain_ir, time; u64 nlux; int ret; ret = bu27008_get_time_n_gains(data, &gain, &gain_ir, &time); if (ret) return ret; ret = bu27008_read_lux_chans(data, time, lux_data); if (ret) return ret; nlux = bu27008_calc_nlux(data, lux_data, gain, gain_ir, time); *val = (int)nlux; *val2 = nlux >> 32LLU; return IIO_VAL_INT_64; } static int bu27008_read_raw(struct iio_dev *idev, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { struct bu27008_data *data = iio_priv(idev); int busy, ret; switch (mask) { case IIO_CHAN_INFO_RAW: busy = iio_device_claim_direct_mode(idev); if (busy) return -EBUSY; mutex_lock(&data->mutex); if (chan->type == IIO_LIGHT) ret = bu27008_read_lux(data, idev, chan, val, val2); else ret = bu27008_read_one(data, idev, chan, val, val2); mutex_unlock(&data->mutex); iio_device_release_direct_mode(idev); return ret; case IIO_CHAN_INFO_SCALE: if (chan->type == IIO_LIGHT) { *val = 0; *val2 = 1; return IIO_VAL_INT_PLUS_NANO; } ret = bu27008_get_scale(data, chan->scan_index == BU27008_IR, val, val2); if (ret) return ret; return IIO_VAL_INT_PLUS_NANO; case IIO_CHAN_INFO_INT_TIME: ret = bu27008_get_int_time_us(data); if (ret < 0) return ret; *val = 0; *val2 = ret; return IIO_VAL_INT_PLUS_MICRO; default: return -EINVAL; } } /* Called if the new scale could not be supported with existing int-time */ static int bu27008_try_find_new_time_gain(struct bu27008_data *data, int val, int val2, int *gain_sel) { int i, ret, new_time_sel; for (i = 0; i < data->gts.num_itime; i++) { new_time_sel = data->gts.itime_table[i].sel; ret = iio_gts_find_gain_sel_for_scale_using_time(&data->gts, new_time_sel, val, val2, gain_sel); if (!ret) break; } if (i == data->gts.num_itime) { dev_err(data->dev, "Can't support scale %u %u\n", val, val2); return -EINVAL; } return bu27008_set_int_time_sel(data, new_time_sel); } static int bu27008_set_scale(struct bu27008_data *data, struct iio_chan_spec const *chan, int val, int val2) { int ret, gain_sel, time_sel; if (chan->scan_index == BU27008_IR) return -EINVAL; mutex_lock(&data->mutex); ret = bu27008_get_int_time_sel(data, &time_sel); if (ret < 0) goto unlock_out; ret = iio_gts_find_gain_sel_for_scale_using_time(&data->gts, time_sel, val, val2, &gain_sel); if (ret) { ret = bu27008_try_find_new_time_gain(data, val, val2, &gain_sel); if (ret) goto unlock_out; } ret = data->cd->write_gain_sel(data, gain_sel); unlock_out: mutex_unlock(&data->mutex); return ret; } static int bu27008_write_raw_get_fmt(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, long mask) { switch (mask) { case IIO_CHAN_INFO_SCALE: return IIO_VAL_INT_PLUS_NANO; case IIO_CHAN_INFO_INT_TIME: return IIO_VAL_INT_PLUS_MICRO; default: return -EINVAL; } } static int bu27008_write_raw(struct iio_dev *idev, struct iio_chan_spec const *chan, int val, int val2, long mask) { struct bu27008_data *data = iio_priv(idev); int ret; /* * Do not allow changing scale when measurement is ongoing as doing so * could make values in the buffer inconsistent. */ ret = iio_device_claim_direct_mode(idev); if (ret) return ret; switch (mask) { case IIO_CHAN_INFO_SCALE: ret = bu27008_set_scale(data, chan, val, val2); break; case IIO_CHAN_INFO_INT_TIME: if (val) { ret = -EINVAL; break; } ret = bu27008_try_set_int_time(data, val2); break; default: ret = -EINVAL; break; } iio_device_release_direct_mode(idev); return ret; } static int bu27008_read_avail(struct iio_dev *idev, struct iio_chan_spec const *chan, const int **vals, int *type, int *length, long mask) { struct bu27008_data *data = iio_priv(idev); switch (mask) { case IIO_CHAN_INFO_INT_TIME: return iio_gts_avail_times(&data->gts, vals, type, length); case IIO_CHAN_INFO_SCALE: if (chan->channel2 == IIO_MOD_LIGHT_IR) return iio_gts_all_avail_scales(&data->gts_ir, vals, type, length); return iio_gts_all_avail_scales(&data->gts, vals, type, length); default: return -EINVAL; } } static int bu27008_update_scan_mode(struct iio_dev *idev, const unsigned long *scan_mask) { struct bu27008_data *data = iio_priv(idev); int chan_sel; /* Configure channel selection */ if (test_bit(BU27008_BLUE, idev->active_scan_mask)) { if (test_bit(BU27008_CLEAR, idev->active_scan_mask)) chan_sel = BU27008_BLUE2_CLEAR3; else chan_sel = BU27008_BLUE2_IR3; } else { chan_sel = BU27008_CLEAR2_IR3; } chan_sel <<= ffs(data->cd->chan_sel_mask) - 1; return regmap_update_bits(data->regmap, data->cd->chan_sel_reg, data->cd->chan_sel_mask, chan_sel); } static const struct iio_info bu27008_info = { .read_raw = &bu27008_read_raw, .write_raw = &bu27008_write_raw, .write_raw_get_fmt = &bu27008_write_raw_get_fmt, .read_avail = &bu27008_read_avail, .update_scan_mode = bu27008_update_scan_mode, .validate_trigger = iio_validate_own_trigger, }; static int bu27008_trigger_set_state(struct iio_trigger *trig, bool state) { struct bu27008_data *data = iio_trigger_get_drvdata(trig); int ret; if (state) ret = regmap_set_bits(data->regmap, data->cd->drdy_en_reg, data->cd->drdy_en_mask); else ret = regmap_clear_bits(data->regmap, data->cd->drdy_en_reg, data->cd->drdy_en_mask); if (ret) dev_err(data->dev, "Failed to set trigger state\n"); return ret; } static void bu27008_trigger_reenable(struct iio_trigger *trig) { struct bu27008_data *data = iio_trigger_get_drvdata(trig); enable_irq(data->irq); } static const struct iio_trigger_ops bu27008_trigger_ops = { .set_trigger_state = bu27008_trigger_set_state, .reenable = bu27008_trigger_reenable, }; static irqreturn_t bu27008_trigger_handler(int irq, void *p) { struct iio_poll_func *pf = p; struct iio_dev *idev = pf->indio_dev; struct bu27008_data *data = iio_priv(idev); struct bu27008_buf raw; int ret, dummy; memset(&raw, 0, sizeof(raw)); /* * After some measurements, it seems reading the * BU27008_REG_MODE_CONTROL3 debounces the IRQ line */ ret = regmap_read(data->regmap, data->cd->valid_reg, &dummy); if (ret < 0) goto err_read; ret = regmap_bulk_read(data->regmap, BU27008_REG_DATA0_LO, &raw.chan, sizeof(raw.chan)); if (ret < 0) goto err_read; if (test_bit(BU27008_LUX, idev->active_scan_mask)) { ret = bu27008_buffer_fill_lux(data, &raw); if (ret) goto err_read; } iio_push_to_buffers_with_timestamp(idev, &raw, pf->timestamp); err_read: iio_trigger_notify_done(idev->trig); return IRQ_HANDLED; } static int bu27008_buffer_preenable(struct iio_dev *idev) { struct bu27008_data *data = iio_priv(idev); return bu27008_meas_set(data, true); } static int bu27008_buffer_postdisable(struct iio_dev *idev) { struct bu27008_data *data = iio_priv(idev); return bu27008_meas_set(data, false); } static const struct iio_buffer_setup_ops bu27008_buffer_ops = { .preenable = bu27008_buffer_preenable, .postdisable = bu27008_buffer_postdisable, }; static irqreturn_t bu27008_data_rdy_poll(int irq, void *private) { /* * The BU27008 keeps IRQ asserted until we read the VALID bit from * a register. We need to keep the IRQ disabled until then. */ disable_irq_nosync(irq); iio_trigger_poll(private); return IRQ_HANDLED; } static int bu27008_setup_trigger(struct bu27008_data *data, struct iio_dev *idev) { struct iio_trigger *itrig; char *name; int ret; ret = devm_iio_triggered_buffer_setup(data->dev, idev, &iio_pollfunc_store_time, bu27008_trigger_handler, &bu27008_buffer_ops); if (ret) return dev_err_probe(data->dev, ret, "iio_triggered_buffer_setup_ext FAIL\n"); itrig = devm_iio_trigger_alloc(data->dev, "%sdata-rdy-dev%d", idev->name, iio_device_id(idev)); if (!itrig) return -ENOMEM; data->trig = itrig; itrig->ops = &bu27008_trigger_ops; iio_trigger_set_drvdata(itrig, data); name = devm_kasprintf(data->dev, GFP_KERNEL, "%s-bu27008", dev_name(data->dev)); ret = devm_request_irq(data->dev, data->irq, &bu27008_data_rdy_poll, 0, name, itrig); if (ret) return dev_err_probe(data->dev, ret, "Could not request IRQ\n"); ret = devm_iio_trigger_register(data->dev, itrig); if (ret) return dev_err_probe(data->dev, ret, "Trigger registration failed\n"); /* set default trigger */ idev->trig = iio_trigger_get(itrig); return 0; } static int bu27008_probe(struct i2c_client *i2c) { struct device *dev = &i2c->dev; struct bu27008_data *data; struct regmap *regmap; unsigned int part_id, reg; struct iio_dev *idev; int ret; idev = devm_iio_device_alloc(dev, sizeof(*data)); if (!idev) return -ENOMEM; ret = devm_regulator_get_enable(dev, "vdd"); if (ret) return dev_err_probe(dev, ret, "Failed to get regulator\n"); data = iio_priv(idev); data->cd = device_get_match_data(&i2c->dev); if (!data->cd) return -ENODEV; regmap = devm_regmap_init_i2c(i2c, data->cd->regmap_cfg); if (IS_ERR(regmap)) return dev_err_probe(dev, PTR_ERR(regmap), "Failed to initialize Regmap\n"); ret = regmap_read(regmap, BU27008_REG_SYSTEM_CONTROL, ®); if (ret) return dev_err_probe(dev, ret, "Failed to access sensor\n"); part_id = FIELD_GET(BU27008_MASK_PART_ID, reg); if (part_id != data->cd->part_id) dev_warn(dev, "unknown device 0x%x\n", part_id); ret = devm_iio_init_iio_gts(dev, data->cd->scale1x, 0, data->cd->gains, data->cd->num_gains, data->cd->itimes, data->cd->num_itimes, &data->gts); if (ret) return ret; ret = devm_iio_init_iio_gts(dev, data->cd->scale1x, 0, data->cd->gains_ir, data->cd->num_gains_ir, data->cd->itimes, data->cd->num_itimes, &data->gts_ir); if (ret) return ret; mutex_init(&data->mutex); data->regmap = regmap; data->dev = dev; data->irq = i2c->irq; idev->channels = bu27008_channels; idev->num_channels = ARRAY_SIZE(bu27008_channels); idev->name = data->cd->name; idev->info = &bu27008_info; idev->modes = INDIO_DIRECT_MODE; idev->available_scan_masks = bu27008_scan_masks; ret = data->cd->chip_init(data); if (ret) return ret; if (i2c->irq) { ret = bu27008_setup_trigger(data, idev); if (ret) return ret; } else { dev_info(dev, "No IRQ, buffered mode disabled\n"); } ret = devm_iio_device_register(dev, idev); if (ret) return dev_err_probe(dev, ret, "Unable to register iio device\n"); return 0; } static const struct of_device_id bu27008_of_match[] = { { .compatible = "rohm,bu27008", .data = &bu27008_chip }, { .compatible = "rohm,bu27010", .data = &bu27010_chip }, { } }; MODULE_DEVICE_TABLE(of, bu27008_of_match); static struct i2c_driver bu27008_i2c_driver = { .driver = { .name = "bu27008", .of_match_table = bu27008_of_match, .probe_type = PROBE_PREFER_ASYNCHRONOUS, }, .probe = bu27008_probe, }; module_i2c_driver(bu27008_i2c_driver); MODULE_DESCRIPTION("ROHM BU27008 and BU27010 colour sensor driver"); MODULE_AUTHOR("Matti Vaittinen <matti.vaittinen@fi.rohmeurope.com>"); MODULE_LICENSE("GPL"); MODULE_IMPORT_NS(IIO_GTS_HELPER); |