Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 | // SPDX-License-Identifier: BSD-3-Clause /* * Copyright (c) 2020, MIPI Alliance, Inc. * * Author: Nicolas Pitre <npitre@baylibre.com> * * Note: The I3C HCI v2.0 spec is still in flux. The IBI support is based on * v1.x of the spec and v2.0 will likely be split out. */ #include <linux/bitfield.h> #include <linux/device.h> #include <linux/dma-mapping.h> #include <linux/errno.h> #include <linux/i3c/master.h> #include <linux/io.h> #include "hci.h" #include "cmd.h" #include "ibi.h" /* * Software Parameter Values (somewhat arb itrary for now). * Some of them could be determined at run time eventually. */ #define XFER_RINGS 1 /* max: 8 */ #define XFER_RING_ENTRIES 16 /* max: 255 */ #define IBI_RINGS 1 /* max: 8 */ #define IBI_STATUS_RING_ENTRIES 32 /* max: 255 */ #define IBI_CHUNK_CACHELINES 1 /* max: 256 bytes equivalent */ #define IBI_CHUNK_POOL_SIZE 128 /* max: 1023 */ /* * Ring Header Preamble */ #define rhs_reg_read(r) readl(hci->RHS_regs + (RHS_##r)) #define rhs_reg_write(r, v) writel(v, hci->RHS_regs + (RHS_##r)) #define RHS_CONTROL 0x00 #define PREAMBLE_SIZE GENMASK(31, 24) /* Preamble Section Size */ #define HEADER_SIZE GENMASK(23, 16) /* Ring Header Size */ #define MAX_HEADER_COUNT_CAP GENMASK(7, 4) /* HC Max Header Count */ #define MAX_HEADER_COUNT GENMASK(3, 0) /* Driver Max Header Count */ #define RHS_RHn_OFFSET(n) (0x04 + (n)*4) /* * Ring Header (Per-Ring Bundle) */ #define rh_reg_read(r) readl(rh->regs + (RH_##r)) #define rh_reg_write(r, v) writel(v, rh->regs + (RH_##r)) #define RH_CR_SETUP 0x00 /* Command/Response Ring */ #define CR_XFER_STRUCT_SIZE GENMASK(31, 24) #define CR_RESP_STRUCT_SIZE GENMASK(23, 16) #define CR_RING_SIZE GENMASK(8, 0) #define RH_IBI_SETUP 0x04 #define IBI_STATUS_STRUCT_SIZE GENMASK(31, 24) #define IBI_STATUS_RING_SIZE GENMASK(23, 16) #define IBI_DATA_CHUNK_SIZE GENMASK(12, 10) #define IBI_DATA_CHUNK_COUNT GENMASK(9, 0) #define RH_CHUNK_CONTROL 0x08 #define RH_INTR_STATUS 0x10 #define RH_INTR_STATUS_ENABLE 0x14 #define RH_INTR_SIGNAL_ENABLE 0x18 #define RH_INTR_FORCE 0x1c #define INTR_IBI_READY BIT(12) #define INTR_TRANSFER_COMPLETION BIT(11) #define INTR_RING_OP BIT(10) #define INTR_TRANSFER_ERR BIT(9) #define INTR_WARN_INS_STOP_MODE BIT(7) #define INTR_IBI_RING_FULL BIT(6) #define INTR_TRANSFER_ABORT BIT(5) #define RH_RING_STATUS 0x20 #define RING_STATUS_LOCKED BIT(3) #define RING_STATUS_ABORTED BIT(2) #define RING_STATUS_RUNNING BIT(1) #define RING_STATUS_ENABLED BIT(0) #define RH_RING_CONTROL 0x24 #define RING_CTRL_ABORT BIT(2) #define RING_CTRL_RUN_STOP BIT(1) #define RING_CTRL_ENABLE BIT(0) #define RH_RING_OPERATION1 0x28 #define RING_OP1_IBI_DEQ_PTR GENMASK(23, 16) #define RING_OP1_CR_SW_DEQ_PTR GENMASK(15, 8) #define RING_OP1_CR_ENQ_PTR GENMASK(7, 0) #define RH_RING_OPERATION2 0x2c #define RING_OP2_IBI_ENQ_PTR GENMASK(23, 16) #define RING_OP2_CR_DEQ_PTR GENMASK(7, 0) #define RH_CMD_RING_BASE_LO 0x30 #define RH_CMD_RING_BASE_HI 0x34 #define RH_RESP_RING_BASE_LO 0x38 #define RH_RESP_RING_BASE_HI 0x3c #define RH_IBI_STATUS_RING_BASE_LO 0x40 #define RH_IBI_STATUS_RING_BASE_HI 0x44 #define RH_IBI_DATA_RING_BASE_LO 0x48 #define RH_IBI_DATA_RING_BASE_HI 0x4c #define RH_CMD_RING_SG 0x50 /* Ring Scatter Gather Support */ #define RH_RESP_RING_SG 0x54 #define RH_IBI_STATUS_RING_SG 0x58 #define RH_IBI_DATA_RING_SG 0x5c #define RING_SG_BLP BIT(31) /* Buffer Vs. List Pointer */ #define RING_SG_LIST_SIZE GENMASK(15, 0) /* * Data Buffer Descriptor (in memory) */ #define DATA_BUF_BLP BIT(31) /* Buffer Vs. List Pointer */ #define DATA_BUF_IOC BIT(30) /* Interrupt on Completion */ #define DATA_BUF_BLOCK_SIZE GENMASK(15, 0) struct hci_rh_data { void __iomem *regs; void *xfer, *resp, *ibi_status, *ibi_data; dma_addr_t xfer_dma, resp_dma, ibi_status_dma, ibi_data_dma; unsigned int xfer_entries, ibi_status_entries, ibi_chunks_total; unsigned int xfer_struct_sz, resp_struct_sz, ibi_status_sz, ibi_chunk_sz; unsigned int done_ptr, ibi_chunk_ptr; struct hci_xfer **src_xfers; spinlock_t lock; struct completion op_done; }; struct hci_rings_data { unsigned int total; struct hci_rh_data headers[] __counted_by(total); }; struct hci_dma_dev_ibi_data { struct i3c_generic_ibi_pool *pool; unsigned int max_len; }; static inline u32 lo32(dma_addr_t physaddr) { return physaddr; } static inline u32 hi32(dma_addr_t physaddr) { /* trickery to avoid compiler warnings on 32-bit build targets */ if (sizeof(dma_addr_t) > 4) { u64 hi = physaddr; return hi >> 32; } return 0; } static void hci_dma_cleanup(struct i3c_hci *hci) { struct hci_rings_data *rings = hci->io_data; struct hci_rh_data *rh; unsigned int i; if (!rings) return; for (i = 0; i < rings->total; i++) { rh = &rings->headers[i]; rh_reg_write(RING_CONTROL, 0); rh_reg_write(CR_SETUP, 0); rh_reg_write(IBI_SETUP, 0); rh_reg_write(INTR_SIGNAL_ENABLE, 0); if (rh->xfer) dma_free_coherent(&hci->master.dev, rh->xfer_struct_sz * rh->xfer_entries, rh->xfer, rh->xfer_dma); if (rh->resp) dma_free_coherent(&hci->master.dev, rh->resp_struct_sz * rh->xfer_entries, rh->resp, rh->resp_dma); kfree(rh->src_xfers); if (rh->ibi_status) dma_free_coherent(&hci->master.dev, rh->ibi_status_sz * rh->ibi_status_entries, rh->ibi_status, rh->ibi_status_dma); if (rh->ibi_data_dma) dma_unmap_single(&hci->master.dev, rh->ibi_data_dma, rh->ibi_chunk_sz * rh->ibi_chunks_total, DMA_FROM_DEVICE); kfree(rh->ibi_data); } rhs_reg_write(CONTROL, 0); kfree(rings); hci->io_data = NULL; } static int hci_dma_init(struct i3c_hci *hci) { struct hci_rings_data *rings; struct hci_rh_data *rh; u32 regval; unsigned int i, nr_rings, xfers_sz, resps_sz; unsigned int ibi_status_ring_sz, ibi_data_ring_sz; int ret; regval = rhs_reg_read(CONTROL); nr_rings = FIELD_GET(MAX_HEADER_COUNT_CAP, regval); dev_info(&hci->master.dev, "%d DMA rings available\n", nr_rings); if (unlikely(nr_rings > 8)) { dev_err(&hci->master.dev, "number of rings should be <= 8\n"); nr_rings = 8; } if (nr_rings > XFER_RINGS) nr_rings = XFER_RINGS; rings = kzalloc(struct_size(rings, headers, nr_rings), GFP_KERNEL); if (!rings) return -ENOMEM; hci->io_data = rings; rings->total = nr_rings; regval = FIELD_PREP(MAX_HEADER_COUNT, rings->total); rhs_reg_write(CONTROL, regval); for (i = 0; i < rings->total; i++) { u32 offset = rhs_reg_read(RHn_OFFSET(i)); dev_info(&hci->master.dev, "Ring %d at offset %#x\n", i, offset); ret = -EINVAL; if (!offset) goto err_out; rh = &rings->headers[i]; rh->regs = hci->base_regs + offset; spin_lock_init(&rh->lock); init_completion(&rh->op_done); rh->xfer_entries = XFER_RING_ENTRIES; regval = rh_reg_read(CR_SETUP); rh->xfer_struct_sz = FIELD_GET(CR_XFER_STRUCT_SIZE, regval); rh->resp_struct_sz = FIELD_GET(CR_RESP_STRUCT_SIZE, regval); DBG("xfer_struct_sz = %d, resp_struct_sz = %d", rh->xfer_struct_sz, rh->resp_struct_sz); xfers_sz = rh->xfer_struct_sz * rh->xfer_entries; resps_sz = rh->resp_struct_sz * rh->xfer_entries; rh->xfer = dma_alloc_coherent(&hci->master.dev, xfers_sz, &rh->xfer_dma, GFP_KERNEL); rh->resp = dma_alloc_coherent(&hci->master.dev, resps_sz, &rh->resp_dma, GFP_KERNEL); rh->src_xfers = kmalloc_array(rh->xfer_entries, sizeof(*rh->src_xfers), GFP_KERNEL); ret = -ENOMEM; if (!rh->xfer || !rh->resp || !rh->src_xfers) goto err_out; rh_reg_write(CMD_RING_BASE_LO, lo32(rh->xfer_dma)); rh_reg_write(CMD_RING_BASE_HI, hi32(rh->xfer_dma)); rh_reg_write(RESP_RING_BASE_LO, lo32(rh->resp_dma)); rh_reg_write(RESP_RING_BASE_HI, hi32(rh->resp_dma)); regval = FIELD_PREP(CR_RING_SIZE, rh->xfer_entries); rh_reg_write(CR_SETUP, regval); rh_reg_write(INTR_STATUS_ENABLE, 0xffffffff); rh_reg_write(INTR_SIGNAL_ENABLE, INTR_IBI_READY | INTR_TRANSFER_COMPLETION | INTR_RING_OP | INTR_TRANSFER_ERR | INTR_WARN_INS_STOP_MODE | INTR_IBI_RING_FULL | INTR_TRANSFER_ABORT); /* IBIs */ if (i >= IBI_RINGS) goto ring_ready; regval = rh_reg_read(IBI_SETUP); rh->ibi_status_sz = FIELD_GET(IBI_STATUS_STRUCT_SIZE, regval); rh->ibi_status_entries = IBI_STATUS_RING_ENTRIES; rh->ibi_chunks_total = IBI_CHUNK_POOL_SIZE; rh->ibi_chunk_sz = dma_get_cache_alignment(); rh->ibi_chunk_sz *= IBI_CHUNK_CACHELINES; BUG_ON(rh->ibi_chunk_sz > 256); ibi_status_ring_sz = rh->ibi_status_sz * rh->ibi_status_entries; ibi_data_ring_sz = rh->ibi_chunk_sz * rh->ibi_chunks_total; rh->ibi_status = dma_alloc_coherent(&hci->master.dev, ibi_status_ring_sz, &rh->ibi_status_dma, GFP_KERNEL); rh->ibi_data = kmalloc(ibi_data_ring_sz, GFP_KERNEL); ret = -ENOMEM; if (!rh->ibi_status || !rh->ibi_data) goto err_out; rh->ibi_data_dma = dma_map_single(&hci->master.dev, rh->ibi_data, ibi_data_ring_sz, DMA_FROM_DEVICE); if (dma_mapping_error(&hci->master.dev, rh->ibi_data_dma)) { rh->ibi_data_dma = 0; ret = -ENOMEM; goto err_out; } regval = FIELD_PREP(IBI_STATUS_RING_SIZE, rh->ibi_status_entries) | FIELD_PREP(IBI_DATA_CHUNK_SIZE, ilog2(rh->ibi_chunk_sz) - 2) | FIELD_PREP(IBI_DATA_CHUNK_COUNT, rh->ibi_chunks_total); rh_reg_write(IBI_SETUP, regval); regval = rh_reg_read(INTR_SIGNAL_ENABLE); regval |= INTR_IBI_READY; rh_reg_write(INTR_SIGNAL_ENABLE, regval); ring_ready: rh_reg_write(RING_CONTROL, RING_CTRL_ENABLE | RING_CTRL_RUN_STOP); } return 0; err_out: hci_dma_cleanup(hci); return ret; } static void hci_dma_unmap_xfer(struct i3c_hci *hci, struct hci_xfer *xfer_list, unsigned int n) { struct hci_xfer *xfer; unsigned int i; for (i = 0; i < n; i++) { xfer = xfer_list + i; if (!xfer->data) continue; dma_unmap_single(&hci->master.dev, xfer->data_dma, xfer->data_len, xfer->rnw ? DMA_FROM_DEVICE : DMA_TO_DEVICE); } } static int hci_dma_queue_xfer(struct i3c_hci *hci, struct hci_xfer *xfer_list, int n) { struct hci_rings_data *rings = hci->io_data; struct hci_rh_data *rh; unsigned int i, ring, enqueue_ptr; u32 op1_val, op2_val; void *buf; /* For now we only use ring 0 */ ring = 0; rh = &rings->headers[ring]; op1_val = rh_reg_read(RING_OPERATION1); enqueue_ptr = FIELD_GET(RING_OP1_CR_ENQ_PTR, op1_val); for (i = 0; i < n; i++) { struct hci_xfer *xfer = xfer_list + i; u32 *ring_data = rh->xfer + rh->xfer_struct_sz * enqueue_ptr; /* store cmd descriptor */ *ring_data++ = xfer->cmd_desc[0]; *ring_data++ = xfer->cmd_desc[1]; if (hci->cmd == &mipi_i3c_hci_cmd_v2) { *ring_data++ = xfer->cmd_desc[2]; *ring_data++ = xfer->cmd_desc[3]; } /* first word of Data Buffer Descriptor Structure */ if (!xfer->data) xfer->data_len = 0; *ring_data++ = FIELD_PREP(DATA_BUF_BLOCK_SIZE, xfer->data_len) | ((i == n - 1) ? DATA_BUF_IOC : 0); /* 2nd and 3rd words of Data Buffer Descriptor Structure */ if (xfer->data) { buf = xfer->bounce_buf ? xfer->bounce_buf : xfer->data; xfer->data_dma = dma_map_single(&hci->master.dev, buf, xfer->data_len, xfer->rnw ? DMA_FROM_DEVICE : DMA_TO_DEVICE); if (dma_mapping_error(&hci->master.dev, xfer->data_dma)) { hci_dma_unmap_xfer(hci, xfer_list, i); return -ENOMEM; } *ring_data++ = lo32(xfer->data_dma); *ring_data++ = hi32(xfer->data_dma); } else { *ring_data++ = 0; *ring_data++ = 0; } /* remember corresponding xfer struct */ rh->src_xfers[enqueue_ptr] = xfer; /* remember corresponding ring/entry for this xfer structure */ xfer->ring_number = ring; xfer->ring_entry = enqueue_ptr; enqueue_ptr = (enqueue_ptr + 1) % rh->xfer_entries; /* * We may update the hardware view of the enqueue pointer * only if we didn't reach its dequeue pointer. */ op2_val = rh_reg_read(RING_OPERATION2); if (enqueue_ptr == FIELD_GET(RING_OP2_CR_DEQ_PTR, op2_val)) { /* the ring is full */ hci_dma_unmap_xfer(hci, xfer_list, i + 1); return -EBUSY; } } /* take care to update the hardware enqueue pointer atomically */ spin_lock_irq(&rh->lock); op1_val = rh_reg_read(RING_OPERATION1); op1_val &= ~RING_OP1_CR_ENQ_PTR; op1_val |= FIELD_PREP(RING_OP1_CR_ENQ_PTR, enqueue_ptr); rh_reg_write(RING_OPERATION1, op1_val); spin_unlock_irq(&rh->lock); return 0; } static bool hci_dma_dequeue_xfer(struct i3c_hci *hci, struct hci_xfer *xfer_list, int n) { struct hci_rings_data *rings = hci->io_data; struct hci_rh_data *rh = &rings->headers[xfer_list[0].ring_number]; unsigned int i; bool did_unqueue = false; /* stop the ring */ rh_reg_write(RING_CONTROL, RING_CTRL_ABORT); if (wait_for_completion_timeout(&rh->op_done, HZ) == 0) { /* * We're deep in it if ever this condition is ever met. * Hardware might still be writing to memory, etc. */ dev_crit(&hci->master.dev, "unable to abort the ring\n"); WARN_ON(1); } for (i = 0; i < n; i++) { struct hci_xfer *xfer = xfer_list + i; int idx = xfer->ring_entry; /* * At the time the abort happened, the xfer might have * completed already. If not then replace corresponding * descriptor entries with a no-op. */ if (idx >= 0) { u32 *ring_data = rh->xfer + rh->xfer_struct_sz * idx; /* store no-op cmd descriptor */ *ring_data++ = FIELD_PREP(CMD_0_ATTR, 0x7); *ring_data++ = 0; if (hci->cmd == &mipi_i3c_hci_cmd_v2) { *ring_data++ = 0; *ring_data++ = 0; } /* disassociate this xfer struct */ rh->src_xfers[idx] = NULL; /* and unmap it */ hci_dma_unmap_xfer(hci, xfer, 1); did_unqueue = true; } } /* restart the ring */ rh_reg_write(RING_CONTROL, RING_CTRL_ENABLE); return did_unqueue; } static void hci_dma_xfer_done(struct i3c_hci *hci, struct hci_rh_data *rh) { u32 op1_val, op2_val, resp, *ring_resp; unsigned int tid, done_ptr = rh->done_ptr; struct hci_xfer *xfer; for (;;) { op2_val = rh_reg_read(RING_OPERATION2); if (done_ptr == FIELD_GET(RING_OP2_CR_DEQ_PTR, op2_val)) break; ring_resp = rh->resp + rh->resp_struct_sz * done_ptr; resp = *ring_resp; tid = RESP_TID(resp); DBG("resp = 0x%08x", resp); xfer = rh->src_xfers[done_ptr]; if (!xfer) { DBG("orphaned ring entry"); } else { hci_dma_unmap_xfer(hci, xfer, 1); xfer->ring_entry = -1; xfer->response = resp; if (tid != xfer->cmd_tid) { dev_err(&hci->master.dev, "response tid=%d when expecting %d\n", tid, xfer->cmd_tid); /* TODO: do something about it? */ } if (xfer->completion) complete(xfer->completion); } done_ptr = (done_ptr + 1) % rh->xfer_entries; rh->done_ptr = done_ptr; } /* take care to update the software dequeue pointer atomically */ spin_lock(&rh->lock); op1_val = rh_reg_read(RING_OPERATION1); op1_val &= ~RING_OP1_CR_SW_DEQ_PTR; op1_val |= FIELD_PREP(RING_OP1_CR_SW_DEQ_PTR, done_ptr); rh_reg_write(RING_OPERATION1, op1_val); spin_unlock(&rh->lock); } static int hci_dma_request_ibi(struct i3c_hci *hci, struct i3c_dev_desc *dev, const struct i3c_ibi_setup *req) { struct i3c_hci_dev_data *dev_data = i3c_dev_get_master_data(dev); struct i3c_generic_ibi_pool *pool; struct hci_dma_dev_ibi_data *dev_ibi; dev_ibi = kmalloc(sizeof(*dev_ibi), GFP_KERNEL); if (!dev_ibi) return -ENOMEM; pool = i3c_generic_ibi_alloc_pool(dev, req); if (IS_ERR(pool)) { kfree(dev_ibi); return PTR_ERR(pool); } dev_ibi->pool = pool; dev_ibi->max_len = req->max_payload_len; dev_data->ibi_data = dev_ibi; return 0; } static void hci_dma_free_ibi(struct i3c_hci *hci, struct i3c_dev_desc *dev) { struct i3c_hci_dev_data *dev_data = i3c_dev_get_master_data(dev); struct hci_dma_dev_ibi_data *dev_ibi = dev_data->ibi_data; dev_data->ibi_data = NULL; i3c_generic_ibi_free_pool(dev_ibi->pool); kfree(dev_ibi); } static void hci_dma_recycle_ibi_slot(struct i3c_hci *hci, struct i3c_dev_desc *dev, struct i3c_ibi_slot *slot) { struct i3c_hci_dev_data *dev_data = i3c_dev_get_master_data(dev); struct hci_dma_dev_ibi_data *dev_ibi = dev_data->ibi_data; i3c_generic_ibi_recycle_slot(dev_ibi->pool, slot); } static void hci_dma_process_ibi(struct i3c_hci *hci, struct hci_rh_data *rh) { struct i3c_dev_desc *dev; struct i3c_hci_dev_data *dev_data; struct hci_dma_dev_ibi_data *dev_ibi; struct i3c_ibi_slot *slot; u32 op1_val, op2_val, ibi_status_error; unsigned int ptr, enq_ptr, deq_ptr; unsigned int ibi_size, ibi_chunks, ibi_data_offset, first_part; int ibi_addr, last_ptr; void *ring_ibi_data; dma_addr_t ring_ibi_data_dma; op1_val = rh_reg_read(RING_OPERATION1); deq_ptr = FIELD_GET(RING_OP1_IBI_DEQ_PTR, op1_val); op2_val = rh_reg_read(RING_OPERATION2); enq_ptr = FIELD_GET(RING_OP2_IBI_ENQ_PTR, op2_val); ibi_status_error = 0; ibi_addr = -1; ibi_chunks = 0; ibi_size = 0; last_ptr = -1; /* let's find all we can about this IBI */ for (ptr = deq_ptr; ptr != enq_ptr; ptr = (ptr + 1) % rh->ibi_status_entries) { u32 ibi_status, *ring_ibi_status; unsigned int chunks; ring_ibi_status = rh->ibi_status + rh->ibi_status_sz * ptr; ibi_status = *ring_ibi_status; DBG("status = %#x", ibi_status); if (ibi_status_error) { /* we no longer care */ } else if (ibi_status & IBI_ERROR) { ibi_status_error = ibi_status; } else if (ibi_addr == -1) { ibi_addr = FIELD_GET(IBI_TARGET_ADDR, ibi_status); } else if (ibi_addr != FIELD_GET(IBI_TARGET_ADDR, ibi_status)) { /* the address changed unexpectedly */ ibi_status_error = ibi_status; } chunks = FIELD_GET(IBI_CHUNKS, ibi_status); ibi_chunks += chunks; if (!(ibi_status & IBI_LAST_STATUS)) { ibi_size += chunks * rh->ibi_chunk_sz; } else { ibi_size += FIELD_GET(IBI_DATA_LENGTH, ibi_status); last_ptr = ptr; break; } } /* validate what we've got */ if (last_ptr == -1) { /* this IBI sequence is not yet complete */ DBG("no LAST_STATUS available (e=%d d=%d)", enq_ptr, deq_ptr); return; } deq_ptr = last_ptr + 1; deq_ptr %= rh->ibi_status_entries; if (ibi_status_error) { dev_err(&hci->master.dev, "IBI error from %#x\n", ibi_addr); goto done; } /* determine who this is for */ dev = i3c_hci_addr_to_dev(hci, ibi_addr); if (!dev) { dev_err(&hci->master.dev, "IBI for unknown device %#x\n", ibi_addr); goto done; } dev_data = i3c_dev_get_master_data(dev); dev_ibi = dev_data->ibi_data; if (ibi_size > dev_ibi->max_len) { dev_err(&hci->master.dev, "IBI payload too big (%d > %d)\n", ibi_size, dev_ibi->max_len); goto done; } /* * This ring model is not suitable for zero-copy processing of IBIs. * We have the data chunk ring wrap-around to deal with, meaning * that the payload might span multiple chunks beginning at the * end of the ring and wrap to the start of the ring. Furthermore * there is no guarantee that those chunks will be released in order * and in a timely manner by the upper driver. So let's just copy * them to a discrete buffer. In practice they're supposed to be * small anyway. */ slot = i3c_generic_ibi_get_free_slot(dev_ibi->pool); if (!slot) { dev_err(&hci->master.dev, "no free slot for IBI\n"); goto done; } /* copy first part of the payload */ ibi_data_offset = rh->ibi_chunk_sz * rh->ibi_chunk_ptr; ring_ibi_data = rh->ibi_data + ibi_data_offset; ring_ibi_data_dma = rh->ibi_data_dma + ibi_data_offset; first_part = (rh->ibi_chunks_total - rh->ibi_chunk_ptr) * rh->ibi_chunk_sz; if (first_part > ibi_size) first_part = ibi_size; dma_sync_single_for_cpu(&hci->master.dev, ring_ibi_data_dma, first_part, DMA_FROM_DEVICE); memcpy(slot->data, ring_ibi_data, first_part); /* copy second part if any */ if (ibi_size > first_part) { /* we wrap back to the start and copy remaining data */ ring_ibi_data = rh->ibi_data; ring_ibi_data_dma = rh->ibi_data_dma; dma_sync_single_for_cpu(&hci->master.dev, ring_ibi_data_dma, ibi_size - first_part, DMA_FROM_DEVICE); memcpy(slot->data + first_part, ring_ibi_data, ibi_size - first_part); } /* submit it */ slot->dev = dev; slot->len = ibi_size; i3c_master_queue_ibi(dev, slot); done: /* take care to update the ibi dequeue pointer atomically */ spin_lock(&rh->lock); op1_val = rh_reg_read(RING_OPERATION1); op1_val &= ~RING_OP1_IBI_DEQ_PTR; op1_val |= FIELD_PREP(RING_OP1_IBI_DEQ_PTR, deq_ptr); rh_reg_write(RING_OPERATION1, op1_val); spin_unlock(&rh->lock); /* update the chunk pointer */ rh->ibi_chunk_ptr += ibi_chunks; rh->ibi_chunk_ptr %= rh->ibi_chunks_total; /* and tell the hardware about freed chunks */ rh_reg_write(CHUNK_CONTROL, rh_reg_read(CHUNK_CONTROL) + ibi_chunks); } static bool hci_dma_irq_handler(struct i3c_hci *hci, unsigned int mask) { struct hci_rings_data *rings = hci->io_data; unsigned int i; bool handled = false; for (i = 0; mask && i < rings->total; i++) { struct hci_rh_data *rh; u32 status; if (!(mask & BIT(i))) continue; mask &= ~BIT(i); rh = &rings->headers[i]; status = rh_reg_read(INTR_STATUS); DBG("rh%d status: %#x", i, status); if (!status) continue; rh_reg_write(INTR_STATUS, status); if (status & INTR_IBI_READY) hci_dma_process_ibi(hci, rh); if (status & (INTR_TRANSFER_COMPLETION | INTR_TRANSFER_ERR)) hci_dma_xfer_done(hci, rh); if (status & INTR_RING_OP) complete(&rh->op_done); if (status & INTR_TRANSFER_ABORT) { dev_notice_ratelimited(&hci->master.dev, "ring %d: Transfer Aborted\n", i); mipi_i3c_hci_resume(hci); } if (status & INTR_WARN_INS_STOP_MODE) dev_warn_ratelimited(&hci->master.dev, "ring %d: Inserted Stop on Mode Change\n", i); if (status & INTR_IBI_RING_FULL) dev_err_ratelimited(&hci->master.dev, "ring %d: IBI Ring Full Condition\n", i); handled = true; } return handled; } const struct hci_io_ops mipi_i3c_hci_dma = { .init = hci_dma_init, .cleanup = hci_dma_cleanup, .queue_xfer = hci_dma_queue_xfer, .dequeue_xfer = hci_dma_dequeue_xfer, .irq_handler = hci_dma_irq_handler, .request_ibi = hci_dma_request_ibi, .free_ibi = hci_dma_free_ibi, .recycle_ibi_slot = hci_dma_recycle_ibi_slot, }; |