Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 | // SPDX-License-Identifier: GPL-2.0+ /* * sgp40.c - Support for Sensirion SGP40 Gas Sensor * * Copyright (C) 2021 Andreas Klinger <ak@it-klinger.de> * * I2C slave address: 0x59 * * Datasheet can be found here: * https://www.sensirion.com/file/datasheet_sgp40 * * There are two functionalities supported: * * 1) read raw logarithmic resistance value from sensor * --> useful to pass it to the algorithm of the sensor vendor for * measuring deteriorations and improvements of air quality. * * 2) calculate an estimated absolute voc index (0 - 500 index points) for * measuring the air quality. * For this purpose the value of the resistance for which the voc index * will be 250 can be set up using calibbias. * * Compensation values of relative humidity and temperature can be set up * by writing to the out values of temp and humidityrelative. */ #include <linux/delay.h> #include <linux/crc8.h> #include <linux/module.h> #include <linux/mutex.h> #include <linux/i2c.h> #include <linux/iio/iio.h> /* * floating point calculation of voc is done as integer * where numbers are multiplied by 1 << SGP40_CALC_POWER */ #define SGP40_CALC_POWER 14 #define SGP40_CRC8_POLYNOMIAL 0x31 #define SGP40_CRC8_INIT 0xff DECLARE_CRC8_TABLE(sgp40_crc8_table); struct sgp40_data { struct device *dev; struct i2c_client *client; int rht; int temp; int res_calibbias; /* Prevent concurrent access to rht, tmp, calibbias */ struct mutex lock; }; struct sgp40_tg_measure { u8 command[2]; __be16 rht_ticks; u8 rht_crc; __be16 temp_ticks; u8 temp_crc; } __packed; struct sgp40_tg_result { __be16 res_ticks; u8 res_crc; } __packed; static const struct iio_chan_spec sgp40_channels[] = { { .type = IIO_CONCENTRATION, .channel2 = IIO_MOD_VOC, .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED), }, { .type = IIO_RESISTANCE, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_CALIBBIAS), }, { .type = IIO_TEMP, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), .output = 1, }, { .type = IIO_HUMIDITYRELATIVE, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), .output = 1, }, }; /* * taylor approximation of e^x: * y = 1 + x + x^2 / 2 + x^3 / 6 + x^4 / 24 + ... + x^n / n! * * Because we are calculating x real value multiplied by 2^power we get * an additional 2^power^n to divide for every element. For a reasonable * precision this would overflow after a few iterations. Therefore we * divide the x^n part whenever its about to overflow (xmax). */ static u32 sgp40_exp(int exp, u32 power, u32 rounds) { u32 x, y, xp; u32 factorial, divider, xmax; int sign = 1; int i; if (exp == 0) return 1 << power; else if (exp < 0) { sign = -1; exp *= -1; } xmax = 0x7FFFFFFF / exp; x = exp; xp = 1; factorial = 1; y = 1 << power; divider = 0; for (i = 1; i <= rounds; i++) { xp *= x; factorial *= i; y += (xp >> divider) / factorial; divider += power; /* divide when next multiplication would overflow */ if (xp >= xmax) { xp >>= power; divider -= power; } } if (sign == -1) return (1 << (power * 2)) / y; else return y; } static int sgp40_calc_voc(struct sgp40_data *data, u16 resistance_raw, int *voc) { int x; u32 exp = 0; /* we calculate as a multiple of 16384 (2^14) */ mutex_lock(&data->lock); x = ((int)resistance_raw - data->res_calibbias) * 106; mutex_unlock(&data->lock); /* voc = 500 / (1 + e^x) */ exp = sgp40_exp(x, SGP40_CALC_POWER, 18); *voc = 500 * ((1 << (SGP40_CALC_POWER * 2)) / ((1<<SGP40_CALC_POWER) + exp)); dev_dbg(data->dev, "raw: %d res_calibbias: %d x: %d exp: %d voc: %d\n", resistance_raw, data->res_calibbias, x, exp, *voc); return 0; } static int sgp40_measure_resistance_raw(struct sgp40_data *data, u16 *resistance_raw) { int ret; struct i2c_client *client = data->client; u32 ticks; u16 ticks16; u8 crc; struct sgp40_tg_measure tg = {.command = {0x26, 0x0F}}; struct sgp40_tg_result tgres; mutex_lock(&data->lock); ticks = (data->rht / 10) * 65535 / 10000; ticks16 = (u16)clamp(ticks, 0u, 65535u); /* clamp between 0 .. 100 %rH */ tg.rht_ticks = cpu_to_be16(ticks16); tg.rht_crc = crc8(sgp40_crc8_table, (u8 *)&tg.rht_ticks, 2, SGP40_CRC8_INIT); ticks = ((data->temp + 45000) / 10 ) * 65535 / 17500; ticks16 = (u16)clamp(ticks, 0u, 65535u); /* clamp between -45 .. +130 °C */ tg.temp_ticks = cpu_to_be16(ticks16); tg.temp_crc = crc8(sgp40_crc8_table, (u8 *)&tg.temp_ticks, 2, SGP40_CRC8_INIT); mutex_unlock(&data->lock); ret = i2c_master_send(client, (const char *)&tg, sizeof(tg)); if (ret != sizeof(tg)) { dev_warn(data->dev, "i2c_master_send ret: %d sizeof: %zu\n", ret, sizeof(tg)); return -EIO; } msleep(30); ret = i2c_master_recv(client, (u8 *)&tgres, sizeof(tgres)); if (ret < 0) return ret; if (ret != sizeof(tgres)) { dev_warn(data->dev, "i2c_master_recv ret: %d sizeof: %zu\n", ret, sizeof(tgres)); return -EIO; } crc = crc8(sgp40_crc8_table, (u8 *)&tgres.res_ticks, 2, SGP40_CRC8_INIT); if (crc != tgres.res_crc) { dev_err(data->dev, "CRC error while measure-raw\n"); return -EIO; } *resistance_raw = be16_to_cpu(tgres.res_ticks); return 0; } static int sgp40_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { struct sgp40_data *data = iio_priv(indio_dev); int ret, voc; u16 resistance_raw; switch (mask) { case IIO_CHAN_INFO_RAW: switch (chan->type) { case IIO_RESISTANCE: ret = sgp40_measure_resistance_raw(data, &resistance_raw); if (ret) return ret; *val = resistance_raw; return IIO_VAL_INT; case IIO_TEMP: mutex_lock(&data->lock); *val = data->temp; mutex_unlock(&data->lock); return IIO_VAL_INT; case IIO_HUMIDITYRELATIVE: mutex_lock(&data->lock); *val = data->rht; mutex_unlock(&data->lock); return IIO_VAL_INT; default: return -EINVAL; } case IIO_CHAN_INFO_PROCESSED: ret = sgp40_measure_resistance_raw(data, &resistance_raw); if (ret) return ret; ret = sgp40_calc_voc(data, resistance_raw, &voc); if (ret) return ret; *val = voc / (1 << SGP40_CALC_POWER); /* * calculation should fit into integer, where: * voc <= (500 * 2^SGP40_CALC_POWER) = 8192000 * (with SGP40_CALC_POWER = 14) */ *val2 = ((voc % (1 << SGP40_CALC_POWER)) * 244) / (1 << (SGP40_CALC_POWER - 12)); dev_dbg(data->dev, "voc: %d val: %d.%06d\n", voc, *val, *val2); return IIO_VAL_INT_PLUS_MICRO; case IIO_CHAN_INFO_CALIBBIAS: mutex_lock(&data->lock); *val = data->res_calibbias; mutex_unlock(&data->lock); return IIO_VAL_INT; default: return -EINVAL; } } static int sgp40_write_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int val, int val2, long mask) { struct sgp40_data *data = iio_priv(indio_dev); switch (mask) { case IIO_CHAN_INFO_RAW: switch (chan->type) { case IIO_TEMP: if ((val < -45000) || (val > 130000)) return -EINVAL; mutex_lock(&data->lock); data->temp = val; mutex_unlock(&data->lock); return 0; case IIO_HUMIDITYRELATIVE: if ((val < 0) || (val > 100000)) return -EINVAL; mutex_lock(&data->lock); data->rht = val; mutex_unlock(&data->lock); return 0; default: return -EINVAL; } case IIO_CHAN_INFO_CALIBBIAS: if ((val < 20000) || (val > 52768)) return -EINVAL; mutex_lock(&data->lock); data->res_calibbias = val; mutex_unlock(&data->lock); return 0; } return -EINVAL; } static const struct iio_info sgp40_info = { .read_raw = sgp40_read_raw, .write_raw = sgp40_write_raw, }; static int sgp40_probe(struct i2c_client *client) { const struct i2c_device_id *id = i2c_client_get_device_id(client); struct device *dev = &client->dev; struct iio_dev *indio_dev; struct sgp40_data *data; int ret; indio_dev = devm_iio_device_alloc(dev, sizeof(*data)); if (!indio_dev) return -ENOMEM; data = iio_priv(indio_dev); data->client = client; data->dev = dev; crc8_populate_msb(sgp40_crc8_table, SGP40_CRC8_POLYNOMIAL); mutex_init(&data->lock); /* set default values */ data->rht = 50000; /* 50 % */ data->temp = 25000; /* 25 °C */ data->res_calibbias = 30000; /* resistance raw value for voc index of 250 */ indio_dev->info = &sgp40_info; indio_dev->name = id->name; indio_dev->modes = INDIO_DIRECT_MODE; indio_dev->channels = sgp40_channels; indio_dev->num_channels = ARRAY_SIZE(sgp40_channels); ret = devm_iio_device_register(dev, indio_dev); if (ret) dev_err(dev, "failed to register iio device\n"); return ret; } static const struct i2c_device_id sgp40_id[] = { { "sgp40" }, { } }; MODULE_DEVICE_TABLE(i2c, sgp40_id); static const struct of_device_id sgp40_dt_ids[] = { { .compatible = "sensirion,sgp40" }, { } }; MODULE_DEVICE_TABLE(of, sgp40_dt_ids); static struct i2c_driver sgp40_driver = { .driver = { .name = "sgp40", .of_match_table = sgp40_dt_ids, }, .probe = sgp40_probe, .id_table = sgp40_id, }; module_i2c_driver(sgp40_driver); MODULE_AUTHOR("Andreas Klinger <ak@it-klinger.de>"); MODULE_DESCRIPTION("Sensirion SGP40 gas sensor"); MODULE_LICENSE("GPL v2"); |