Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 | // SPDX-License-Identifier: GPL-2.0-only /* Copyright (c) 2016 The Linux Foundation. All rights reserved. */ #include <linux/pm_opp.h> #include "a5xx_gpu.h" /* * The GPMU data block is a block of shared registers that can be used to * communicate back and forth. These "registers" are by convention with the GPMU * firwmare and not bound to any specific hardware design */ #define AGC_INIT_BASE REG_A5XX_GPMU_DATA_RAM_BASE #define AGC_INIT_MSG_MAGIC (AGC_INIT_BASE + 5) #define AGC_MSG_BASE (AGC_INIT_BASE + 7) #define AGC_MSG_STATE (AGC_MSG_BASE + 0) #define AGC_MSG_COMMAND (AGC_MSG_BASE + 1) #define AGC_MSG_PAYLOAD_SIZE (AGC_MSG_BASE + 3) #define AGC_MSG_PAYLOAD(_o) ((AGC_MSG_BASE + 5) + (_o)) #define AGC_POWER_CONFIG_PRODUCTION_ID 1 #define AGC_INIT_MSG_VALUE 0xBABEFACE /* AGC_LM_CONFIG (A540+) */ #define AGC_LM_CONFIG (136/4) #define AGC_LM_CONFIG_GPU_VERSION_SHIFT 17 #define AGC_LM_CONFIG_ENABLE_GPMU_ADAPTIVE 1 #define AGC_LM_CONFIG_THROTTLE_DISABLE (2 << 8) #define AGC_LM_CONFIG_ISENSE_ENABLE (1 << 4) #define AGC_LM_CONFIG_ENABLE_ERROR (3 << 4) #define AGC_LM_CONFIG_LLM_ENABLED (1 << 16) #define AGC_LM_CONFIG_BCL_DISABLED (1 << 24) #define AGC_LEVEL_CONFIG (140/4) static struct { uint32_t reg; uint32_t value; } a5xx_sequence_regs[] = { { 0xB9A1, 0x00010303 }, { 0xB9A2, 0x13000000 }, { 0xB9A3, 0x00460020 }, { 0xB9A4, 0x10000000 }, { 0xB9A5, 0x040A1707 }, { 0xB9A6, 0x00010000 }, { 0xB9A7, 0x0E000904 }, { 0xB9A8, 0x10000000 }, { 0xB9A9, 0x01165000 }, { 0xB9AA, 0x000E0002 }, { 0xB9AB, 0x03884141 }, { 0xB9AC, 0x10000840 }, { 0xB9AD, 0x572A5000 }, { 0xB9AE, 0x00000003 }, { 0xB9AF, 0x00000000 }, { 0xB9B0, 0x10000000 }, { 0xB828, 0x6C204010 }, { 0xB829, 0x6C204011 }, { 0xB82A, 0x6C204012 }, { 0xB82B, 0x6C204013 }, { 0xB82C, 0x6C204014 }, { 0xB90F, 0x00000004 }, { 0xB910, 0x00000002 }, { 0xB911, 0x00000002 }, { 0xB912, 0x00000002 }, { 0xB913, 0x00000002 }, { 0xB92F, 0x00000004 }, { 0xB930, 0x00000005 }, { 0xB931, 0x00000005 }, { 0xB932, 0x00000005 }, { 0xB933, 0x00000005 }, { 0xB96F, 0x00000001 }, { 0xB970, 0x00000003 }, { 0xB94F, 0x00000004 }, { 0xB950, 0x0000000B }, { 0xB951, 0x0000000B }, { 0xB952, 0x0000000B }, { 0xB953, 0x0000000B }, { 0xB907, 0x00000019 }, { 0xB927, 0x00000019 }, { 0xB947, 0x00000019 }, { 0xB967, 0x00000019 }, { 0xB987, 0x00000019 }, { 0xB906, 0x00220001 }, { 0xB926, 0x00220001 }, { 0xB946, 0x00220001 }, { 0xB966, 0x00220001 }, { 0xB986, 0x00300000 }, { 0xAC40, 0x0340FF41 }, { 0xAC41, 0x03BEFED0 }, { 0xAC42, 0x00331FED }, { 0xAC43, 0x021FFDD3 }, { 0xAC44, 0x5555AAAA }, { 0xAC45, 0x5555AAAA }, { 0xB9BA, 0x00000008 }, }; /* * Get the actual voltage value for the operating point at the specified * frequency */ static inline uint32_t _get_mvolts(struct msm_gpu *gpu, uint32_t freq) { struct drm_device *dev = gpu->dev; struct msm_drm_private *priv = dev->dev_private; struct platform_device *pdev = priv->gpu_pdev; struct dev_pm_opp *opp; u32 ret = 0; opp = dev_pm_opp_find_freq_exact(&pdev->dev, freq, true); if (!IS_ERR(opp)) { ret = dev_pm_opp_get_voltage(opp) / 1000; dev_pm_opp_put(opp); } return ret; } /* Setup thermal limit management */ static void a530_lm_setup(struct msm_gpu *gpu) { struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); struct a5xx_gpu *a5xx_gpu = to_a5xx_gpu(adreno_gpu); unsigned int i; /* Write the block of sequence registers */ for (i = 0; i < ARRAY_SIZE(a5xx_sequence_regs); i++) gpu_write(gpu, a5xx_sequence_regs[i].reg, a5xx_sequence_regs[i].value); /* Hard code the A530 GPU thermal sensor ID for the GPMU */ gpu_write(gpu, REG_A5XX_GPMU_TEMP_SENSOR_ID, 0x60007); gpu_write(gpu, REG_A5XX_GPMU_DELTA_TEMP_THRESHOLD, 0x01); gpu_write(gpu, REG_A5XX_GPMU_TEMP_SENSOR_CONFIG, 0x01); /* Until we get clock scaling 0 is always the active power level */ gpu_write(gpu, REG_A5XX_GPMU_GPMU_VOLTAGE, 0x80000000 | 0); gpu_write(gpu, REG_A5XX_GPMU_BASE_LEAKAGE, a5xx_gpu->lm_leakage); /* The threshold is fixed at 6000 for A530 */ gpu_write(gpu, REG_A5XX_GPMU_GPMU_PWR_THRESHOLD, 0x80000000 | 6000); gpu_write(gpu, REG_A5XX_GPMU_BEC_ENABLE, 0x10001FFF); gpu_write(gpu, REG_A5XX_GDPM_CONFIG1, 0x00201FF1); /* Write the voltage table */ gpu_write(gpu, REG_A5XX_GPMU_BEC_ENABLE, 0x10001FFF); gpu_write(gpu, REG_A5XX_GDPM_CONFIG1, 0x201FF1); gpu_write(gpu, AGC_MSG_STATE, 1); gpu_write(gpu, AGC_MSG_COMMAND, AGC_POWER_CONFIG_PRODUCTION_ID); /* Write the max power - hard coded to 5448 for A530 */ gpu_write(gpu, AGC_MSG_PAYLOAD(0), 5448); gpu_write(gpu, AGC_MSG_PAYLOAD(1), 1); /* * For now just write the one voltage level - we will do more when we * can do scaling */ gpu_write(gpu, AGC_MSG_PAYLOAD(2), _get_mvolts(gpu, gpu->fast_rate)); gpu_write(gpu, AGC_MSG_PAYLOAD(3), gpu->fast_rate / 1000000); gpu_write(gpu, AGC_MSG_PAYLOAD_SIZE, 4 * sizeof(uint32_t)); gpu_write(gpu, AGC_INIT_MSG_MAGIC, AGC_INIT_MSG_VALUE); } #define PAYLOAD_SIZE(_size) ((_size) * sizeof(u32)) #define LM_DCVS_LIMIT 1 #define LEVEL_CONFIG ~(0x303) static void a540_lm_setup(struct msm_gpu *gpu) { struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); u32 config; /* The battery current limiter isn't enabled for A540 */ config = AGC_LM_CONFIG_BCL_DISABLED; config |= adreno_patchid(adreno_gpu) << AGC_LM_CONFIG_GPU_VERSION_SHIFT; /* For now disable GPMU side throttling */ config |= AGC_LM_CONFIG_THROTTLE_DISABLE; /* Until we get clock scaling 0 is always the active power level */ gpu_write(gpu, REG_A5XX_GPMU_GPMU_VOLTAGE, 0x80000000 | 0); /* Fixed at 6000 for now */ gpu_write(gpu, REG_A5XX_GPMU_GPMU_PWR_THRESHOLD, 0x80000000 | 6000); gpu_write(gpu, AGC_MSG_STATE, 0x80000001); gpu_write(gpu, AGC_MSG_COMMAND, AGC_POWER_CONFIG_PRODUCTION_ID); gpu_write(gpu, AGC_MSG_PAYLOAD(0), 5448); gpu_write(gpu, AGC_MSG_PAYLOAD(1), 1); gpu_write(gpu, AGC_MSG_PAYLOAD(2), _get_mvolts(gpu, gpu->fast_rate)); gpu_write(gpu, AGC_MSG_PAYLOAD(3), gpu->fast_rate / 1000000); gpu_write(gpu, AGC_MSG_PAYLOAD(AGC_LM_CONFIG), config); gpu_write(gpu, AGC_MSG_PAYLOAD(AGC_LEVEL_CONFIG), LEVEL_CONFIG); gpu_write(gpu, AGC_MSG_PAYLOAD_SIZE, PAYLOAD_SIZE(AGC_LEVEL_CONFIG + 1)); gpu_write(gpu, AGC_INIT_MSG_MAGIC, AGC_INIT_MSG_VALUE); } /* Enable SP/TP cpower collapse */ static void a5xx_pc_init(struct msm_gpu *gpu) { gpu_write(gpu, REG_A5XX_GPMU_PWR_COL_INTER_FRAME_CTRL, 0x7F); gpu_write(gpu, REG_A5XX_GPMU_PWR_COL_BINNING_CTRL, 0); gpu_write(gpu, REG_A5XX_GPMU_PWR_COL_INTER_FRAME_HYST, 0xA0080); gpu_write(gpu, REG_A5XX_GPMU_PWR_COL_STAGGER_DELAY, 0x600040); } /* Enable the GPMU microcontroller */ static int a5xx_gpmu_init(struct msm_gpu *gpu) { struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); struct a5xx_gpu *a5xx_gpu = to_a5xx_gpu(adreno_gpu); struct msm_ringbuffer *ring = gpu->rb[0]; if (!a5xx_gpu->gpmu_dwords) return 0; /* Turn off protected mode for this operation */ OUT_PKT7(ring, CP_SET_PROTECTED_MODE, 1); OUT_RING(ring, 0); /* Kick off the IB to load the GPMU microcode */ OUT_PKT7(ring, CP_INDIRECT_BUFFER_PFE, 3); OUT_RING(ring, lower_32_bits(a5xx_gpu->gpmu_iova)); OUT_RING(ring, upper_32_bits(a5xx_gpu->gpmu_iova)); OUT_RING(ring, a5xx_gpu->gpmu_dwords); /* Turn back on protected mode */ OUT_PKT7(ring, CP_SET_PROTECTED_MODE, 1); OUT_RING(ring, 1); a5xx_flush(gpu, ring, true); if (!a5xx_idle(gpu, ring)) { DRM_ERROR("%s: Unable to load GPMU firmware. GPMU will not be active\n", gpu->name); return -EINVAL; } if (adreno_is_a530(adreno_gpu)) gpu_write(gpu, REG_A5XX_GPMU_WFI_CONFIG, 0x4014); /* Kick off the GPMU */ gpu_write(gpu, REG_A5XX_GPMU_CM3_SYSRESET, 0x0); /* * Wait for the GPMU to respond. It isn't fatal if it doesn't, we just * won't have advanced power collapse. */ if (spin_usecs(gpu, 25, REG_A5XX_GPMU_GENERAL_0, 0xFFFFFFFF, 0xBABEFACE)) DRM_ERROR("%s: GPMU firmware initialization timed out\n", gpu->name); if (!adreno_is_a530(adreno_gpu)) { u32 val = gpu_read(gpu, REG_A5XX_GPMU_GENERAL_1); if (val) DRM_ERROR("%s: GPMU firmware initialization failed: %d\n", gpu->name, val); } return 0; } /* Enable limits management */ static void a5xx_lm_enable(struct msm_gpu *gpu) { struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); /* This init sequence only applies to A530 */ if (!adreno_is_a530(adreno_gpu)) return; gpu_write(gpu, REG_A5XX_GDPM_INT_MASK, 0x0); gpu_write(gpu, REG_A5XX_GDPM_INT_EN, 0x0A); gpu_write(gpu, REG_A5XX_GPMU_GPMU_VOLTAGE_INTR_EN_MASK, 0x01); gpu_write(gpu, REG_A5XX_GPMU_TEMP_THRESHOLD_INTR_EN_MASK, 0x50000); gpu_write(gpu, REG_A5XX_GPMU_THROTTLE_UNMASK_FORCE_CTRL, 0x30000); gpu_write(gpu, REG_A5XX_GPMU_CLOCK_THROTTLE_CTRL, 0x011); } int a5xx_power_init(struct msm_gpu *gpu) { struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); int ret; /* Not all A5xx chips have a GPMU */ if (!(adreno_is_a530(adreno_gpu) || adreno_is_a540(adreno_gpu))) return 0; /* Set up the limits management */ if (adreno_is_a530(adreno_gpu)) a530_lm_setup(gpu); else if (adreno_is_a540(adreno_gpu)) a540_lm_setup(gpu); /* Set up SP/TP power collpase */ a5xx_pc_init(gpu); /* Start the GPMU */ ret = a5xx_gpmu_init(gpu); if (ret) return ret; /* Start the limits management */ a5xx_lm_enable(gpu); return 0; } void a5xx_gpmu_ucode_init(struct msm_gpu *gpu) { struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); struct a5xx_gpu *a5xx_gpu = to_a5xx_gpu(adreno_gpu); struct drm_device *drm = gpu->dev; uint32_t dwords = 0, offset = 0, bosize; unsigned int *data, *ptr, *cmds; unsigned int cmds_size; if (!(adreno_is_a530(adreno_gpu) || adreno_is_a540(adreno_gpu))) return; if (a5xx_gpu->gpmu_bo) return; data = (unsigned int *) adreno_gpu->fw[ADRENO_FW_GPMU]->data; /* * The first dword is the size of the remaining data in dwords. Use it * as a checksum of sorts and make sure it matches the actual size of * the firmware that we read */ if (adreno_gpu->fw[ADRENO_FW_GPMU]->size < 8 || (data[0] < 2) || (data[0] >= (adreno_gpu->fw[ADRENO_FW_GPMU]->size >> 2))) return; /* The second dword is an ID - look for 2 (GPMU_FIRMWARE_ID) */ if (data[1] != 2) return; cmds = data + data[2] + 3; cmds_size = data[0] - data[2] - 2; /* * A single type4 opcode can only have so many values attached so * add enough opcodes to load the all the commands */ bosize = (cmds_size + (cmds_size / TYPE4_MAX_PAYLOAD) + 1) << 2; ptr = msm_gem_kernel_new(drm, bosize, MSM_BO_WC | MSM_BO_GPU_READONLY, gpu->aspace, &a5xx_gpu->gpmu_bo, &a5xx_gpu->gpmu_iova); if (IS_ERR(ptr)) return; msm_gem_object_set_name(a5xx_gpu->gpmu_bo, "gpmufw"); while (cmds_size > 0) { int i; uint32_t _size = cmds_size > TYPE4_MAX_PAYLOAD ? TYPE4_MAX_PAYLOAD : cmds_size; ptr[dwords++] = PKT4(REG_A5XX_GPMU_INST_RAM_BASE + offset, _size); for (i = 0; i < _size; i++) ptr[dwords++] = *cmds++; offset += _size; cmds_size -= _size; } msm_gem_put_vaddr(a5xx_gpu->gpmu_bo); a5xx_gpu->gpmu_dwords = dwords; } |