Linux Audio

Check our new training course

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
// SPDX-License-Identifier: MIT
/*
 * Copyright © 2022 Intel Corporation
 */

#include "xe_guc_ct.h"

#include <linux/bitfield.h>
#include <linux/circ_buf.h>
#include <linux/delay.h>

#include <kunit/static_stub.h>

#include <drm/drm_managed.h>

#include "abi/guc_actions_abi.h"
#include "abi/guc_actions_sriov_abi.h"
#include "abi/guc_klvs_abi.h"
#include "xe_bo.h"
#include "xe_device.h"
#include "xe_gt.h"
#include "xe_gt_pagefault.h"
#include "xe_gt_printk.h"
#include "xe_gt_tlb_invalidation.h"
#include "xe_guc.h"
#include "xe_guc_relay.h"
#include "xe_guc_submit.h"
#include "xe_map.h"
#include "xe_pm.h"
#include "xe_trace.h"

/* Used when a CT send wants to block and / or receive data */
struct g2h_fence {
	u32 *response_buffer;
	u32 seqno;
	u32 response_data;
	u16 response_len;
	u16 error;
	u16 hint;
	u16 reason;
	bool retry;
	bool fail;
	bool done;
};

static void g2h_fence_init(struct g2h_fence *g2h_fence, u32 *response_buffer)
{
	g2h_fence->response_buffer = response_buffer;
	g2h_fence->response_data = 0;
	g2h_fence->response_len = 0;
	g2h_fence->fail = false;
	g2h_fence->retry = false;
	g2h_fence->done = false;
	g2h_fence->seqno = ~0x0;
}

static bool g2h_fence_needs_alloc(struct g2h_fence *g2h_fence)
{
	return g2h_fence->seqno == ~0x0;
}

static struct xe_guc *
ct_to_guc(struct xe_guc_ct *ct)
{
	return container_of(ct, struct xe_guc, ct);
}

static struct xe_gt *
ct_to_gt(struct xe_guc_ct *ct)
{
	return container_of(ct, struct xe_gt, uc.guc.ct);
}

static struct xe_device *
ct_to_xe(struct xe_guc_ct *ct)
{
	return gt_to_xe(ct_to_gt(ct));
}

/**
 * DOC: GuC CTB Blob
 *
 * We allocate single blob to hold both CTB descriptors and buffers:
 *
 *      +--------+-----------------------------------------------+------+
 *      | offset | contents                                      | size |
 *      +========+===============================================+======+
 *      | 0x0000 | H2G CTB Descriptor (send)                     |      |
 *      +--------+-----------------------------------------------+  4K  |
 *      | 0x0800 | G2H CTB Descriptor (g2h)                      |      |
 *      +--------+-----------------------------------------------+------+
 *      | 0x1000 | H2G CT Buffer (send)                          | n*4K |
 *      |        |                                               |      |
 *      +--------+-----------------------------------------------+------+
 *      | 0x1000 | G2H CT Buffer (g2h)                           | m*4K |
 *      | + n*4K |                                               |      |
 *      +--------+-----------------------------------------------+------+
 *
 * Size of each ``CT Buffer`` must be multiple of 4K.
 * We don't expect too many messages in flight at any time, unless we are
 * using the GuC submission. In that case each request requires a minimum
 * 2 dwords which gives us a maximum 256 queue'd requests. Hopefully this
 * enough space to avoid backpressure on the driver. We increase the size
 * of the receive buffer (relative to the send) to ensure a G2H response
 * CTB has a landing spot.
 */

#define CTB_DESC_SIZE		ALIGN(sizeof(struct guc_ct_buffer_desc), SZ_2K)
#define CTB_H2G_BUFFER_SIZE	(SZ_4K)
#define CTB_G2H_BUFFER_SIZE	(4 * CTB_H2G_BUFFER_SIZE)
#define G2H_ROOM_BUFFER_SIZE	(CTB_G2H_BUFFER_SIZE / 4)

static size_t guc_ct_size(void)
{
	return 2 * CTB_DESC_SIZE + CTB_H2G_BUFFER_SIZE +
		CTB_G2H_BUFFER_SIZE;
}

static void guc_ct_fini(struct drm_device *drm, void *arg)
{
	struct xe_guc_ct *ct = arg;

	destroy_workqueue(ct->g2h_wq);
	xa_destroy(&ct->fence_lookup);
}

static void g2h_worker_func(struct work_struct *w);

static void primelockdep(struct xe_guc_ct *ct)
{
	if (!IS_ENABLED(CONFIG_LOCKDEP))
		return;

	fs_reclaim_acquire(GFP_KERNEL);
	might_lock(&ct->lock);
	fs_reclaim_release(GFP_KERNEL);
}

int xe_guc_ct_init(struct xe_guc_ct *ct)
{
	struct xe_device *xe = ct_to_xe(ct);
	struct xe_gt *gt = ct_to_gt(ct);
	struct xe_tile *tile = gt_to_tile(gt);
	struct xe_bo *bo;
	int err;

	xe_assert(xe, !(guc_ct_size() % PAGE_SIZE));

	ct->g2h_wq = alloc_ordered_workqueue("xe-g2h-wq", 0);
	if (!ct->g2h_wq)
		return -ENOMEM;

	spin_lock_init(&ct->fast_lock);
	xa_init(&ct->fence_lookup);
	INIT_WORK(&ct->g2h_worker, g2h_worker_func);
	init_waitqueue_head(&ct->wq);
	init_waitqueue_head(&ct->g2h_fence_wq);

	err = drmm_mutex_init(&xe->drm, &ct->lock);
	if (err)
		return err;

	primelockdep(ct);

	bo = xe_managed_bo_create_pin_map(xe, tile, guc_ct_size(),
					  XE_BO_CREATE_SYSTEM_BIT |
					  XE_BO_CREATE_GGTT_BIT);
	if (IS_ERR(bo))
		return PTR_ERR(bo);

	ct->bo = bo;

	err = drmm_add_action_or_reset(&xe->drm, guc_ct_fini, ct);
	if (err)
		return err;

	xe_assert(xe, ct->state == XE_GUC_CT_STATE_NOT_INITIALIZED);
	ct->state = XE_GUC_CT_STATE_DISABLED;
	return 0;
}

#define desc_read(xe_, guc_ctb__, field_)			\
	xe_map_rd_field(xe_, &guc_ctb__->desc, 0,		\
			struct guc_ct_buffer_desc, field_)

#define desc_write(xe_, guc_ctb__, field_, val_)		\
	xe_map_wr_field(xe_, &guc_ctb__->desc, 0,		\
			struct guc_ct_buffer_desc, field_, val_)

static void guc_ct_ctb_h2g_init(struct xe_device *xe, struct guc_ctb *h2g,
				struct iosys_map *map)
{
	h2g->info.size = CTB_H2G_BUFFER_SIZE / sizeof(u32);
	h2g->info.resv_space = 0;
	h2g->info.tail = 0;
	h2g->info.head = 0;
	h2g->info.space = CIRC_SPACE(h2g->info.tail, h2g->info.head,
				     h2g->info.size) -
			  h2g->info.resv_space;
	h2g->info.broken = false;

	h2g->desc = *map;
	xe_map_memset(xe, &h2g->desc, 0, 0, sizeof(struct guc_ct_buffer_desc));

	h2g->cmds = IOSYS_MAP_INIT_OFFSET(map, CTB_DESC_SIZE * 2);
}

static void guc_ct_ctb_g2h_init(struct xe_device *xe, struct guc_ctb *g2h,
				struct iosys_map *map)
{
	g2h->info.size = CTB_G2H_BUFFER_SIZE / sizeof(u32);
	g2h->info.resv_space = G2H_ROOM_BUFFER_SIZE / sizeof(u32);
	g2h->info.head = 0;
	g2h->info.tail = 0;
	g2h->info.space = CIRC_SPACE(g2h->info.tail, g2h->info.head,
				     g2h->info.size) -
			  g2h->info.resv_space;
	g2h->info.broken = false;

	g2h->desc = IOSYS_MAP_INIT_OFFSET(map, CTB_DESC_SIZE);
	xe_map_memset(xe, &g2h->desc, 0, 0, sizeof(struct guc_ct_buffer_desc));

	g2h->cmds = IOSYS_MAP_INIT_OFFSET(map, CTB_DESC_SIZE * 2 +
					    CTB_H2G_BUFFER_SIZE);
}

static int guc_ct_ctb_h2g_register(struct xe_guc_ct *ct)
{
	struct xe_guc *guc = ct_to_guc(ct);
	u32 desc_addr, ctb_addr, size;
	int err;

	desc_addr = xe_bo_ggtt_addr(ct->bo);
	ctb_addr = xe_bo_ggtt_addr(ct->bo) + CTB_DESC_SIZE * 2;
	size = ct->ctbs.h2g.info.size * sizeof(u32);

	err = xe_guc_self_cfg64(guc,
				GUC_KLV_SELF_CFG_H2G_CTB_DESCRIPTOR_ADDR_KEY,
				desc_addr);
	if (err)
		return err;

	err = xe_guc_self_cfg64(guc,
				GUC_KLV_SELF_CFG_H2G_CTB_ADDR_KEY,
				ctb_addr);
	if (err)
		return err;

	return xe_guc_self_cfg32(guc,
				 GUC_KLV_SELF_CFG_H2G_CTB_SIZE_KEY,
				 size);
}

static int guc_ct_ctb_g2h_register(struct xe_guc_ct *ct)
{
	struct xe_guc *guc = ct_to_guc(ct);
	u32 desc_addr, ctb_addr, size;
	int err;

	desc_addr = xe_bo_ggtt_addr(ct->bo) + CTB_DESC_SIZE;
	ctb_addr = xe_bo_ggtt_addr(ct->bo) + CTB_DESC_SIZE * 2 +
		CTB_H2G_BUFFER_SIZE;
	size = ct->ctbs.g2h.info.size * sizeof(u32);

	err = xe_guc_self_cfg64(guc,
				GUC_KLV_SELF_CFG_G2H_CTB_DESCRIPTOR_ADDR_KEY,
				desc_addr);
	if (err)
		return err;

	err = xe_guc_self_cfg64(guc,
				GUC_KLV_SELF_CFG_G2H_CTB_ADDR_KEY,
				ctb_addr);
	if (err)
		return err;

	return xe_guc_self_cfg32(guc,
				 GUC_KLV_SELF_CFG_G2H_CTB_SIZE_KEY,
				 size);
}

static int guc_ct_control_toggle(struct xe_guc_ct *ct, bool enable)
{
	u32 request[HOST2GUC_CONTROL_CTB_REQUEST_MSG_LEN] = {
		FIELD_PREP(GUC_HXG_MSG_0_ORIGIN, GUC_HXG_ORIGIN_HOST) |
		FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_REQUEST) |
		FIELD_PREP(GUC_HXG_REQUEST_MSG_0_ACTION,
			   GUC_ACTION_HOST2GUC_CONTROL_CTB),
		FIELD_PREP(HOST2GUC_CONTROL_CTB_REQUEST_MSG_1_CONTROL,
			   enable ? GUC_CTB_CONTROL_ENABLE :
			   GUC_CTB_CONTROL_DISABLE),
	};
	int ret = xe_guc_mmio_send(ct_to_guc(ct), request, ARRAY_SIZE(request));

	return ret > 0 ? -EPROTO : ret;
}

static void xe_guc_ct_set_state(struct xe_guc_ct *ct,
				enum xe_guc_ct_state state)
{
	mutex_lock(&ct->lock);		/* Serialise dequeue_one_g2h() */
	spin_lock_irq(&ct->fast_lock);	/* Serialise CT fast-path */

	xe_gt_assert(ct_to_gt(ct), ct->g2h_outstanding == 0 ||
		     state == XE_GUC_CT_STATE_STOPPED);

	ct->g2h_outstanding = 0;
	ct->state = state;

	spin_unlock_irq(&ct->fast_lock);

	/*
	 * Lockdep doesn't like this under the fast lock and he destroy only
	 * needs to be serialized with the send path which ct lock provides.
	 */
	xa_destroy(&ct->fence_lookup);

	mutex_unlock(&ct->lock);
}

int xe_guc_ct_enable(struct xe_guc_ct *ct)
{
	struct xe_device *xe = ct_to_xe(ct);
	int err;

	xe_assert(xe, !xe_guc_ct_enabled(ct));

	guc_ct_ctb_h2g_init(xe, &ct->ctbs.h2g, &ct->bo->vmap);
	guc_ct_ctb_g2h_init(xe, &ct->ctbs.g2h, &ct->bo->vmap);

	err = guc_ct_ctb_h2g_register(ct);
	if (err)
		goto err_out;

	err = guc_ct_ctb_g2h_register(ct);
	if (err)
		goto err_out;

	err = guc_ct_control_toggle(ct, true);
	if (err)
		goto err_out;

	xe_guc_ct_set_state(ct, XE_GUC_CT_STATE_ENABLED);

	smp_mb();
	wake_up_all(&ct->wq);
	drm_dbg(&xe->drm, "GuC CT communication channel enabled\n");

	return 0;

err_out:
	drm_err(&xe->drm, "Failed to enable CT (%d)\n", err);

	return err;
}

static void stop_g2h_handler(struct xe_guc_ct *ct)
{
	cancel_work_sync(&ct->g2h_worker);
}

/**
 * xe_guc_ct_disable - Set GuC to disabled state
 * @ct: the &xe_guc_ct
 *
 * Set GuC CT to disabled state and stop g2h handler. No outstanding g2h expected
 * in this transition.
 */
void xe_guc_ct_disable(struct xe_guc_ct *ct)
{
	xe_guc_ct_set_state(ct, XE_GUC_CT_STATE_DISABLED);
	stop_g2h_handler(ct);
}

/**
 * xe_guc_ct_stop - Set GuC to stopped state
 * @ct: the &xe_guc_ct
 *
 * Set GuC CT to stopped state, stop g2h handler, and clear any outstanding g2h
 */
void xe_guc_ct_stop(struct xe_guc_ct *ct)
{
	xe_guc_ct_set_state(ct, XE_GUC_CT_STATE_STOPPED);
	stop_g2h_handler(ct);
}

static bool h2g_has_room(struct xe_guc_ct *ct, u32 cmd_len)
{
	struct guc_ctb *h2g = &ct->ctbs.h2g;

	lockdep_assert_held(&ct->lock);

	if (cmd_len > h2g->info.space) {
		h2g->info.head = desc_read(ct_to_xe(ct), h2g, head);
		h2g->info.space = CIRC_SPACE(h2g->info.tail, h2g->info.head,
					     h2g->info.size) -
				  h2g->info.resv_space;
		if (cmd_len > h2g->info.space)
			return false;
	}

	return true;
}

static bool g2h_has_room(struct xe_guc_ct *ct, u32 g2h_len)
{
	if (!g2h_len)
		return true;

	lockdep_assert_held(&ct->fast_lock);

	return ct->ctbs.g2h.info.space > g2h_len;
}

static int has_room(struct xe_guc_ct *ct, u32 cmd_len, u32 g2h_len)
{
	lockdep_assert_held(&ct->lock);

	if (!g2h_has_room(ct, g2h_len) || !h2g_has_room(ct, cmd_len))
		return -EBUSY;

	return 0;
}

static void h2g_reserve_space(struct xe_guc_ct *ct, u32 cmd_len)
{
	lockdep_assert_held(&ct->lock);
	ct->ctbs.h2g.info.space -= cmd_len;
}

static void __g2h_reserve_space(struct xe_guc_ct *ct, u32 g2h_len, u32 num_g2h)
{
	xe_assert(ct_to_xe(ct), g2h_len <= ct->ctbs.g2h.info.space);

	if (g2h_len) {
		lockdep_assert_held(&ct->fast_lock);

		ct->ctbs.g2h.info.space -= g2h_len;
		ct->g2h_outstanding += num_g2h;
	}
}

static void __g2h_release_space(struct xe_guc_ct *ct, u32 g2h_len)
{
	lockdep_assert_held(&ct->fast_lock);
	xe_assert(ct_to_xe(ct), ct->ctbs.g2h.info.space + g2h_len <=
		  ct->ctbs.g2h.info.size - ct->ctbs.g2h.info.resv_space);

	ct->ctbs.g2h.info.space += g2h_len;
	--ct->g2h_outstanding;
}

static void g2h_release_space(struct xe_guc_ct *ct, u32 g2h_len)
{
	spin_lock_irq(&ct->fast_lock);
	__g2h_release_space(ct, g2h_len);
	spin_unlock_irq(&ct->fast_lock);
}

#define H2G_CT_HEADERS (GUC_CTB_HDR_LEN + 1) /* one DW CTB header and one DW HxG header */

static int h2g_write(struct xe_guc_ct *ct, const u32 *action, u32 len,
		     u32 ct_fence_value, bool want_response)
{
	struct xe_device *xe = ct_to_xe(ct);
	struct guc_ctb *h2g = &ct->ctbs.h2g;
	u32 cmd[H2G_CT_HEADERS];
	u32 tail = h2g->info.tail;
	u32 full_len;
	struct iosys_map map = IOSYS_MAP_INIT_OFFSET(&h2g->cmds,
							 tail * sizeof(u32));

	full_len = len + GUC_CTB_HDR_LEN;

	lockdep_assert_held(&ct->lock);
	xe_assert(xe, full_len <= GUC_CTB_MSG_MAX_LEN);
	xe_assert(xe, tail <= h2g->info.size);

	/* Command will wrap, zero fill (NOPs), return and check credits again */
	if (tail + full_len > h2g->info.size) {
		xe_map_memset(xe, &map, 0, 0,
			      (h2g->info.size - tail) * sizeof(u32));
		h2g_reserve_space(ct, (h2g->info.size - tail));
		h2g->info.tail = 0;
		desc_write(xe, h2g, tail, h2g->info.tail);

		return -EAGAIN;
	}

	/*
	 * dw0: CT header (including fence)
	 * dw1: HXG header (including action code)
	 * dw2+: action data
	 */
	cmd[0] = FIELD_PREP(GUC_CTB_MSG_0_FORMAT, GUC_CTB_FORMAT_HXG) |
		FIELD_PREP(GUC_CTB_MSG_0_NUM_DWORDS, len) |
		FIELD_PREP(GUC_CTB_MSG_0_FENCE, ct_fence_value);
	if (want_response) {
		cmd[1] =
			FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_REQUEST) |
			FIELD_PREP(GUC_HXG_EVENT_MSG_0_ACTION |
				   GUC_HXG_EVENT_MSG_0_DATA0, action[0]);
	} else {
		cmd[1] =
			FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_FAST_REQUEST) |
			FIELD_PREP(GUC_HXG_EVENT_MSG_0_ACTION |
				   GUC_HXG_EVENT_MSG_0_DATA0, action[0]);
	}

	/* H2G header in cmd[1] replaces action[0] so: */
	--len;
	++action;

	/* Write H2G ensuring visable before descriptor update */
	xe_map_memcpy_to(xe, &map, 0, cmd, H2G_CT_HEADERS * sizeof(u32));
	xe_map_memcpy_to(xe, &map, H2G_CT_HEADERS * sizeof(u32), action, len * sizeof(u32));
	xe_device_wmb(xe);

	/* Update local copies */
	h2g->info.tail = (tail + full_len) % h2g->info.size;
	h2g_reserve_space(ct, full_len);

	/* Update descriptor */
	desc_write(xe, h2g, tail, h2g->info.tail);

	trace_xe_guc_ctb_h2g(ct_to_gt(ct)->info.id, *(action - 1), full_len,
			     desc_read(xe, h2g, head), h2g->info.tail);

	return 0;
}

/*
 * The CT protocol accepts a 16 bits fence. This field is fully owned by the
 * driver, the GuC will just copy it to the reply message. Since we need to
 * be able to distinguish between replies to REQUEST and FAST_REQUEST messages,
 * we use one bit of the seqno as an indicator for that and a rolling counter
 * for the remaining 15 bits.
 */
#define CT_SEQNO_MASK GENMASK(14, 0)
#define CT_SEQNO_UNTRACKED BIT(15)
static u16 next_ct_seqno(struct xe_guc_ct *ct, bool is_g2h_fence)
{
	u32 seqno = ct->fence_seqno++ & CT_SEQNO_MASK;

	if (!is_g2h_fence)
		seqno |= CT_SEQNO_UNTRACKED;

	return seqno;
}

static int __guc_ct_send_locked(struct xe_guc_ct *ct, const u32 *action,
				u32 len, u32 g2h_len, u32 num_g2h,
				struct g2h_fence *g2h_fence)
{
	struct xe_device *xe = ct_to_xe(ct);
	u16 seqno;
	int ret;

	xe_assert(xe, ct->state != XE_GUC_CT_STATE_NOT_INITIALIZED);
	xe_assert(xe, !g2h_len || !g2h_fence);
	xe_assert(xe, !num_g2h || !g2h_fence);
	xe_assert(xe, !g2h_len || num_g2h);
	xe_assert(xe, g2h_len || !num_g2h);
	lockdep_assert_held(&ct->lock);

	if (unlikely(ct->ctbs.h2g.info.broken)) {
		ret = -EPIPE;
		goto out;
	}

	if (ct->state == XE_GUC_CT_STATE_DISABLED) {
		ret = -ENODEV;
		goto out;
	}

	if (ct->state == XE_GUC_CT_STATE_STOPPED) {
		ret = -ECANCELED;
		goto out;
	}

	xe_assert(xe, xe_guc_ct_enabled(ct));

	if (g2h_fence) {
		g2h_len = GUC_CTB_HXG_MSG_MAX_LEN;
		num_g2h = 1;

		if (g2h_fence_needs_alloc(g2h_fence)) {
			void *ptr;

			g2h_fence->seqno = next_ct_seqno(ct, true);
			ptr = xa_store(&ct->fence_lookup,
				       g2h_fence->seqno,
				       g2h_fence, GFP_ATOMIC);
			if (IS_ERR(ptr)) {
				ret = PTR_ERR(ptr);
				goto out;
			}
		}

		seqno = g2h_fence->seqno;
	} else {
		seqno = next_ct_seqno(ct, false);
	}

	if (g2h_len)
		spin_lock_irq(&ct->fast_lock);
retry:
	ret = has_room(ct, len + GUC_CTB_HDR_LEN, g2h_len);
	if (unlikely(ret))
		goto out_unlock;

	ret = h2g_write(ct, action, len, seqno, !!g2h_fence);
	if (unlikely(ret)) {
		if (ret == -EAGAIN)
			goto retry;
		goto out_unlock;
	}

	__g2h_reserve_space(ct, g2h_len, num_g2h);
	xe_guc_notify(ct_to_guc(ct));
out_unlock:
	if (g2h_len)
		spin_unlock_irq(&ct->fast_lock);
out:
	return ret;
}

static void kick_reset(struct xe_guc_ct *ct)
{
	xe_gt_reset_async(ct_to_gt(ct));
}

static int dequeue_one_g2h(struct xe_guc_ct *ct);

static int guc_ct_send_locked(struct xe_guc_ct *ct, const u32 *action, u32 len,
			      u32 g2h_len, u32 num_g2h,
			      struct g2h_fence *g2h_fence)
{
	struct drm_device *drm = &ct_to_xe(ct)->drm;
	struct drm_printer p = drm_info_printer(drm->dev);
	unsigned int sleep_period_ms = 1;
	int ret;

	xe_assert(ct_to_xe(ct), !g2h_len || !g2h_fence);
	lockdep_assert_held(&ct->lock);
	xe_device_assert_mem_access(ct_to_xe(ct));

try_again:
	ret = __guc_ct_send_locked(ct, action, len, g2h_len, num_g2h,
				   g2h_fence);

	/*
	 * We wait to try to restore credits for about 1 second before bailing.
	 * In the case of H2G credits we have no choice but just to wait for the
	 * GuC to consume H2Gs in the channel so we use a wait / sleep loop. In
	 * the case of G2H we process any G2H in the channel, hopefully freeing
	 * credits as we consume the G2H messages.
	 */
	if (unlikely(ret == -EBUSY &&
		     !h2g_has_room(ct, len + GUC_CTB_HDR_LEN))) {
		struct guc_ctb *h2g = &ct->ctbs.h2g;

		if (sleep_period_ms == 1024)
			goto broken;

		trace_xe_guc_ct_h2g_flow_control(h2g->info.head, h2g->info.tail,
						 h2g->info.size,
						 h2g->info.space,
						 len + GUC_CTB_HDR_LEN);
		msleep(sleep_period_ms);
		sleep_period_ms <<= 1;

		goto try_again;
	} else if (unlikely(ret == -EBUSY)) {
		struct xe_device *xe = ct_to_xe(ct);
		struct guc_ctb *g2h = &ct->ctbs.g2h;

		trace_xe_guc_ct_g2h_flow_control(g2h->info.head,
						 desc_read(xe, g2h, tail),
						 g2h->info.size,
						 g2h->info.space,
						 g2h_fence ?
						 GUC_CTB_HXG_MSG_MAX_LEN :
						 g2h_len);

#define g2h_avail(ct)	\
	(desc_read(ct_to_xe(ct), (&ct->ctbs.g2h), tail) != ct->ctbs.g2h.info.head)
		if (!wait_event_timeout(ct->wq, !ct->g2h_outstanding ||
					g2h_avail(ct), HZ))
			goto broken;
#undef g2h_avail

		if (dequeue_one_g2h(ct) < 0)
			goto broken;

		goto try_again;
	}

	return ret;

broken:
	drm_err(drm, "No forward process on H2G, reset required");
	xe_guc_ct_print(ct, &p, true);
	ct->ctbs.h2g.info.broken = true;

	return -EDEADLK;
}

static int guc_ct_send(struct xe_guc_ct *ct, const u32 *action, u32 len,
		       u32 g2h_len, u32 num_g2h, struct g2h_fence *g2h_fence)
{
	int ret;

	xe_assert(ct_to_xe(ct), !g2h_len || !g2h_fence);

	mutex_lock(&ct->lock);
	ret = guc_ct_send_locked(ct, action, len, g2h_len, num_g2h, g2h_fence);
	mutex_unlock(&ct->lock);

	return ret;
}

int xe_guc_ct_send(struct xe_guc_ct *ct, const u32 *action, u32 len,
		   u32 g2h_len, u32 num_g2h)
{
	int ret;

	ret = guc_ct_send(ct, action, len, g2h_len, num_g2h, NULL);
	if (ret == -EDEADLK)
		kick_reset(ct);

	return ret;
}

int xe_guc_ct_send_locked(struct xe_guc_ct *ct, const u32 *action, u32 len,
			  u32 g2h_len, u32 num_g2h)
{
	int ret;

	ret = guc_ct_send_locked(ct, action, len, g2h_len, num_g2h, NULL);
	if (ret == -EDEADLK)
		kick_reset(ct);

	return ret;
}

int xe_guc_ct_send_g2h_handler(struct xe_guc_ct *ct, const u32 *action, u32 len)
{
	int ret;

	lockdep_assert_held(&ct->lock);

	ret = guc_ct_send_locked(ct, action, len, 0, 0, NULL);
	if (ret == -EDEADLK)
		kick_reset(ct);

	return ret;
}

/*
 * Check if a GT reset is in progress or will occur and if GT reset brought the
 * CT back up. Randomly picking 5 seconds for an upper limit to do a GT a reset.
 */
static bool retry_failure(struct xe_guc_ct *ct, int ret)
{
	if (!(ret == -EDEADLK || ret == -EPIPE || ret == -ENODEV))
		return false;

#define ct_alive(ct)	\
	(xe_guc_ct_enabled(ct) && !ct->ctbs.h2g.info.broken && \
	 !ct->ctbs.g2h.info.broken)
	if (!wait_event_interruptible_timeout(ct->wq, ct_alive(ct),  HZ * 5))
		return false;
#undef ct_alive

	return true;
}

static int guc_ct_send_recv(struct xe_guc_ct *ct, const u32 *action, u32 len,
			    u32 *response_buffer, bool no_fail)
{
	struct xe_device *xe = ct_to_xe(ct);
	struct g2h_fence g2h_fence;
	int ret = 0;

	/*
	 * We use a fence to implement blocking sends / receiving response data.
	 * The seqno of the fence is sent in the H2G, returned in the G2H, and
	 * an xarray is used as storage media with the seqno being to key.
	 * Fields in the fence hold success, failure, retry status and the
	 * response data. Safe to allocate on the stack as the xarray is the
	 * only reference and it cannot be present after this function exits.
	 */
retry:
	g2h_fence_init(&g2h_fence, response_buffer);
retry_same_fence:
	ret = guc_ct_send(ct, action, len, 0, 0, &g2h_fence);
	if (unlikely(ret == -ENOMEM)) {
		void *ptr;

		/* Retry allocation /w GFP_KERNEL */
		ptr = xa_store(&ct->fence_lookup,
			       g2h_fence.seqno,
			       &g2h_fence, GFP_KERNEL);
		if (IS_ERR(ptr))
			return PTR_ERR(ptr);

		goto retry_same_fence;
	} else if (unlikely(ret)) {
		if (ret == -EDEADLK)
			kick_reset(ct);

		if (no_fail && retry_failure(ct, ret))
			goto retry_same_fence;

		if (!g2h_fence_needs_alloc(&g2h_fence))
			xa_erase_irq(&ct->fence_lookup, g2h_fence.seqno);

		return ret;
	}

	ret = wait_event_timeout(ct->g2h_fence_wq, g2h_fence.done, HZ);
	if (!ret) {
		drm_err(&xe->drm, "Timed out wait for G2H, fence %u, action %04x",
			g2h_fence.seqno, action[0]);
		xa_erase_irq(&ct->fence_lookup, g2h_fence.seqno);
		return -ETIME;
	}

	if (g2h_fence.retry) {
		drm_warn(&xe->drm, "Send retry, action 0x%04x, reason %d",
			 action[0], g2h_fence.reason);
		goto retry;
	}
	if (g2h_fence.fail) {
		drm_err(&xe->drm, "Send failed, action 0x%04x, error %d, hint %d",
			action[0], g2h_fence.error, g2h_fence.hint);
		ret = -EIO;
	}

	return ret > 0 ? response_buffer ? g2h_fence.response_len : g2h_fence.response_data : ret;
}

/**
 * xe_guc_ct_send_recv - Send and receive HXG to the GuC
 * @ct: the &xe_guc_ct
 * @action: the dword array with `HXG Request`_ message (can't be NULL)
 * @len: length of the `HXG Request`_ message (in dwords, can't be 0)
 * @response_buffer: placeholder for the `HXG Response`_ message (can be NULL)
 *
 * Send a `HXG Request`_ message to the GuC over CT communication channel and
 * blocks until GuC replies with a `HXG Response`_ message.
 *
 * For non-blocking communication with GuC use xe_guc_ct_send().
 *
 * Note: The size of &response_buffer must be at least GUC_CTB_MAX_DWORDS_.
 *
 * Return: response length (in dwords) if &response_buffer was not NULL, or
 *         DATA0 from `HXG Response`_ if &response_buffer was NULL, or
 *         a negative error code on failure.
 */
int xe_guc_ct_send_recv(struct xe_guc_ct *ct, const u32 *action, u32 len,
			u32 *response_buffer)
{
	KUNIT_STATIC_STUB_REDIRECT(xe_guc_ct_send_recv, ct, action, len, response_buffer);
	return guc_ct_send_recv(ct, action, len, response_buffer, false);
}

int xe_guc_ct_send_recv_no_fail(struct xe_guc_ct *ct, const u32 *action,
				u32 len, u32 *response_buffer)
{
	return guc_ct_send_recv(ct, action, len, response_buffer, true);
}

static u32 *msg_to_hxg(u32 *msg)
{
	return msg + GUC_CTB_MSG_MIN_LEN;
}

static u32 msg_len_to_hxg_len(u32 len)
{
	return len - GUC_CTB_MSG_MIN_LEN;
}

static int parse_g2h_event(struct xe_guc_ct *ct, u32 *msg, u32 len)
{
	u32 *hxg = msg_to_hxg(msg);
	u32 action = FIELD_GET(GUC_HXG_EVENT_MSG_0_ACTION, hxg[0]);

	lockdep_assert_held(&ct->lock);

	switch (action) {
	case XE_GUC_ACTION_SCHED_CONTEXT_MODE_DONE:
	case XE_GUC_ACTION_DEREGISTER_CONTEXT_DONE:
	case XE_GUC_ACTION_SCHED_ENGINE_MODE_DONE:
	case XE_GUC_ACTION_TLB_INVALIDATION_DONE:
		g2h_release_space(ct, len);
	}

	return 0;
}

static int parse_g2h_response(struct xe_guc_ct *ct, u32 *msg, u32 len)
{
	struct xe_gt *gt =  ct_to_gt(ct);
	struct xe_device *xe = gt_to_xe(gt);
	u32 *hxg = msg_to_hxg(msg);
	u32 hxg_len = msg_len_to_hxg_len(len);
	u32 fence = FIELD_GET(GUC_CTB_MSG_0_FENCE, msg[0]);
	u32 type = FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]);
	struct g2h_fence *g2h_fence;

	lockdep_assert_held(&ct->lock);

	/*
	 * Fences for FAST_REQUEST messages are not tracked in ct->fence_lookup.
	 * Those messages should never fail, so if we do get an error back it
	 * means we're likely doing an illegal operation and the GuC is
	 * rejecting it. We have no way to inform the code that submitted the
	 * H2G that the message was rejected, so we need to escalate the
	 * failure to trigger a reset.
	 */
	if (fence & CT_SEQNO_UNTRACKED) {
		if (type == GUC_HXG_TYPE_RESPONSE_FAILURE)
			xe_gt_err(gt, "FAST_REQ H2G fence 0x%x failed! e=0x%x, h=%u\n",
				  fence,
				  FIELD_GET(GUC_HXG_FAILURE_MSG_0_ERROR, hxg[0]),
				  FIELD_GET(GUC_HXG_FAILURE_MSG_0_HINT, hxg[0]));
		else
			xe_gt_err(gt, "unexpected response %u for FAST_REQ H2G fence 0x%x!\n",
				  type, fence);

		return -EPROTO;
	}

	g2h_fence = xa_erase(&ct->fence_lookup, fence);
	if (unlikely(!g2h_fence)) {
		/* Don't tear down channel, as send could've timed out */
		xe_gt_warn(gt, "G2H fence (%u) not found!\n", fence);
		g2h_release_space(ct, GUC_CTB_HXG_MSG_MAX_LEN);
		return 0;
	}

	xe_assert(xe, fence == g2h_fence->seqno);

	if (type == GUC_HXG_TYPE_RESPONSE_FAILURE) {
		g2h_fence->fail = true;
		g2h_fence->error = FIELD_GET(GUC_HXG_FAILURE_MSG_0_ERROR, hxg[0]);
		g2h_fence->hint = FIELD_GET(GUC_HXG_FAILURE_MSG_0_HINT, hxg[0]);
	} else if (type == GUC_HXG_TYPE_NO_RESPONSE_RETRY) {
		g2h_fence->retry = true;
		g2h_fence->reason = FIELD_GET(GUC_HXG_RETRY_MSG_0_REASON, hxg[0]);
	} else if (g2h_fence->response_buffer) {
		g2h_fence->response_len = hxg_len;
		memcpy(g2h_fence->response_buffer, hxg, hxg_len * sizeof(u32));
	} else {
		g2h_fence->response_data = FIELD_GET(GUC_HXG_RESPONSE_MSG_0_DATA0, hxg[0]);
	}

	g2h_release_space(ct, GUC_CTB_HXG_MSG_MAX_LEN);

	g2h_fence->done = true;
	smp_mb();

	wake_up_all(&ct->g2h_fence_wq);

	return 0;
}

static int parse_g2h_msg(struct xe_guc_ct *ct, u32 *msg, u32 len)
{
	struct xe_device *xe = ct_to_xe(ct);
	u32 *hxg = msg_to_hxg(msg);
	u32 origin, type;
	int ret;

	lockdep_assert_held(&ct->lock);

	origin = FIELD_GET(GUC_HXG_MSG_0_ORIGIN, hxg[0]);
	if (unlikely(origin != GUC_HXG_ORIGIN_GUC)) {
		drm_err(&xe->drm,
			"G2H channel broken on read, origin=%d, reset required\n",
			origin);
		ct->ctbs.g2h.info.broken = true;

		return -EPROTO;
	}

	type = FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]);
	switch (type) {
	case GUC_HXG_TYPE_EVENT:
		ret = parse_g2h_event(ct, msg, len);
		break;
	case GUC_HXG_TYPE_RESPONSE_SUCCESS:
	case GUC_HXG_TYPE_RESPONSE_FAILURE:
	case GUC_HXG_TYPE_NO_RESPONSE_RETRY:
		ret = parse_g2h_response(ct, msg, len);
		break;
	default:
		drm_err(&xe->drm,
			"G2H channel broken on read, type=%d, reset required\n",
			type);
		ct->ctbs.g2h.info.broken = true;

		ret = -EOPNOTSUPP;
	}

	return ret;
}

static int process_g2h_msg(struct xe_guc_ct *ct, u32 *msg, u32 len)
{
	struct xe_device *xe = ct_to_xe(ct);
	struct xe_guc *guc = ct_to_guc(ct);
	u32 hxg_len = msg_len_to_hxg_len(len);
	u32 *hxg = msg_to_hxg(msg);
	u32 action, adj_len;
	u32 *payload;
	int ret = 0;

	if (FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]) != GUC_HXG_TYPE_EVENT)
		return 0;

	action = FIELD_GET(GUC_HXG_EVENT_MSG_0_ACTION, hxg[0]);
	payload = hxg + GUC_HXG_EVENT_MSG_MIN_LEN;
	adj_len = hxg_len - GUC_HXG_EVENT_MSG_MIN_LEN;

	switch (action) {
	case XE_GUC_ACTION_SCHED_CONTEXT_MODE_DONE:
		ret = xe_guc_sched_done_handler(guc, payload, adj_len);
		break;
	case XE_GUC_ACTION_DEREGISTER_CONTEXT_DONE:
		ret = xe_guc_deregister_done_handler(guc, payload, adj_len);
		break;
	case XE_GUC_ACTION_CONTEXT_RESET_NOTIFICATION:
		ret = xe_guc_exec_queue_reset_handler(guc, payload, adj_len);
		break;
	case XE_GUC_ACTION_ENGINE_FAILURE_NOTIFICATION:
		ret = xe_guc_exec_queue_reset_failure_handler(guc, payload,
							      adj_len);
		break;
	case XE_GUC_ACTION_SCHED_ENGINE_MODE_DONE:
		/* Selftest only at the moment */
		break;
	case XE_GUC_ACTION_STATE_CAPTURE_NOTIFICATION:
	case XE_GUC_ACTION_NOTIFY_FLUSH_LOG_BUFFER_TO_FILE:
		/* FIXME: Handle this */
		break;
	case XE_GUC_ACTION_NOTIFY_MEMORY_CAT_ERROR:
		ret = xe_guc_exec_queue_memory_cat_error_handler(guc, payload,
								 adj_len);
		break;
	case XE_GUC_ACTION_REPORT_PAGE_FAULT_REQ_DESC:
		ret = xe_guc_pagefault_handler(guc, payload, adj_len);
		break;
	case XE_GUC_ACTION_TLB_INVALIDATION_DONE:
		ret = xe_guc_tlb_invalidation_done_handler(guc, payload,
							   adj_len);
		break;
	case XE_GUC_ACTION_ACCESS_COUNTER_NOTIFY:
		ret = xe_guc_access_counter_notify_handler(guc, payload,
							   adj_len);
		break;
	case XE_GUC_ACTION_GUC2PF_RELAY_FROM_VF:
		ret = xe_guc_relay_process_guc2pf(&guc->relay, hxg, hxg_len);
		break;
	case XE_GUC_ACTION_GUC2VF_RELAY_FROM_PF:
		ret = xe_guc_relay_process_guc2vf(&guc->relay, hxg, hxg_len);
		break;
	default:
		drm_err(&xe->drm, "unexpected action 0x%04x\n", action);
	}

	if (ret)
		drm_err(&xe->drm, "action 0x%04x failed processing, ret=%d\n",
			action, ret);

	return 0;
}

static int g2h_read(struct xe_guc_ct *ct, u32 *msg, bool fast_path)
{
	struct xe_device *xe = ct_to_xe(ct);
	struct guc_ctb *g2h = &ct->ctbs.g2h;
	u32 tail, head, len;
	s32 avail;
	u32 action;
	u32 *hxg;

	xe_assert(xe, ct->state != XE_GUC_CT_STATE_NOT_INITIALIZED);
	lockdep_assert_held(&ct->fast_lock);

	if (ct->state == XE_GUC_CT_STATE_DISABLED)
		return -ENODEV;

	if (ct->state == XE_GUC_CT_STATE_STOPPED)
		return -ECANCELED;

	if (g2h->info.broken)
		return -EPIPE;

	xe_assert(xe, xe_guc_ct_enabled(ct));

	/* Calculate DW available to read */
	tail = desc_read(xe, g2h, tail);
	avail = tail - g2h->info.head;
	if (unlikely(avail == 0))
		return 0;

	if (avail < 0)
		avail += g2h->info.size;

	/* Read header */
	xe_map_memcpy_from(xe, msg, &g2h->cmds, sizeof(u32) * g2h->info.head,
			   sizeof(u32));
	len = FIELD_GET(GUC_CTB_MSG_0_NUM_DWORDS, msg[0]) + GUC_CTB_MSG_MIN_LEN;
	if (len > avail) {
		drm_err(&xe->drm,
			"G2H channel broken on read, avail=%d, len=%d, reset required\n",
			avail, len);
		g2h->info.broken = true;

		return -EPROTO;
	}

	head = (g2h->info.head + 1) % g2h->info.size;
	avail = len - 1;

	/* Read G2H message */
	if (avail + head > g2h->info.size) {
		u32 avail_til_wrap = g2h->info.size - head;

		xe_map_memcpy_from(xe, msg + 1,
				   &g2h->cmds, sizeof(u32) * head,
				   avail_til_wrap * sizeof(u32));
		xe_map_memcpy_from(xe, msg + 1 + avail_til_wrap,
				   &g2h->cmds, 0,
				   (avail - avail_til_wrap) * sizeof(u32));
	} else {
		xe_map_memcpy_from(xe, msg + 1,
				   &g2h->cmds, sizeof(u32) * head,
				   avail * sizeof(u32));
	}

	hxg = msg_to_hxg(msg);
	action = FIELD_GET(GUC_HXG_EVENT_MSG_0_ACTION, hxg[0]);

	if (fast_path) {
		if (FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]) != GUC_HXG_TYPE_EVENT)
			return 0;

		switch (action) {
		case XE_GUC_ACTION_REPORT_PAGE_FAULT_REQ_DESC:
		case XE_GUC_ACTION_TLB_INVALIDATION_DONE:
			break;	/* Process these in fast-path */
		default:
			return 0;
		}
	}

	/* Update local / descriptor header */
	g2h->info.head = (head + avail) % g2h->info.size;
	desc_write(xe, g2h, head, g2h->info.head);

	trace_xe_guc_ctb_g2h(ct_to_gt(ct)->info.id, action, len,
			     g2h->info.head, tail);

	return len;
}

static void g2h_fast_path(struct xe_guc_ct *ct, u32 *msg, u32 len)
{
	struct xe_device *xe = ct_to_xe(ct);
	struct xe_guc *guc = ct_to_guc(ct);
	u32 hxg_len = msg_len_to_hxg_len(len);
	u32 *hxg = msg_to_hxg(msg);
	u32 action = FIELD_GET(GUC_HXG_EVENT_MSG_0_ACTION, hxg[0]);
	u32 *payload = hxg + GUC_HXG_MSG_MIN_LEN;
	u32 adj_len = hxg_len - GUC_HXG_MSG_MIN_LEN;
	int ret = 0;

	switch (action) {
	case XE_GUC_ACTION_REPORT_PAGE_FAULT_REQ_DESC:
		ret = xe_guc_pagefault_handler(guc, payload, adj_len);
		break;
	case XE_GUC_ACTION_TLB_INVALIDATION_DONE:
		__g2h_release_space(ct, len);
		ret = xe_guc_tlb_invalidation_done_handler(guc, payload,
							   adj_len);
		break;
	default:
		drm_warn(&xe->drm, "NOT_POSSIBLE");
	}

	if (ret)
		drm_err(&xe->drm, "action 0x%04x failed processing, ret=%d\n",
			action, ret);
}

/**
 * xe_guc_ct_fast_path - process critical G2H in the IRQ handler
 * @ct: GuC CT object
 *
 * Anything related to page faults is critical for performance, process these
 * critical G2H in the IRQ. This is safe as these handlers either just wake up
 * waiters or queue another worker.
 */
void xe_guc_ct_fast_path(struct xe_guc_ct *ct)
{
	struct xe_device *xe = ct_to_xe(ct);
	bool ongoing;
	int len;

	ongoing = xe_device_mem_access_get_if_ongoing(ct_to_xe(ct));
	if (!ongoing && xe_pm_read_callback_task(ct_to_xe(ct)) == NULL)
		return;

	spin_lock(&ct->fast_lock);
	do {
		len = g2h_read(ct, ct->fast_msg, true);
		if (len > 0)
			g2h_fast_path(ct, ct->fast_msg, len);
	} while (len > 0);
	spin_unlock(&ct->fast_lock);

	if (ongoing)
		xe_device_mem_access_put(xe);
}

/* Returns less than zero on error, 0 on done, 1 on more available */
static int dequeue_one_g2h(struct xe_guc_ct *ct)
{
	int len;
	int ret;

	lockdep_assert_held(&ct->lock);

	spin_lock_irq(&ct->fast_lock);
	len = g2h_read(ct, ct->msg, false);
	spin_unlock_irq(&ct->fast_lock);
	if (len <= 0)
		return len;

	ret = parse_g2h_msg(ct, ct->msg, len);
	if (unlikely(ret < 0))
		return ret;

	ret = process_g2h_msg(ct, ct->msg, len);
	if (unlikely(ret < 0))
		return ret;

	return 1;
}

static void g2h_worker_func(struct work_struct *w)
{
	struct xe_guc_ct *ct = container_of(w, struct xe_guc_ct, g2h_worker);
	bool ongoing;
	int ret;

	/*
	 * Normal users must always hold mem_access.ref around CT calls. However
	 * during the runtime pm callbacks we rely on CT to talk to the GuC, but
	 * at this stage we can't rely on mem_access.ref and even the
	 * callback_task will be different than current.  For such cases we just
	 * need to ensure we always process the responses from any blocking
	 * ct_send requests or where we otherwise expect some response when
	 * initiated from those callbacks (which will need to wait for the below
	 * dequeue_one_g2h()).  The dequeue_one_g2h() will gracefully fail if
	 * the device has suspended to the point that the CT communication has
	 * been disabled.
	 *
	 * If we are inside the runtime pm callback, we can be the only task
	 * still issuing CT requests (since that requires having the
	 * mem_access.ref).  It seems like it might in theory be possible to
	 * receive unsolicited events from the GuC just as we are
	 * suspending-resuming, but those will currently anyway be lost when
	 * eventually exiting from suspend, hence no need to wake up the device
	 * here. If we ever need something stronger than get_if_ongoing() then
	 * we need to be careful with blocking the pm callbacks from getting CT
	 * responses, if the worker here is blocked on those callbacks
	 * completing, creating a deadlock.
	 */
	ongoing = xe_device_mem_access_get_if_ongoing(ct_to_xe(ct));
	if (!ongoing && xe_pm_read_callback_task(ct_to_xe(ct)) == NULL)
		return;

	do {
		mutex_lock(&ct->lock);
		ret = dequeue_one_g2h(ct);
		mutex_unlock(&ct->lock);

		if (unlikely(ret == -EPROTO || ret == -EOPNOTSUPP)) {
			struct drm_device *drm = &ct_to_xe(ct)->drm;
			struct drm_printer p = drm_info_printer(drm->dev);

			xe_guc_ct_print(ct, &p, false);
			kick_reset(ct);
		}
	} while (ret == 1);

	if (ongoing)
		xe_device_mem_access_put(ct_to_xe(ct));
}

static void guc_ctb_snapshot_capture(struct xe_device *xe, struct guc_ctb *ctb,
				     struct guc_ctb_snapshot *snapshot,
				     bool atomic)
{
	u32 head, tail;

	xe_map_memcpy_from(xe, &snapshot->desc, &ctb->desc, 0,
			   sizeof(struct guc_ct_buffer_desc));
	memcpy(&snapshot->info, &ctb->info, sizeof(struct guc_ctb_info));

	snapshot->cmds = kmalloc_array(ctb->info.size, sizeof(u32),
				       atomic ? GFP_ATOMIC : GFP_KERNEL);

	if (!snapshot->cmds) {
		drm_err(&xe->drm, "Skipping CTB commands snapshot. Only CTB info will be available.\n");
		return;
	}

	head = snapshot->desc.head;
	tail = snapshot->desc.tail;

	if (head != tail) {
		struct iosys_map map =
			IOSYS_MAP_INIT_OFFSET(&ctb->cmds, head * sizeof(u32));

		while (head != tail) {
			snapshot->cmds[head] = xe_map_rd(xe, &map, 0, u32);
			++head;
			if (head == ctb->info.size) {
				head = 0;
				map = ctb->cmds;
			} else {
				iosys_map_incr(&map, sizeof(u32));
			}
		}
	}
}

static void guc_ctb_snapshot_print(struct guc_ctb_snapshot *snapshot,
				   struct drm_printer *p)
{
	u32 head, tail;

	drm_printf(p, "\tsize: %d\n", snapshot->info.size);
	drm_printf(p, "\tresv_space: %d\n", snapshot->info.resv_space);
	drm_printf(p, "\thead: %d\n", snapshot->info.head);
	drm_printf(p, "\ttail: %d\n", snapshot->info.tail);
	drm_printf(p, "\tspace: %d\n", snapshot->info.space);
	drm_printf(p, "\tbroken: %d\n", snapshot->info.broken);
	drm_printf(p, "\thead (memory): %d\n", snapshot->desc.head);
	drm_printf(p, "\ttail (memory): %d\n", snapshot->desc.tail);
	drm_printf(p, "\tstatus (memory): 0x%x\n", snapshot->desc.status);

	if (!snapshot->cmds)
		return;

	head = snapshot->desc.head;
	tail = snapshot->desc.tail;

	while (head != tail) {
		drm_printf(p, "\tcmd[%d]: 0x%08x\n", head,
			   snapshot->cmds[head]);
		++head;
		if (head == snapshot->info.size)
			head = 0;
	}
}

static void guc_ctb_snapshot_free(struct guc_ctb_snapshot *snapshot)
{
	kfree(snapshot->cmds);
}

/**
 * xe_guc_ct_snapshot_capture - Take a quick snapshot of the CT state.
 * @ct: GuC CT object.
 * @atomic: Boolean to indicate if this is called from atomic context like
 * reset or CTB handler or from some regular path like debugfs.
 *
 * This can be printed out in a later stage like during dev_coredump
 * analysis.
 *
 * Returns: a GuC CT snapshot object that must be freed by the caller
 * by using `xe_guc_ct_snapshot_free`.
 */
struct xe_guc_ct_snapshot *xe_guc_ct_snapshot_capture(struct xe_guc_ct *ct,
						      bool atomic)
{
	struct xe_device *xe = ct_to_xe(ct);
	struct xe_guc_ct_snapshot *snapshot;

	snapshot = kzalloc(sizeof(*snapshot),
			   atomic ? GFP_ATOMIC : GFP_KERNEL);

	if (!snapshot) {
		drm_err(&xe->drm, "Skipping CTB snapshot entirely.\n");
		return NULL;
	}

	if (xe_guc_ct_enabled(ct)) {
		snapshot->ct_enabled = true;
		snapshot->g2h_outstanding = READ_ONCE(ct->g2h_outstanding);
		guc_ctb_snapshot_capture(xe, &ct->ctbs.h2g,
					 &snapshot->h2g, atomic);
		guc_ctb_snapshot_capture(xe, &ct->ctbs.g2h,
					 &snapshot->g2h, atomic);
	}

	return snapshot;
}

/**
 * xe_guc_ct_snapshot_print - Print out a given GuC CT snapshot.
 * @snapshot: GuC CT snapshot object.
 * @p: drm_printer where it will be printed out.
 *
 * This function prints out a given GuC CT snapshot object.
 */
void xe_guc_ct_snapshot_print(struct xe_guc_ct_snapshot *snapshot,
			      struct drm_printer *p)
{
	if (!snapshot)
		return;

	if (snapshot->ct_enabled) {
		drm_puts(p, "H2G CTB (all sizes in DW):\n");
		guc_ctb_snapshot_print(&snapshot->h2g, p);

		drm_puts(p, "\nG2H CTB (all sizes in DW):\n");
		guc_ctb_snapshot_print(&snapshot->g2h, p);

		drm_printf(p, "\tg2h outstanding: %d\n",
			   snapshot->g2h_outstanding);
	} else {
		drm_puts(p, "CT disabled\n");
	}
}

/**
 * xe_guc_ct_snapshot_free - Free all allocated objects for a given snapshot.
 * @snapshot: GuC CT snapshot object.
 *
 * This function free all the memory that needed to be allocated at capture
 * time.
 */
void xe_guc_ct_snapshot_free(struct xe_guc_ct_snapshot *snapshot)
{
	if (!snapshot)
		return;

	guc_ctb_snapshot_free(&snapshot->h2g);
	guc_ctb_snapshot_free(&snapshot->g2h);
	kfree(snapshot);
}

/**
 * xe_guc_ct_print - GuC CT Print.
 * @ct: GuC CT.
 * @p: drm_printer where it will be printed out.
 * @atomic: Boolean to indicate if this is called from atomic context like
 * reset or CTB handler or from some regular path like debugfs.
 *
 * This function quickly capture a snapshot and immediately print it out.
 */
void xe_guc_ct_print(struct xe_guc_ct *ct, struct drm_printer *p, bool atomic)
{
	struct xe_guc_ct_snapshot *snapshot;

	snapshot = xe_guc_ct_snapshot_capture(ct, atomic);
	xe_guc_ct_snapshot_print(snapshot, p);
	xe_guc_ct_snapshot_free(snapshot);
}