Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 | // SPDX-License-Identifier: GPL-2.0-only /* * ADS1100 - Texas Instruments Analog-to-Digital Converter * * Copyright (c) 2023, Topic Embedded Products * * Datasheet: https://www.ti.com/lit/gpn/ads1100 * IIO driver for ADS1100 and ADS1000 ADC 16-bit I2C */ #include <linux/bitfield.h> #include <linux/bits.h> #include <linux/delay.h> #include <linux/module.h> #include <linux/init.h> #include <linux/i2c.h> #include <linux/mutex.h> #include <linux/property.h> #include <linux/pm_runtime.h> #include <linux/regulator/consumer.h> #include <linux/units.h> #include <linux/iio/iio.h> #include <linux/iio/types.h> /* The ADS1100 has a single byte config register */ /* Conversion in progress bit */ #define ADS1100_CFG_ST_BSY BIT(7) /* Single conversion bit */ #define ADS1100_CFG_SC BIT(4) /* Data rate */ #define ADS1100_DR_MASK GENMASK(3, 2) /* Gain */ #define ADS1100_PGA_MASK GENMASK(1, 0) #define ADS1100_CONTINUOUS 0 #define ADS1100_SINGLESHOT ADS1100_CFG_SC #define ADS1100_SLEEP_DELAY_MS 2000 static const int ads1100_data_rate[] = { 128, 32, 16, 8 }; static const int ads1100_data_rate_bits[] = { 12, 14, 15, 16 }; struct ads1100_data { struct i2c_client *client; struct regulator *reg_vdd; struct mutex lock; int scale_avail[2 * 4]; /* 4 gain settings */ u8 config; bool supports_data_rate; /* Only the ADS1100 can select the rate */ }; static const struct iio_chan_spec ads1100_channel = { .type = IIO_VOLTAGE, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SCALE) | BIT(IIO_CHAN_INFO_SAMP_FREQ), .info_mask_shared_by_all_available = BIT(IIO_CHAN_INFO_SCALE) | BIT(IIO_CHAN_INFO_SAMP_FREQ), .scan_type = { .sign = 's', .realbits = 16, .storagebits = 16, .endianness = IIO_CPU, }, .datasheet_name = "AIN", }; static int ads1100_set_config_bits(struct ads1100_data *data, u8 mask, u8 value) { int ret; u8 config = (data->config & ~mask) | (value & mask); if (data->config == config) return 0; /* Already done */ ret = i2c_master_send(data->client, &config, 1); if (ret < 0) return ret; data->config = config; return 0; }; static int ads1100_data_bits(struct ads1100_data *data) { return ads1100_data_rate_bits[FIELD_GET(ADS1100_DR_MASK, data->config)]; } static int ads1100_get_adc_result(struct ads1100_data *data, int chan, int *val) { int ret; __be16 buffer; s16 value; if (chan != 0) return -EINVAL; ret = pm_runtime_resume_and_get(&data->client->dev); if (ret < 0) return ret; ret = i2c_master_recv(data->client, (char *)&buffer, sizeof(buffer)); pm_runtime_mark_last_busy(&data->client->dev); pm_runtime_put_autosuspend(&data->client->dev); if (ret < 0) { dev_err(&data->client->dev, "I2C read fail: %d\n", ret); return ret; } /* Value is always 16-bit 2's complement */ value = be16_to_cpu(buffer); /* Shift result to compensate for bit resolution vs. sample rate */ value <<= 16 - ads1100_data_bits(data); *val = sign_extend32(value, 15); return 0; } static int ads1100_set_scale(struct ads1100_data *data, int val, int val2) { int microvolts; int gain; /* With Vdd between 2.7 and 5V, the scale is always below 1 */ if (val) return -EINVAL; if (!val2) return -EINVAL; microvolts = regulator_get_voltage(data->reg_vdd); /* * val2 is in 'micro' units, n = val2 / 1000000 * result must be millivolts, d = microvolts / 1000 * the full-scale value is d/n, corresponds to 2^15, * hence the gain = (d / n) >> 15, factoring out the 1000 and moving the * bitshift so everything fits in 32-bits yields this formula. */ gain = DIV_ROUND_CLOSEST(microvolts, BIT(15)) * MILLI / val2; if (gain < BIT(0) || gain > BIT(3)) return -EINVAL; ads1100_set_config_bits(data, ADS1100_PGA_MASK, ffs(gain) - 1); return 0; } static int ads1100_set_data_rate(struct ads1100_data *data, int chan, int rate) { unsigned int i; unsigned int size; size = data->supports_data_rate ? ARRAY_SIZE(ads1100_data_rate) : 1; for (i = 0; i < size; i++) { if (ads1100_data_rate[i] == rate) return ads1100_set_config_bits(data, ADS1100_DR_MASK, FIELD_PREP(ADS1100_DR_MASK, i)); } return -EINVAL; } static int ads1100_get_vdd_millivolts(struct ads1100_data *data) { return regulator_get_voltage(data->reg_vdd) / (MICRO / MILLI); } static void ads1100_calc_scale_avail(struct ads1100_data *data) { int millivolts = ads1100_get_vdd_millivolts(data); unsigned int i; for (i = 0; i < ARRAY_SIZE(data->scale_avail) / 2; i++) { data->scale_avail[i * 2 + 0] = millivolts; data->scale_avail[i * 2 + 1] = 15 + i; } } static int ads1100_read_avail(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, const int **vals, int *type, int *length, long mask) { struct ads1100_data *data = iio_priv(indio_dev); if (chan->type != IIO_VOLTAGE) return -EINVAL; switch (mask) { case IIO_CHAN_INFO_SAMP_FREQ: *type = IIO_VAL_INT; *vals = ads1100_data_rate; if (data->supports_data_rate) *length = ARRAY_SIZE(ads1100_data_rate); else *length = 1; return IIO_AVAIL_LIST; case IIO_CHAN_INFO_SCALE: *type = IIO_VAL_FRACTIONAL_LOG2; *vals = data->scale_avail; *length = ARRAY_SIZE(data->scale_avail); return IIO_AVAIL_LIST; default: return -EINVAL; } } static int ads1100_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { int ret; struct ads1100_data *data = iio_priv(indio_dev); mutex_lock(&data->lock); switch (mask) { case IIO_CHAN_INFO_RAW: ret = iio_device_claim_direct_mode(indio_dev); if (ret) break; ret = ads1100_get_adc_result(data, chan->address, val); if (ret >= 0) ret = IIO_VAL_INT; iio_device_release_direct_mode(indio_dev); break; case IIO_CHAN_INFO_SCALE: /* full-scale is the supply voltage in millivolts */ *val = ads1100_get_vdd_millivolts(data); *val2 = 15 + FIELD_GET(ADS1100_PGA_MASK, data->config); ret = IIO_VAL_FRACTIONAL_LOG2; break; case IIO_CHAN_INFO_SAMP_FREQ: *val = ads1100_data_rate[FIELD_GET(ADS1100_DR_MASK, data->config)]; ret = IIO_VAL_INT; break; default: ret = -EINVAL; break; } mutex_unlock(&data->lock); return ret; } static int ads1100_write_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int val, int val2, long mask) { struct ads1100_data *data = iio_priv(indio_dev); int ret; mutex_lock(&data->lock); switch (mask) { case IIO_CHAN_INFO_SCALE: ret = ads1100_set_scale(data, val, val2); break; case IIO_CHAN_INFO_SAMP_FREQ: ret = ads1100_set_data_rate(data, chan->address, val); break; default: ret = -EINVAL; break; } mutex_unlock(&data->lock); return ret; } static const struct iio_info ads1100_info = { .read_avail = ads1100_read_avail, .read_raw = ads1100_read_raw, .write_raw = ads1100_write_raw, }; static int ads1100_setup(struct ads1100_data *data) { int ret; u8 buffer[3]; /* Setup continuous sampling mode at 8sps */ buffer[0] = ADS1100_DR_MASK | ADS1100_CONTINUOUS; ret = i2c_master_send(data->client, buffer, 1); if (ret < 0) return ret; ret = i2c_master_recv(data->client, buffer, sizeof(buffer)); if (ret < 0) return ret; /* Config register returned in third byte, strip away the busy status */ data->config = buffer[2] & ~ADS1100_CFG_ST_BSY; /* Detect the sample rate capability by checking the DR bits */ data->supports_data_rate = FIELD_GET(ADS1100_DR_MASK, buffer[2]) != 0; return 0; } static void ads1100_reg_disable(void *reg) { regulator_disable(reg); } static void ads1100_disable_continuous(void *data) { ads1100_set_config_bits(data, ADS1100_CFG_SC, ADS1100_SINGLESHOT); } static int ads1100_probe(struct i2c_client *client) { struct iio_dev *indio_dev; struct ads1100_data *data; struct device *dev = &client->dev; int ret; indio_dev = devm_iio_device_alloc(dev, sizeof(*data)); if (!indio_dev) return -ENOMEM; data = iio_priv(indio_dev); dev_set_drvdata(dev, data); data->client = client; mutex_init(&data->lock); indio_dev->name = "ads1100"; indio_dev->modes = INDIO_DIRECT_MODE; indio_dev->channels = &ads1100_channel; indio_dev->num_channels = 1; indio_dev->info = &ads1100_info; data->reg_vdd = devm_regulator_get(dev, "vdd"); if (IS_ERR(data->reg_vdd)) return dev_err_probe(dev, PTR_ERR(data->reg_vdd), "Failed to get vdd regulator\n"); ret = regulator_enable(data->reg_vdd); if (ret < 0) return dev_err_probe(dev, ret, "Failed to enable vdd regulator\n"); ret = devm_add_action_or_reset(dev, ads1100_reg_disable, data->reg_vdd); if (ret) return ret; ret = ads1100_setup(data); if (ret) return dev_err_probe(dev, ret, "Failed to communicate with device\n"); ret = devm_add_action_or_reset(dev, ads1100_disable_continuous, data); if (ret) return ret; ads1100_calc_scale_avail(data); pm_runtime_set_autosuspend_delay(dev, ADS1100_SLEEP_DELAY_MS); pm_runtime_use_autosuspend(dev); pm_runtime_set_active(dev); ret = devm_pm_runtime_enable(dev); if (ret) return dev_err_probe(dev, ret, "Failed to enable pm_runtime\n"); ret = devm_iio_device_register(dev, indio_dev); if (ret) return dev_err_probe(dev, ret, "Failed to register IIO device\n"); return 0; } static int ads1100_runtime_suspend(struct device *dev) { struct ads1100_data *data = dev_get_drvdata(dev); ads1100_set_config_bits(data, ADS1100_CFG_SC, ADS1100_SINGLESHOT); regulator_disable(data->reg_vdd); return 0; } static int ads1100_runtime_resume(struct device *dev) { struct ads1100_data *data = dev_get_drvdata(dev); int ret; ret = regulator_enable(data->reg_vdd); if (ret) { dev_err(&data->client->dev, "Failed to enable Vdd\n"); return ret; } /* * We'll always change the mode bit in the config register, so there is * no need here to "force" a write to the config register. If the device * has been power-cycled, we'll re-write its config register now. */ return ads1100_set_config_bits(data, ADS1100_CFG_SC, ADS1100_CONTINUOUS); } static DEFINE_RUNTIME_DEV_PM_OPS(ads1100_pm_ops, ads1100_runtime_suspend, ads1100_runtime_resume, NULL); static const struct i2c_device_id ads1100_id[] = { { "ads1100" }, { "ads1000" }, { } }; MODULE_DEVICE_TABLE(i2c, ads1100_id); static const struct of_device_id ads1100_of_match[] = { {.compatible = "ti,ads1100" }, {.compatible = "ti,ads1000" }, { } }; MODULE_DEVICE_TABLE(of, ads1100_of_match); static struct i2c_driver ads1100_driver = { .driver = { .name = "ads1100", .of_match_table = ads1100_of_match, .pm = pm_ptr(&ads1100_pm_ops), }, .probe = ads1100_probe, .id_table = ads1100_id, }; module_i2c_driver(ads1100_driver); MODULE_AUTHOR("Mike Looijmans <mike.looijmans@topic.nl>"); MODULE_DESCRIPTION("Texas Instruments ADS1100 ADC driver"); MODULE_LICENSE("GPL"); |