Linux Audio

Check our new training course

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
// SPDX-License-Identifier: GPL-2.0-only OR MIT
/* Copyright (c) 2023 Imagination Technologies Ltd. */

#include "pvr_vm.h"

#include "pvr_device.h"
#include "pvr_drv.h"
#include "pvr_gem.h"
#include "pvr_mmu.h"
#include "pvr_rogue_fwif.h"
#include "pvr_rogue_heap_config.h"

#include <drm/drm_exec.h>
#include <drm/drm_gem.h>
#include <drm/drm_gpuvm.h>

#include <linux/container_of.h>
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/gfp_types.h>
#include <linux/kref.h>
#include <linux/mutex.h>
#include <linux/stddef.h>

/**
 * DOC: Memory context
 *
 * This is the "top level" datatype in the VM code. It's exposed in the public
 * API as an opaque handle.
 */

/**
 * struct pvr_vm_context - Context type used to represent a single VM.
 */
struct pvr_vm_context {
	/**
	 * @pvr_dev: The PowerVR device to which this context is bound.
	 * This binding is immutable for the life of the context.
	 */
	struct pvr_device *pvr_dev;

	/** @mmu_ctx: The context for binding to physical memory. */
	struct pvr_mmu_context *mmu_ctx;

	/** @gpuvm_mgr: GPUVM object associated with this context. */
	struct drm_gpuvm gpuvm_mgr;

	/** @lock: Global lock on this VM. */
	struct mutex lock;

	/**
	 * @fw_mem_ctx_obj: Firmware object representing firmware memory
	 * context.
	 */
	struct pvr_fw_object *fw_mem_ctx_obj;

	/** @ref_count: Reference count of object. */
	struct kref ref_count;

	/**
	 * @dummy_gem: GEM object to enable VM reservation. All private BOs
	 * should use the @dummy_gem.resv and not their own _resv field.
	 */
	struct drm_gem_object dummy_gem;
};

static inline
struct pvr_vm_context *to_pvr_vm_context(struct drm_gpuvm *gpuvm)
{
	return container_of(gpuvm, struct pvr_vm_context, gpuvm_mgr);
}

struct pvr_vm_context *pvr_vm_context_get(struct pvr_vm_context *vm_ctx)
{
	if (vm_ctx)
		kref_get(&vm_ctx->ref_count);

	return vm_ctx;
}

/**
 * pvr_vm_get_page_table_root_addr() - Get the DMA address of the root of the
 *                                     page table structure behind a VM context.
 * @vm_ctx: Target VM context.
 */
dma_addr_t pvr_vm_get_page_table_root_addr(struct pvr_vm_context *vm_ctx)
{
	return pvr_mmu_get_root_table_dma_addr(vm_ctx->mmu_ctx);
}

/**
 * pvr_vm_get_dma_resv() - Expose the dma_resv owned by the VM context.
 * @vm_ctx: Target VM context.
 *
 * This is used to allow private BOs to share a dma_resv for faster fence
 * updates.
 *
 * Returns: The dma_resv pointer.
 */
struct dma_resv *pvr_vm_get_dma_resv(struct pvr_vm_context *vm_ctx)
{
	return vm_ctx->dummy_gem.resv;
}

/**
 * DOC: Memory mappings
 */

/**
 * struct pvr_vm_gpuva - Wrapper type representing a single VM mapping.
 */
struct pvr_vm_gpuva {
	/** @base: The wrapped drm_gpuva object. */
	struct drm_gpuva base;
};

enum pvr_vm_bind_type {
	PVR_VM_BIND_TYPE_MAP,
	PVR_VM_BIND_TYPE_UNMAP,
};

/**
 * struct pvr_vm_bind_op - Context of a map/unmap operation.
 */
struct pvr_vm_bind_op {
	/** @type: Map or unmap. */
	enum pvr_vm_bind_type type;

	/** @pvr_obj: Object associated with mapping (map only). */
	struct pvr_gem_object *pvr_obj;

	/**
	 * @vm_ctx: VM context where the mapping will be created or destroyed.
	 */
	struct pvr_vm_context *vm_ctx;

	/** @mmu_op_ctx: MMU op context. */
	struct pvr_mmu_op_context *mmu_op_ctx;

	/** @gpuvm_bo: Prealloced wrapped BO for attaching to the gpuvm. */
	struct drm_gpuvm_bo *gpuvm_bo;

	/**
	 * @new_va: Prealloced VA mapping object (init in callback).
	 * Used when creating a mapping.
	 */
	struct pvr_vm_gpuva *new_va;

	/**
	 * @prev_va: Prealloced VA mapping object (init in callback).
	 * Used when a mapping or unmapping operation overlaps an existing
	 * mapping and splits away the beginning into a new mapping.
	 */
	struct pvr_vm_gpuva *prev_va;

	/**
	 * @next_va: Prealloced VA mapping object (init in callback).
	 * Used when a mapping or unmapping operation overlaps an existing
	 * mapping and splits away the end into a new mapping.
	 */
	struct pvr_vm_gpuva *next_va;

	/** @offset: Offset into @pvr_obj to begin mapping from. */
	u64 offset;

	/** @device_addr: Device-virtual address at the start of the mapping. */
	u64 device_addr;

	/** @size: Size of the desired mapping. */
	u64 size;
};

/**
 * pvr_vm_bind_op_exec() - Execute a single bind op.
 * @bind_op: Bind op context.
 *
 * Returns:
 *  * 0 on success,
 *  * Any error code returned by drm_gpuva_sm_map(), drm_gpuva_sm_unmap(), or
 *    a callback function.
 */
static int pvr_vm_bind_op_exec(struct pvr_vm_bind_op *bind_op)
{
	switch (bind_op->type) {
	case PVR_VM_BIND_TYPE_MAP:
		return drm_gpuvm_sm_map(&bind_op->vm_ctx->gpuvm_mgr,
					bind_op, bind_op->device_addr,
					bind_op->size,
					gem_from_pvr_gem(bind_op->pvr_obj),
					bind_op->offset);

	case PVR_VM_BIND_TYPE_UNMAP:
		return drm_gpuvm_sm_unmap(&bind_op->vm_ctx->gpuvm_mgr,
					  bind_op, bind_op->device_addr,
					  bind_op->size);
	}

	/*
	 * This shouldn't happen unless something went wrong
	 * in drm_sched.
	 */
	WARN_ON(1);
	return -EINVAL;
}

static void pvr_vm_bind_op_fini(struct pvr_vm_bind_op *bind_op)
{
	drm_gpuvm_bo_put(bind_op->gpuvm_bo);

	kfree(bind_op->new_va);
	kfree(bind_op->prev_va);
	kfree(bind_op->next_va);

	if (bind_op->pvr_obj)
		pvr_gem_object_put(bind_op->pvr_obj);

	if (bind_op->mmu_op_ctx)
		pvr_mmu_op_context_destroy(bind_op->mmu_op_ctx);
}

static int
pvr_vm_bind_op_map_init(struct pvr_vm_bind_op *bind_op,
			struct pvr_vm_context *vm_ctx,
			struct pvr_gem_object *pvr_obj, u64 offset,
			u64 device_addr, u64 size)
{
	struct drm_gem_object *obj = gem_from_pvr_gem(pvr_obj);
	const bool is_user = vm_ctx != vm_ctx->pvr_dev->kernel_vm_ctx;
	const u64 pvr_obj_size = pvr_gem_object_size(pvr_obj);
	struct sg_table *sgt;
	u64 offset_plus_size;
	int err;

	if (check_add_overflow(offset, size, &offset_plus_size))
		return -EINVAL;

	if (is_user &&
	    !pvr_find_heap_containing(vm_ctx->pvr_dev, device_addr, size)) {
		return -EINVAL;
	}

	if (!pvr_device_addr_and_size_are_valid(vm_ctx, device_addr, size) ||
	    offset & ~PAGE_MASK || size & ~PAGE_MASK ||
	    offset >= pvr_obj_size || offset_plus_size > pvr_obj_size)
		return -EINVAL;

	bind_op->type = PVR_VM_BIND_TYPE_MAP;

	dma_resv_lock(obj->resv, NULL);
	bind_op->gpuvm_bo = drm_gpuvm_bo_obtain(&vm_ctx->gpuvm_mgr, obj);
	dma_resv_unlock(obj->resv);
	if (IS_ERR(bind_op->gpuvm_bo))
		return PTR_ERR(bind_op->gpuvm_bo);

	bind_op->new_va = kzalloc(sizeof(*bind_op->new_va), GFP_KERNEL);
	bind_op->prev_va = kzalloc(sizeof(*bind_op->prev_va), GFP_KERNEL);
	bind_op->next_va = kzalloc(sizeof(*bind_op->next_va), GFP_KERNEL);
	if (!bind_op->new_va || !bind_op->prev_va || !bind_op->next_va) {
		err = -ENOMEM;
		goto err_bind_op_fini;
	}

	/* Pin pages so they're ready for use. */
	sgt = pvr_gem_object_get_pages_sgt(pvr_obj);
	err = PTR_ERR_OR_ZERO(sgt);
	if (err)
		goto err_bind_op_fini;

	bind_op->mmu_op_ctx =
		pvr_mmu_op_context_create(vm_ctx->mmu_ctx, sgt, offset, size);
	err = PTR_ERR_OR_ZERO(bind_op->mmu_op_ctx);
	if (err) {
		bind_op->mmu_op_ctx = NULL;
		goto err_bind_op_fini;
	}

	bind_op->pvr_obj = pvr_obj;
	bind_op->vm_ctx = vm_ctx;
	bind_op->device_addr = device_addr;
	bind_op->size = size;
	bind_op->offset = offset;

	return 0;

err_bind_op_fini:
	pvr_vm_bind_op_fini(bind_op);

	return err;
}

static int
pvr_vm_bind_op_unmap_init(struct pvr_vm_bind_op *bind_op,
			  struct pvr_vm_context *vm_ctx, u64 device_addr,
			  u64 size)
{
	int err;

	if (!pvr_device_addr_and_size_are_valid(vm_ctx, device_addr, size))
		return -EINVAL;

	bind_op->type = PVR_VM_BIND_TYPE_UNMAP;

	bind_op->prev_va = kzalloc(sizeof(*bind_op->prev_va), GFP_KERNEL);
	bind_op->next_va = kzalloc(sizeof(*bind_op->next_va), GFP_KERNEL);
	if (!bind_op->prev_va || !bind_op->next_va) {
		err = -ENOMEM;
		goto err_bind_op_fini;
	}

	bind_op->mmu_op_ctx =
		pvr_mmu_op_context_create(vm_ctx->mmu_ctx, NULL, 0, 0);
	err = PTR_ERR_OR_ZERO(bind_op->mmu_op_ctx);
	if (err) {
		bind_op->mmu_op_ctx = NULL;
		goto err_bind_op_fini;
	}

	bind_op->vm_ctx = vm_ctx;
	bind_op->device_addr = device_addr;
	bind_op->size = size;

	return 0;

err_bind_op_fini:
	pvr_vm_bind_op_fini(bind_op);

	return err;
}

/**
 * pvr_vm_gpuva_map() - Insert a mapping into a memory context.
 * @op: gpuva op containing the remap details.
 * @op_ctx: Operation context.
 *
 * Context: Called by drm_gpuvm_sm_map following a successful mapping while
 * @op_ctx.vm_ctx mutex is held.
 *
 * Return:
 *  * 0 on success, or
 *  * Any error returned by pvr_mmu_map().
 */
static int
pvr_vm_gpuva_map(struct drm_gpuva_op *op, void *op_ctx)
{
	struct pvr_gem_object *pvr_gem = gem_to_pvr_gem(op->map.gem.obj);
	struct pvr_vm_bind_op *ctx = op_ctx;
	int err;

	if ((op->map.gem.offset | op->map.va.range) & ~PVR_DEVICE_PAGE_MASK)
		return -EINVAL;

	err = pvr_mmu_map(ctx->mmu_op_ctx, op->map.va.range, pvr_gem->flags,
			  op->map.va.addr);
	if (err)
		return err;

	drm_gpuva_map(&ctx->vm_ctx->gpuvm_mgr, &ctx->new_va->base, &op->map);
	drm_gpuva_link(&ctx->new_va->base, ctx->gpuvm_bo);
	ctx->new_va = NULL;

	return 0;
}

/**
 * pvr_vm_gpuva_unmap() - Remove a mapping from a memory context.
 * @op: gpuva op containing the unmap details.
 * @op_ctx: Operation context.
 *
 * Context: Called by drm_gpuvm_sm_unmap following a successful unmapping while
 * @op_ctx.vm_ctx mutex is held.
 *
 * Return:
 *  * 0 on success, or
 *  * Any error returned by pvr_mmu_unmap().
 */
static int
pvr_vm_gpuva_unmap(struct drm_gpuva_op *op, void *op_ctx)
{
	struct pvr_vm_bind_op *ctx = op_ctx;

	int err = pvr_mmu_unmap(ctx->mmu_op_ctx, op->unmap.va->va.addr,
				op->unmap.va->va.range);

	if (err)
		return err;

	drm_gpuva_unmap(&op->unmap);
	drm_gpuva_unlink(op->unmap.va);

	return 0;
}

/**
 * pvr_vm_gpuva_remap() - Remap a mapping within a memory context.
 * @op: gpuva op containing the remap details.
 * @op_ctx: Operation context.
 *
 * Context: Called by either drm_gpuvm_sm_map or drm_gpuvm_sm_unmap when a
 * mapping or unmapping operation causes a region to be split. The
 * @op_ctx.vm_ctx mutex is held.
 *
 * Return:
 *  * 0 on success, or
 *  * Any error returned by pvr_vm_gpuva_unmap() or pvr_vm_gpuva_unmap().
 */
static int
pvr_vm_gpuva_remap(struct drm_gpuva_op *op, void *op_ctx)
{
	struct pvr_vm_bind_op *ctx = op_ctx;
	u64 va_start = 0, va_range = 0;
	int err;

	drm_gpuva_op_remap_to_unmap_range(&op->remap, &va_start, &va_range);
	err = pvr_mmu_unmap(ctx->mmu_op_ctx, va_start, va_range);
	if (err)
		return err;

	/* No actual remap required: the page table tree depth is fixed to 3,
	 * and we use 4k page table entries only for now.
	 */
	drm_gpuva_remap(&ctx->prev_va->base, &ctx->next_va->base, &op->remap);

	if (op->remap.prev) {
		pvr_gem_object_get(gem_to_pvr_gem(ctx->prev_va->base.gem.obj));
		drm_gpuva_link(&ctx->prev_va->base, ctx->gpuvm_bo);
		ctx->prev_va = NULL;
	}

	if (op->remap.next) {
		pvr_gem_object_get(gem_to_pvr_gem(ctx->next_va->base.gem.obj));
		drm_gpuva_link(&ctx->next_va->base, ctx->gpuvm_bo);
		ctx->next_va = NULL;
	}

	drm_gpuva_unlink(op->remap.unmap->va);

	return 0;
}

/*
 * Public API
 *
 * For an overview of these functions, see *DOC: Public API* in "pvr_vm.h".
 */

/**
 * pvr_device_addr_is_valid() - Tests whether a device-virtual address
 *                              is valid.
 * @device_addr: Virtual device address to test.
 *
 * Return:
 *  * %true if @device_addr is within the valid range for a device page
 *    table and is aligned to the device page size, or
 *  * %false otherwise.
 */
bool
pvr_device_addr_is_valid(u64 device_addr)
{
	return (device_addr & ~PVR_PAGE_TABLE_ADDR_MASK) == 0 &&
	       (device_addr & ~PVR_DEVICE_PAGE_MASK) == 0;
}

/**
 * pvr_device_addr_and_size_are_valid() - Tests whether a device-virtual
 * address and associated size are both valid.
 * @vm_ctx: Target VM context.
 * @device_addr: Virtual device address to test.
 * @size: Size of the range based at @device_addr to test.
 *
 * Calling pvr_device_addr_is_valid() twice (once on @size, and again on
 * @device_addr + @size) to verify a device-virtual address range initially
 * seems intuitive, but it produces a false-negative when the address range
 * is right at the end of device-virtual address space.
 *
 * This function catches that corner case, as well as checking that
 * @size is non-zero.
 *
 * Return:
 *  * %true if @device_addr is device page aligned; @size is device page
 *    aligned; the range specified by @device_addr and @size is within the
 *    bounds of the device-virtual address space, and @size is non-zero, or
 *  * %false otherwise.
 */
bool
pvr_device_addr_and_size_are_valid(struct pvr_vm_context *vm_ctx,
				   u64 device_addr, u64 size)
{
	return pvr_device_addr_is_valid(device_addr) &&
	       drm_gpuvm_range_valid(&vm_ctx->gpuvm_mgr, device_addr, size) &&
	       size != 0 && (size & ~PVR_DEVICE_PAGE_MASK) == 0 &&
	       (device_addr + size <= PVR_PAGE_TABLE_ADDR_SPACE_SIZE);
}

static void pvr_gpuvm_free(struct drm_gpuvm *gpuvm)
{
	kfree(to_pvr_vm_context(gpuvm));
}

static const struct drm_gpuvm_ops pvr_vm_gpuva_ops = {
	.vm_free = pvr_gpuvm_free,
	.sm_step_map = pvr_vm_gpuva_map,
	.sm_step_remap = pvr_vm_gpuva_remap,
	.sm_step_unmap = pvr_vm_gpuva_unmap,
};

static void
fw_mem_context_init(void *cpu_ptr, void *priv)
{
	struct rogue_fwif_fwmemcontext *fw_mem_ctx = cpu_ptr;
	struct pvr_vm_context *vm_ctx = priv;

	fw_mem_ctx->pc_dev_paddr = pvr_vm_get_page_table_root_addr(vm_ctx);
	fw_mem_ctx->page_cat_base_reg_set = ROGUE_FW_BIF_INVALID_PCSET;
}

/**
 * pvr_vm_create_context() - Create a new VM context.
 * @pvr_dev: Target PowerVR device.
 * @is_userspace_context: %true if this context is for userspace. This will
 *                        create a firmware memory context for the VM context
 *                        and disable warnings when tearing down mappings.
 *
 * Return:
 *  * A handle to the newly-minted VM context on success,
 *  * -%EINVAL if the feature "virtual address space bits" on @pvr_dev is
 *    missing or has an unsupported value,
 *  * -%ENOMEM if allocation of the structure behind the opaque handle fails,
 *    or
 *  * Any error encountered while setting up internal structures.
 */
struct pvr_vm_context *
pvr_vm_create_context(struct pvr_device *pvr_dev, bool is_userspace_context)
{
	struct drm_device *drm_dev = from_pvr_device(pvr_dev);

	struct pvr_vm_context *vm_ctx;
	u16 device_addr_bits;

	int err;

	err = PVR_FEATURE_VALUE(pvr_dev, virtual_address_space_bits,
				&device_addr_bits);
	if (err) {
		drm_err(drm_dev,
			"Failed to get device virtual address space bits\n");
		return ERR_PTR(err);
	}

	if (device_addr_bits != PVR_PAGE_TABLE_ADDR_BITS) {
		drm_err(drm_dev,
			"Device has unsupported virtual address space size\n");
		return ERR_PTR(-EINVAL);
	}

	vm_ctx = kzalloc(sizeof(*vm_ctx), GFP_KERNEL);
	if (!vm_ctx)
		return ERR_PTR(-ENOMEM);

	vm_ctx->pvr_dev = pvr_dev;

	vm_ctx->mmu_ctx = pvr_mmu_context_create(pvr_dev);
	err = PTR_ERR_OR_ZERO(vm_ctx->mmu_ctx);
	if (err)
		goto err_free;

	if (is_userspace_context) {
		err = pvr_fw_object_create(pvr_dev, sizeof(struct rogue_fwif_fwmemcontext),
					   PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
					   fw_mem_context_init, vm_ctx, &vm_ctx->fw_mem_ctx_obj);

		if (err)
			goto err_page_table_destroy;
	}

	drm_gem_private_object_init(&pvr_dev->base, &vm_ctx->dummy_gem, 0);
	drm_gpuvm_init(&vm_ctx->gpuvm_mgr,
		       is_userspace_context ? "PowerVR-user-VM" : "PowerVR-FW-VM",
		       0, &pvr_dev->base, &vm_ctx->dummy_gem,
		       0, 1ULL << device_addr_bits, 0, 0, &pvr_vm_gpuva_ops);

	mutex_init(&vm_ctx->lock);
	kref_init(&vm_ctx->ref_count);

	return vm_ctx;

err_page_table_destroy:
	pvr_mmu_context_destroy(vm_ctx->mmu_ctx);

err_free:
	kfree(vm_ctx);

	return ERR_PTR(err);
}

/**
 * pvr_vm_context_release() - Teardown a VM context.
 * @ref_count: Pointer to reference counter of the VM context.
 *
 * This function ensures that no mappings are left dangling by unmapping them
 * all in order of ascending device-virtual address.
 */
static void
pvr_vm_context_release(struct kref *ref_count)
{
	struct pvr_vm_context *vm_ctx =
		container_of(ref_count, struct pvr_vm_context, ref_count);

	if (vm_ctx->fw_mem_ctx_obj)
		pvr_fw_object_destroy(vm_ctx->fw_mem_ctx_obj);

	WARN_ON(pvr_vm_unmap(vm_ctx, vm_ctx->gpuvm_mgr.mm_start,
			     vm_ctx->gpuvm_mgr.mm_range));

	pvr_mmu_context_destroy(vm_ctx->mmu_ctx);
	drm_gem_private_object_fini(&vm_ctx->dummy_gem);
	mutex_destroy(&vm_ctx->lock);

	drm_gpuvm_put(&vm_ctx->gpuvm_mgr);
}

/**
 * pvr_vm_context_lookup() - Look up VM context from handle
 * @pvr_file: Pointer to pvr_file structure.
 * @handle: Object handle.
 *
 * Takes reference on VM context object. Call pvr_vm_context_put() to release.
 *
 * Returns:
 *  * The requested object on success, or
 *  * %NULL on failure (object does not exist in list, or is not a VM context)
 */
struct pvr_vm_context *
pvr_vm_context_lookup(struct pvr_file *pvr_file, u32 handle)
{
	struct pvr_vm_context *vm_ctx;

	xa_lock(&pvr_file->vm_ctx_handles);
	vm_ctx = xa_load(&pvr_file->vm_ctx_handles, handle);
	if (vm_ctx)
		kref_get(&vm_ctx->ref_count);

	xa_unlock(&pvr_file->vm_ctx_handles);

	return vm_ctx;
}

/**
 * pvr_vm_context_put() - Release a reference on a VM context
 * @vm_ctx: Target VM context.
 *
 * Returns:
 *  * %true if the VM context was destroyed, or
 *  * %false if there are any references still remaining.
 */
bool
pvr_vm_context_put(struct pvr_vm_context *vm_ctx)
{
	if (vm_ctx)
		return kref_put(&vm_ctx->ref_count, pvr_vm_context_release);

	return true;
}

/**
 * pvr_destroy_vm_contexts_for_file: Destroy any VM contexts associated with the
 * given file.
 * @pvr_file: Pointer to pvr_file structure.
 *
 * Removes all vm_contexts associated with @pvr_file from the device VM context
 * list and drops initial references. vm_contexts will then be destroyed once
 * all outstanding references are dropped.
 */
void pvr_destroy_vm_contexts_for_file(struct pvr_file *pvr_file)
{
	struct pvr_vm_context *vm_ctx;
	unsigned long handle;

	xa_for_each(&pvr_file->vm_ctx_handles, handle, vm_ctx) {
		/* vm_ctx is not used here because that would create a race with xa_erase */
		pvr_vm_context_put(xa_erase(&pvr_file->vm_ctx_handles, handle));
	}
}

static int
pvr_vm_lock_extra(struct drm_gpuvm_exec *vm_exec)
{
	struct pvr_vm_bind_op *bind_op = vm_exec->extra.priv;
	struct pvr_gem_object *pvr_obj = bind_op->pvr_obj;

	/* Unmap operations don't have an object to lock. */
	if (!pvr_obj)
		return 0;

	/* Acquire lock on the GEM being mapped. */
	return drm_exec_lock_obj(&vm_exec->exec, gem_from_pvr_gem(pvr_obj));
}

/**
 * pvr_vm_map() - Map a section of physical memory into a section of
 * device-virtual memory.
 * @vm_ctx: Target VM context.
 * @pvr_obj: Target PowerVR memory object.
 * @pvr_obj_offset: Offset into @pvr_obj to map from.
 * @device_addr: Virtual device address at the start of the requested mapping.
 * @size: Size of the requested mapping.
 *
 * No handle is returned to represent the mapping. Instead, callers should
 * remember @device_addr and use that as a handle.
 *
 * Return:
 *  * 0 on success,
 *  * -%EINVAL if @device_addr is not a valid page-aligned device-virtual
 *    address; the region specified by @pvr_obj_offset and @size does not fall
 *    entirely within @pvr_obj, or any part of the specified region of @pvr_obj
 *    is not device-virtual page-aligned,
 *  * Any error encountered while performing internal operations required to
 *    destroy the mapping (returned from pvr_vm_gpuva_map or
 *    pvr_vm_gpuva_remap).
 */
int
pvr_vm_map(struct pvr_vm_context *vm_ctx, struct pvr_gem_object *pvr_obj,
	   u64 pvr_obj_offset, u64 device_addr, u64 size)
{
	struct pvr_vm_bind_op bind_op = {0};
	struct drm_gpuvm_exec vm_exec = {
		.vm = &vm_ctx->gpuvm_mgr,
		.flags = DRM_EXEC_INTERRUPTIBLE_WAIT |
			 DRM_EXEC_IGNORE_DUPLICATES,
		.extra = {
			.fn = pvr_vm_lock_extra,
			.priv = &bind_op,
		},
	};

	int err = pvr_vm_bind_op_map_init(&bind_op, vm_ctx, pvr_obj,
					  pvr_obj_offset, device_addr,
					  size);

	if (err)
		return err;

	pvr_gem_object_get(pvr_obj);

	err = drm_gpuvm_exec_lock(&vm_exec);
	if (err)
		goto err_cleanup;

	err = pvr_vm_bind_op_exec(&bind_op);

	drm_gpuvm_exec_unlock(&vm_exec);

err_cleanup:
	pvr_vm_bind_op_fini(&bind_op);

	return err;
}

/**
 * pvr_vm_unmap() - Unmap an already mapped section of device-virtual memory.
 * @vm_ctx: Target VM context.
 * @device_addr: Virtual device address at the start of the target mapping.
 * @size: Size of the target mapping.
 *
 * Return:
 *  * 0 on success,
 *  * -%EINVAL if @device_addr is not a valid page-aligned device-virtual
 *    address,
 *  * Any error encountered while performing internal operations required to
 *    destroy the mapping (returned from pvr_vm_gpuva_unmap or
 *    pvr_vm_gpuva_remap).
 */
int
pvr_vm_unmap(struct pvr_vm_context *vm_ctx, u64 device_addr, u64 size)
{
	struct pvr_vm_bind_op bind_op = {0};
	struct drm_gpuvm_exec vm_exec = {
		.vm = &vm_ctx->gpuvm_mgr,
		.flags = DRM_EXEC_INTERRUPTIBLE_WAIT |
			 DRM_EXEC_IGNORE_DUPLICATES,
		.extra = {
			.fn = pvr_vm_lock_extra,
			.priv = &bind_op,
		},
	};

	int err = pvr_vm_bind_op_unmap_init(&bind_op, vm_ctx, device_addr,
					    size);
	if (err)
		return err;

	err = drm_gpuvm_exec_lock(&vm_exec);
	if (err)
		goto err_cleanup;

	err = pvr_vm_bind_op_exec(&bind_op);

	drm_gpuvm_exec_unlock(&vm_exec);

err_cleanup:
	pvr_vm_bind_op_fini(&bind_op);

	return err;
}

/* Static data areas are determined by firmware. */
static const struct drm_pvr_static_data_area static_data_areas[] = {
	{
		.area_usage = DRM_PVR_STATIC_DATA_AREA_FENCE,
		.location_heap_id = DRM_PVR_HEAP_GENERAL,
		.offset = 0,
		.size = 128,
	},
	{
		.area_usage = DRM_PVR_STATIC_DATA_AREA_YUV_CSC,
		.location_heap_id = DRM_PVR_HEAP_GENERAL,
		.offset = 128,
		.size = 1024,
	},
	{
		.area_usage = DRM_PVR_STATIC_DATA_AREA_VDM_SYNC,
		.location_heap_id = DRM_PVR_HEAP_PDS_CODE_DATA,
		.offset = 0,
		.size = 128,
	},
	{
		.area_usage = DRM_PVR_STATIC_DATA_AREA_EOT,
		.location_heap_id = DRM_PVR_HEAP_PDS_CODE_DATA,
		.offset = 128,
		.size = 128,
	},
	{
		.area_usage = DRM_PVR_STATIC_DATA_AREA_VDM_SYNC,
		.location_heap_id = DRM_PVR_HEAP_USC_CODE,
		.offset = 0,
		.size = 128,
	},
};

#define GET_RESERVED_SIZE(last_offset, last_size) round_up((last_offset) + (last_size), PAGE_SIZE)

/*
 * The values given to GET_RESERVED_SIZE() are taken from the last entry in the corresponding
 * static data area for each heap.
 */
static const struct drm_pvr_heap pvr_heaps[] = {
	[DRM_PVR_HEAP_GENERAL] = {
		.base = ROGUE_GENERAL_HEAP_BASE,
		.size = ROGUE_GENERAL_HEAP_SIZE,
		.flags = 0,
		.page_size_log2 = PVR_DEVICE_PAGE_SHIFT,
	},
	[DRM_PVR_HEAP_PDS_CODE_DATA] = {
		.base = ROGUE_PDSCODEDATA_HEAP_BASE,
		.size = ROGUE_PDSCODEDATA_HEAP_SIZE,
		.flags = 0,
		.page_size_log2 = PVR_DEVICE_PAGE_SHIFT,
	},
	[DRM_PVR_HEAP_USC_CODE] = {
		.base = ROGUE_USCCODE_HEAP_BASE,
		.size = ROGUE_USCCODE_HEAP_SIZE,
		.flags = 0,
		.page_size_log2 = PVR_DEVICE_PAGE_SHIFT,
	},
	[DRM_PVR_HEAP_RGNHDR] = {
		.base = ROGUE_RGNHDR_HEAP_BASE,
		.size = ROGUE_RGNHDR_HEAP_SIZE,
		.flags = 0,
		.page_size_log2 = PVR_DEVICE_PAGE_SHIFT,
	},
	[DRM_PVR_HEAP_VIS_TEST] = {
		.base = ROGUE_VISTEST_HEAP_BASE,
		.size = ROGUE_VISTEST_HEAP_SIZE,
		.flags = 0,
		.page_size_log2 = PVR_DEVICE_PAGE_SHIFT,
	},
	[DRM_PVR_HEAP_TRANSFER_FRAG] = {
		.base = ROGUE_TRANSFER_FRAG_HEAP_BASE,
		.size = ROGUE_TRANSFER_FRAG_HEAP_SIZE,
		.flags = 0,
		.page_size_log2 = PVR_DEVICE_PAGE_SHIFT,
	},
};

int
pvr_static_data_areas_get(const struct pvr_device *pvr_dev,
			  struct drm_pvr_ioctl_dev_query_args *args)
{
	struct drm_pvr_dev_query_static_data_areas query = {0};
	int err;

	if (!args->pointer) {
		args->size = sizeof(struct drm_pvr_dev_query_static_data_areas);
		return 0;
	}

	err = PVR_UOBJ_GET(query, args->size, args->pointer);
	if (err < 0)
		return err;

	if (!query.static_data_areas.array) {
		query.static_data_areas.count = ARRAY_SIZE(static_data_areas);
		query.static_data_areas.stride = sizeof(struct drm_pvr_static_data_area);
		goto copy_out;
	}

	if (query.static_data_areas.count > ARRAY_SIZE(static_data_areas))
		query.static_data_areas.count = ARRAY_SIZE(static_data_areas);

	err = PVR_UOBJ_SET_ARRAY(&query.static_data_areas, static_data_areas);
	if (err < 0)
		return err;

copy_out:
	err = PVR_UOBJ_SET(args->pointer, args->size, query);
	if (err < 0)
		return err;

	args->size = sizeof(query);
	return 0;
}

int
pvr_heap_info_get(const struct pvr_device *pvr_dev,
		  struct drm_pvr_ioctl_dev_query_args *args)
{
	struct drm_pvr_dev_query_heap_info query = {0};
	u64 dest;
	int err;

	if (!args->pointer) {
		args->size = sizeof(struct drm_pvr_dev_query_heap_info);
		return 0;
	}

	err = PVR_UOBJ_GET(query, args->size, args->pointer);
	if (err < 0)
		return err;

	if (!query.heaps.array) {
		query.heaps.count = ARRAY_SIZE(pvr_heaps);
		query.heaps.stride = sizeof(struct drm_pvr_heap);
		goto copy_out;
	}

	if (query.heaps.count > ARRAY_SIZE(pvr_heaps))
		query.heaps.count = ARRAY_SIZE(pvr_heaps);

	/* Region header heap is only present if BRN63142 is present. */
	dest = query.heaps.array;
	for (size_t i = 0; i < query.heaps.count; i++) {
		struct drm_pvr_heap heap = pvr_heaps[i];

		if (i == DRM_PVR_HEAP_RGNHDR && !PVR_HAS_QUIRK(pvr_dev, 63142))
			heap.size = 0;

		err = PVR_UOBJ_SET(dest, query.heaps.stride, heap);
		if (err < 0)
			return err;

		dest += query.heaps.stride;
	}

copy_out:
	err = PVR_UOBJ_SET(args->pointer, args->size, query);
	if (err < 0)
		return err;

	args->size = sizeof(query);
	return 0;
}

/**
 * pvr_heap_contains_range() - Determine if a given heap contains the specified
 *                             device-virtual address range.
 * @pvr_heap: Target heap.
 * @start: Inclusive start of the target range.
 * @end: Inclusive end of the target range.
 *
 * It is an error to call this function with values of @start and @end that do
 * not satisfy the condition @start <= @end.
 */
static __always_inline bool
pvr_heap_contains_range(const struct drm_pvr_heap *pvr_heap, u64 start, u64 end)
{
	return pvr_heap->base <= start && end < pvr_heap->base + pvr_heap->size;
}

/**
 * pvr_find_heap_containing() - Find a heap which contains the specified
 *                              device-virtual address range.
 * @pvr_dev: Target PowerVR device.
 * @start: Start of the target range.
 * @size: Size of the target range.
 *
 * Return:
 *  * A pointer to a constant instance of struct drm_pvr_heap representing the
 *    heap containing the entire range specified by @start and @size on
 *    success, or
 *  * %NULL if no such heap exists.
 */
const struct drm_pvr_heap *
pvr_find_heap_containing(struct pvr_device *pvr_dev, u64 start, u64 size)
{
	u64 end;

	if (check_add_overflow(start, size - 1, &end))
		return NULL;

	/*
	 * There are no guarantees about the order of address ranges in
	 * &pvr_heaps, so iterate over the entire array for a heap whose
	 * range completely encompasses the given range.
	 */
	for (u32 heap_id = 0; heap_id < ARRAY_SIZE(pvr_heaps); heap_id++) {
		/* Filter heaps that present only with an associated quirk */
		if (heap_id == DRM_PVR_HEAP_RGNHDR &&
		    !PVR_HAS_QUIRK(pvr_dev, 63142)) {
			continue;
		}

		if (pvr_heap_contains_range(&pvr_heaps[heap_id], start, end))
			return &pvr_heaps[heap_id];
	}

	return NULL;
}

/**
 * pvr_vm_find_gem_object() - Look up a buffer object from a given
 *                            device-virtual address.
 * @vm_ctx: [IN] Target VM context.
 * @device_addr: [IN] Virtual device address at the start of the required
 *               object.
 * @mapped_offset_out: [OUT] Pointer to location to write offset of the start
 *                     of the mapped region within the buffer object. May be
 *                     %NULL if this information is not required.
 * @mapped_size_out: [OUT] Pointer to location to write size of the mapped
 *                   region. May be %NULL if this information is not required.
 *
 * If successful, a reference will be taken on the buffer object. The caller
 * must drop the reference with pvr_gem_object_put().
 *
 * Return:
 *  * The PowerVR buffer object mapped at @device_addr if one exists, or
 *  * %NULL otherwise.
 */
struct pvr_gem_object *
pvr_vm_find_gem_object(struct pvr_vm_context *vm_ctx, u64 device_addr,
		       u64 *mapped_offset_out, u64 *mapped_size_out)
{
	struct pvr_gem_object *pvr_obj;
	struct drm_gpuva *va;

	mutex_lock(&vm_ctx->lock);

	va = drm_gpuva_find_first(&vm_ctx->gpuvm_mgr, device_addr, 1);
	if (!va)
		goto err_unlock;

	pvr_obj = gem_to_pvr_gem(va->gem.obj);
	pvr_gem_object_get(pvr_obj);

	if (mapped_offset_out)
		*mapped_offset_out = va->gem.offset;
	if (mapped_size_out)
		*mapped_size_out = va->va.range;

	mutex_unlock(&vm_ctx->lock);

	return pvr_obj;

err_unlock:
	mutex_unlock(&vm_ctx->lock);

	return NULL;
}

/**
 * pvr_vm_get_fw_mem_context: Get object representing firmware memory context
 * @vm_ctx: Target VM context.
 *
 * Returns:
 *  * FW object representing firmware memory context, or
 *  * %NULL if this VM context does not have a firmware memory context.
 */
struct pvr_fw_object *
pvr_vm_get_fw_mem_context(struct pvr_vm_context *vm_ctx)
{
	return vm_ctx->fw_mem_ctx_obj;
}