Linux Audio

Check our new training course

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
// SPDX-License-Identifier: GPL-2.0-only OR MIT
/* Copyright (c) 2023 Imagination Technologies Ltd. */

#include <drm/drm_managed.h>
#include <drm/gpu_scheduler.h>

#include "pvr_cccb.h"
#include "pvr_context.h"
#include "pvr_device.h"
#include "pvr_drv.h"
#include "pvr_job.h"
#include "pvr_queue.h"
#include "pvr_vm.h"

#include "pvr_rogue_fwif_client.h"

#define MAX_DEADLINE_MS 30000

#define CTX_COMPUTE_CCCB_SIZE_LOG2 15
#define CTX_FRAG_CCCB_SIZE_LOG2 15
#define CTX_GEOM_CCCB_SIZE_LOG2 15
#define CTX_TRANSFER_CCCB_SIZE_LOG2 15

static int get_xfer_ctx_state_size(struct pvr_device *pvr_dev)
{
	u32 num_isp_store_registers;

	if (PVR_HAS_FEATURE(pvr_dev, xe_memory_hierarchy)) {
		num_isp_store_registers = 1;
	} else {
		int err;

		err = PVR_FEATURE_VALUE(pvr_dev, num_isp_ipp_pipes, &num_isp_store_registers);
		if (WARN_ON(err))
			return err;
	}

	return sizeof(struct rogue_fwif_frag_ctx_state) +
	       (num_isp_store_registers *
		sizeof(((struct rogue_fwif_frag_ctx_state *)0)->frag_reg_isp_store[0]));
}

static int get_frag_ctx_state_size(struct pvr_device *pvr_dev)
{
	u32 num_isp_store_registers;
	int err;

	if (PVR_HAS_FEATURE(pvr_dev, xe_memory_hierarchy)) {
		err = PVR_FEATURE_VALUE(pvr_dev, num_raster_pipes, &num_isp_store_registers);
		if (WARN_ON(err))
			return err;

		if (PVR_HAS_FEATURE(pvr_dev, gpu_multicore_support)) {
			u32 xpu_max_slaves;

			err = PVR_FEATURE_VALUE(pvr_dev, xpu_max_slaves, &xpu_max_slaves);
			if (WARN_ON(err))
				return err;

			num_isp_store_registers *= (1 + xpu_max_slaves);
		}
	} else {
		err = PVR_FEATURE_VALUE(pvr_dev, num_isp_ipp_pipes, &num_isp_store_registers);
		if (WARN_ON(err))
			return err;
	}

	return sizeof(struct rogue_fwif_frag_ctx_state) +
	       (num_isp_store_registers *
		sizeof(((struct rogue_fwif_frag_ctx_state *)0)->frag_reg_isp_store[0]));
}

static int get_ctx_state_size(struct pvr_device *pvr_dev, enum drm_pvr_job_type type)
{
	switch (type) {
	case DRM_PVR_JOB_TYPE_GEOMETRY:
		return sizeof(struct rogue_fwif_geom_ctx_state);
	case DRM_PVR_JOB_TYPE_FRAGMENT:
		return get_frag_ctx_state_size(pvr_dev);
	case DRM_PVR_JOB_TYPE_COMPUTE:
		return sizeof(struct rogue_fwif_compute_ctx_state);
	case DRM_PVR_JOB_TYPE_TRANSFER_FRAG:
		return get_xfer_ctx_state_size(pvr_dev);
	}

	WARN(1, "Invalid queue type");
	return -EINVAL;
}

static u32 get_ctx_offset(enum drm_pvr_job_type type)
{
	switch (type) {
	case DRM_PVR_JOB_TYPE_GEOMETRY:
		return offsetof(struct rogue_fwif_fwrendercontext, geom_context);
	case DRM_PVR_JOB_TYPE_FRAGMENT:
		return offsetof(struct rogue_fwif_fwrendercontext, frag_context);
	case DRM_PVR_JOB_TYPE_COMPUTE:
		return offsetof(struct rogue_fwif_fwcomputecontext, cdm_context);
	case DRM_PVR_JOB_TYPE_TRANSFER_FRAG:
		return offsetof(struct rogue_fwif_fwtransfercontext, tq_context);
	}

	return 0;
}

static const char *
pvr_queue_fence_get_driver_name(struct dma_fence *f)
{
	return PVR_DRIVER_NAME;
}

static void pvr_queue_fence_release(struct dma_fence *f)
{
	struct pvr_queue_fence *fence = container_of(f, struct pvr_queue_fence, base);

	pvr_context_put(fence->queue->ctx);
	dma_fence_free(f);
}

static const char *
pvr_queue_job_fence_get_timeline_name(struct dma_fence *f)
{
	struct pvr_queue_fence *fence = container_of(f, struct pvr_queue_fence, base);

	switch (fence->queue->type) {
	case DRM_PVR_JOB_TYPE_GEOMETRY:
		return "geometry";

	case DRM_PVR_JOB_TYPE_FRAGMENT:
		return "fragment";

	case DRM_PVR_JOB_TYPE_COMPUTE:
		return "compute";

	case DRM_PVR_JOB_TYPE_TRANSFER_FRAG:
		return "transfer";
	}

	WARN(1, "Invalid queue type");
	return "invalid";
}

static const char *
pvr_queue_cccb_fence_get_timeline_name(struct dma_fence *f)
{
	struct pvr_queue_fence *fence = container_of(f, struct pvr_queue_fence, base);

	switch (fence->queue->type) {
	case DRM_PVR_JOB_TYPE_GEOMETRY:
		return "geometry-cccb";

	case DRM_PVR_JOB_TYPE_FRAGMENT:
		return "fragment-cccb";

	case DRM_PVR_JOB_TYPE_COMPUTE:
		return "compute-cccb";

	case DRM_PVR_JOB_TYPE_TRANSFER_FRAG:
		return "transfer-cccb";
	}

	WARN(1, "Invalid queue type");
	return "invalid";
}

static const struct dma_fence_ops pvr_queue_job_fence_ops = {
	.get_driver_name = pvr_queue_fence_get_driver_name,
	.get_timeline_name = pvr_queue_job_fence_get_timeline_name,
	.release = pvr_queue_fence_release,
};

/**
 * to_pvr_queue_job_fence() - Return a pvr_queue_fence object if the fence is
 * backed by a UFO.
 * @f: The dma_fence to turn into a pvr_queue_fence.
 *
 * Return:
 *  * A non-NULL pvr_queue_fence object if the dma_fence is backed by a UFO, or
 *  * NULL otherwise.
 */
static struct pvr_queue_fence *
to_pvr_queue_job_fence(struct dma_fence *f)
{
	struct drm_sched_fence *sched_fence = to_drm_sched_fence(f);

	if (sched_fence)
		f = sched_fence->parent;

	if (f && f->ops == &pvr_queue_job_fence_ops)
		return container_of(f, struct pvr_queue_fence, base);

	return NULL;
}

static const struct dma_fence_ops pvr_queue_cccb_fence_ops = {
	.get_driver_name = pvr_queue_fence_get_driver_name,
	.get_timeline_name = pvr_queue_cccb_fence_get_timeline_name,
	.release = pvr_queue_fence_release,
};

/**
 * pvr_queue_fence_put() - Put wrapper for pvr_queue_fence objects.
 * @f: The dma_fence object to put.
 *
 * If the pvr_queue_fence has been initialized, we call dma_fence_put(),
 * otherwise we free the object with dma_fence_free(). This allows us
 * to do the right thing before and after pvr_queue_fence_init() had been
 * called.
 */
static void pvr_queue_fence_put(struct dma_fence *f)
{
	if (!f)
		return;

	if (WARN_ON(f->ops &&
		    f->ops != &pvr_queue_cccb_fence_ops &&
		    f->ops != &pvr_queue_job_fence_ops))
		return;

	/* If the fence hasn't been initialized yet, free the object directly. */
	if (f->ops)
		dma_fence_put(f);
	else
		dma_fence_free(f);
}

/**
 * pvr_queue_fence_alloc() - Allocate a pvr_queue_fence fence object
 *
 * Call this function to allocate job CCCB and done fences. This only
 * allocates the objects. Initialization happens when the underlying
 * dma_fence object is to be returned to drm_sched (in prepare_job() or
 * run_job()).
 *
 * Return:
 *  * A valid pointer if the allocation succeeds, or
 *  * NULL if the allocation fails.
 */
static struct dma_fence *
pvr_queue_fence_alloc(void)
{
	struct pvr_queue_fence *fence;

	fence = kzalloc(sizeof(*fence), GFP_KERNEL);
	if (!fence)
		return NULL;

	return &fence->base;
}

/**
 * pvr_queue_fence_init() - Initializes a pvr_queue_fence object.
 * @f: The fence to initialize
 * @queue: The queue this fence belongs to.
 * @fence_ops: The fence operations.
 * @fence_ctx: The fence context.
 *
 * Wrapper around dma_fence_init() that takes care of initializing the
 * pvr_queue_fence::queue field too.
 */
static void
pvr_queue_fence_init(struct dma_fence *f,
		     struct pvr_queue *queue,
		     const struct dma_fence_ops *fence_ops,
		     struct pvr_queue_fence_ctx *fence_ctx)
{
	struct pvr_queue_fence *fence = container_of(f, struct pvr_queue_fence, base);

	pvr_context_get(queue->ctx);
	fence->queue = queue;
	dma_fence_init(&fence->base, fence_ops,
		       &fence_ctx->lock, fence_ctx->id,
		       atomic_inc_return(&fence_ctx->seqno));
}

/**
 * pvr_queue_cccb_fence_init() - Initializes a CCCB fence object.
 * @fence: The fence to initialize.
 * @queue: The queue this fence belongs to.
 *
 * Initializes a fence that can be used to wait for CCCB space.
 *
 * Should be called in the ::prepare_job() path, so the fence returned to
 * drm_sched is valid.
 */
static void
pvr_queue_cccb_fence_init(struct dma_fence *fence, struct pvr_queue *queue)
{
	pvr_queue_fence_init(fence, queue, &pvr_queue_cccb_fence_ops,
			     &queue->cccb_fence_ctx.base);
}

/**
 * pvr_queue_job_fence_init() - Initializes a job done fence object.
 * @fence: The fence to initialize.
 * @queue: The queue this fence belongs to.
 *
 * Initializes a fence that will be signaled when the GPU is done executing
 * a job.
 *
 * Should be called *before* the ::run_job() path, so the fence is initialised
 * before being placed in the pending_list.
 */
static void
pvr_queue_job_fence_init(struct dma_fence *fence, struct pvr_queue *queue)
{
	pvr_queue_fence_init(fence, queue, &pvr_queue_job_fence_ops,
			     &queue->job_fence_ctx);
}

/**
 * pvr_queue_fence_ctx_init() - Queue fence context initialization.
 * @fence_ctx: The context to initialize
 */
static void
pvr_queue_fence_ctx_init(struct pvr_queue_fence_ctx *fence_ctx)
{
	spin_lock_init(&fence_ctx->lock);
	fence_ctx->id = dma_fence_context_alloc(1);
	atomic_set(&fence_ctx->seqno, 0);
}

static u32 ufo_cmds_size(u32 elem_count)
{
	/* We can pass at most ROGUE_FWIF_CCB_CMD_MAX_UFOS per UFO-related command. */
	u32 full_cmd_count = elem_count / ROGUE_FWIF_CCB_CMD_MAX_UFOS;
	u32 remaining_elems = elem_count % ROGUE_FWIF_CCB_CMD_MAX_UFOS;
	u32 size = full_cmd_count *
		   pvr_cccb_get_size_of_cmd_with_hdr(ROGUE_FWIF_CCB_CMD_MAX_UFOS *
						     sizeof(struct rogue_fwif_ufo));

	if (remaining_elems) {
		size += pvr_cccb_get_size_of_cmd_with_hdr(remaining_elems *
							  sizeof(struct rogue_fwif_ufo));
	}

	return size;
}

static u32 job_cmds_size(struct pvr_job *job, u32 ufo_wait_count)
{
	/* One UFO cmd for the fence signaling, one UFO cmd per native fence native,
	 * and a command for the job itself.
	 */
	return ufo_cmds_size(1) + ufo_cmds_size(ufo_wait_count) +
	       pvr_cccb_get_size_of_cmd_with_hdr(job->cmd_len);
}

/**
 * job_count_remaining_native_deps() - Count the number of non-signaled native dependencies.
 * @job: Job to operate on.
 *
 * Returns: Number of non-signaled native deps remaining.
 */
static unsigned long job_count_remaining_native_deps(struct pvr_job *job)
{
	unsigned long remaining_count = 0;
	struct dma_fence *fence = NULL;
	unsigned long index;

	xa_for_each(&job->base.dependencies, index, fence) {
		struct pvr_queue_fence *jfence;

		jfence = to_pvr_queue_job_fence(fence);
		if (!jfence)
			continue;

		if (!dma_fence_is_signaled(&jfence->base))
			remaining_count++;
	}

	return remaining_count;
}

/**
 * pvr_queue_get_job_cccb_fence() - Get the CCCB fence attached to a job.
 * @queue: The queue this job will be submitted to.
 * @job: The job to get the CCCB fence on.
 *
 * The CCCB fence is a synchronization primitive allowing us to delay job
 * submission until there's enough space in the CCCB to submit the job.
 *
 * Return:
 *  * NULL if there's enough space in the CCCB to submit this job, or
 *  * A valid dma_fence object otherwise.
 */
static struct dma_fence *
pvr_queue_get_job_cccb_fence(struct pvr_queue *queue, struct pvr_job *job)
{
	struct pvr_queue_fence *cccb_fence;
	unsigned int native_deps_remaining;

	/* If the fence is NULL, that means we already checked that we had
	 * enough space in the cccb for our job.
	 */
	if (!job->cccb_fence)
		return NULL;

	mutex_lock(&queue->cccb_fence_ctx.job_lock);

	/* Count remaining native dependencies and check if the job fits in the CCCB. */
	native_deps_remaining = job_count_remaining_native_deps(job);
	if (pvr_cccb_cmdseq_fits(&queue->cccb, job_cmds_size(job, native_deps_remaining))) {
		pvr_queue_fence_put(job->cccb_fence);
		job->cccb_fence = NULL;
		goto out_unlock;
	}

	/* There should be no job attached to the CCCB fence context:
	 * drm_sched_entity guarantees that jobs are submitted one at a time.
	 */
	if (WARN_ON(queue->cccb_fence_ctx.job))
		pvr_job_put(queue->cccb_fence_ctx.job);

	queue->cccb_fence_ctx.job = pvr_job_get(job);

	/* Initialize the fence before returning it. */
	cccb_fence = container_of(job->cccb_fence, struct pvr_queue_fence, base);
	if (!WARN_ON(cccb_fence->queue))
		pvr_queue_cccb_fence_init(job->cccb_fence, queue);

out_unlock:
	mutex_unlock(&queue->cccb_fence_ctx.job_lock);

	return dma_fence_get(job->cccb_fence);
}

/**
 * pvr_queue_get_job_kccb_fence() - Get the KCCB fence attached to a job.
 * @queue: The queue this job will be submitted to.
 * @job: The job to get the KCCB fence on.
 *
 * The KCCB fence is a synchronization primitive allowing us to delay job
 * submission until there's enough space in the KCCB to submit the job.
 *
 * Return:
 *  * NULL if there's enough space in the KCCB to submit this job, or
 *  * A valid dma_fence object otherwise.
 */
static struct dma_fence *
pvr_queue_get_job_kccb_fence(struct pvr_queue *queue, struct pvr_job *job)
{
	struct pvr_device *pvr_dev = queue->ctx->pvr_dev;
	struct dma_fence *kccb_fence = NULL;

	/* If the fence is NULL, that means we already checked that we had
	 * enough space in the KCCB for our job.
	 */
	if (!job->kccb_fence)
		return NULL;

	if (!WARN_ON(job->kccb_fence->ops)) {
		kccb_fence = pvr_kccb_reserve_slot(pvr_dev, job->kccb_fence);
		job->kccb_fence = NULL;
	}

	return kccb_fence;
}

static struct dma_fence *
pvr_queue_get_paired_frag_job_dep(struct pvr_queue *queue, struct pvr_job *job)
{
	struct pvr_job *frag_job = job->type == DRM_PVR_JOB_TYPE_GEOMETRY ?
				   job->paired_job : NULL;
	struct dma_fence *f;
	unsigned long index;

	if (!frag_job)
		return NULL;

	xa_for_each(&frag_job->base.dependencies, index, f) {
		/* Skip already signaled fences. */
		if (dma_fence_is_signaled(f))
			continue;

		/* Skip our own fence. */
		if (f == &job->base.s_fence->scheduled)
			continue;

		return dma_fence_get(f);
	}

	return frag_job->base.sched->ops->prepare_job(&frag_job->base, &queue->entity);
}

/**
 * pvr_queue_prepare_job() - Return the next internal dependencies expressed as a dma_fence.
 * @sched_job: The job to query the next internal dependency on
 * @s_entity: The entity this job is queue on.
 *
 * After iterating over drm_sched_job::dependencies, drm_sched let the driver return
 * its own internal dependencies. We use this function to return our internal dependencies.
 */
static struct dma_fence *
pvr_queue_prepare_job(struct drm_sched_job *sched_job,
		      struct drm_sched_entity *s_entity)
{
	struct pvr_job *job = container_of(sched_job, struct pvr_job, base);
	struct pvr_queue *queue = container_of(s_entity, struct pvr_queue, entity);
	struct dma_fence *internal_dep = NULL;

	/*
	 * Initialize the done_fence, so we can signal it. This must be done
	 * here because otherwise by the time of run_job() the job will end up
	 * in the pending list without a valid fence.
	 */
	if (job->type == DRM_PVR_JOB_TYPE_FRAGMENT && job->paired_job) {
		/*
		 * This will be called on a paired fragment job after being
		 * submitted to firmware. We can tell if this is the case and
		 * bail early from whether run_job() has been called on the
		 * geometry job, which would issue a pm ref.
		 */
		if (job->paired_job->has_pm_ref)
			return NULL;

		/*
		 * In this case we need to use the job's own ctx to initialise
		 * the done_fence.  The other steps are done in the ctx of the
		 * paired geometry job.
		 */
		pvr_queue_job_fence_init(job->done_fence,
					 job->ctx->queues.fragment);
	} else {
		pvr_queue_job_fence_init(job->done_fence, queue);
	}

	/* CCCB fence is used to make sure we have enough space in the CCCB to
	 * submit our commands.
	 */
	internal_dep = pvr_queue_get_job_cccb_fence(queue, job);

	/* KCCB fence is used to make sure we have a KCCB slot to queue our
	 * CMD_KICK.
	 */
	if (!internal_dep)
		internal_dep = pvr_queue_get_job_kccb_fence(queue, job);

	/* Any extra internal dependency should be added here, using the following
	 * pattern:
	 *
	 *	if (!internal_dep)
	 *		internal_dep = pvr_queue_get_job_xxxx_fence(queue, job);
	 */

	/* The paired job fence should come last, when everything else is ready. */
	if (!internal_dep)
		internal_dep = pvr_queue_get_paired_frag_job_dep(queue, job);

	return internal_dep;
}

/**
 * pvr_queue_update_active_state_locked() - Update the queue active state.
 * @queue: Queue to update the state on.
 *
 * Locked version of pvr_queue_update_active_state(). Must be called with
 * pvr_device::queue::lock held.
 */
static void pvr_queue_update_active_state_locked(struct pvr_queue *queue)
{
	struct pvr_device *pvr_dev = queue->ctx->pvr_dev;

	lockdep_assert_held(&pvr_dev->queues.lock);

	/* The queue is temporary out of any list when it's being reset,
	 * we don't want a call to pvr_queue_update_active_state_locked()
	 * to re-insert it behind our back.
	 */
	if (list_empty(&queue->node))
		return;

	if (!atomic_read(&queue->in_flight_job_count))
		list_move_tail(&queue->node, &pvr_dev->queues.idle);
	else
		list_move_tail(&queue->node, &pvr_dev->queues.active);
}

/**
 * pvr_queue_update_active_state() - Update the queue active state.
 * @queue: Queue to update the state on.
 *
 * Active state is based on the in_flight_job_count value.
 *
 * Updating the active state implies moving the queue in or out of the
 * active queue list, which also defines whether the queue is checked
 * or not when a FW event is received.
 *
 * This function should be called any time a job is submitted or it done
 * fence is signaled.
 */
static void pvr_queue_update_active_state(struct pvr_queue *queue)
{
	struct pvr_device *pvr_dev = queue->ctx->pvr_dev;

	mutex_lock(&pvr_dev->queues.lock);
	pvr_queue_update_active_state_locked(queue);
	mutex_unlock(&pvr_dev->queues.lock);
}

static void pvr_queue_submit_job_to_cccb(struct pvr_job *job)
{
	struct pvr_queue *queue = container_of(job->base.sched, struct pvr_queue, scheduler);
	struct rogue_fwif_ufo ufos[ROGUE_FWIF_CCB_CMD_MAX_UFOS];
	struct pvr_cccb *cccb = &queue->cccb;
	struct pvr_queue_fence *jfence;
	struct dma_fence *fence;
	unsigned long index;
	u32 ufo_count = 0;

	/* We need to add the queue to the active list before updating the CCCB,
	 * otherwise we might miss the FW event informing us that something
	 * happened on this queue.
	 */
	atomic_inc(&queue->in_flight_job_count);
	pvr_queue_update_active_state(queue);

	xa_for_each(&job->base.dependencies, index, fence) {
		jfence = to_pvr_queue_job_fence(fence);
		if (!jfence)
			continue;

		/* Skip the partial render fence, we will place it at the end. */
		if (job->type == DRM_PVR_JOB_TYPE_FRAGMENT && job->paired_job &&
		    &job->paired_job->base.s_fence->scheduled == fence)
			continue;

		if (dma_fence_is_signaled(&jfence->base))
			continue;

		pvr_fw_object_get_fw_addr(jfence->queue->timeline_ufo.fw_obj,
					  &ufos[ufo_count].addr);
		ufos[ufo_count++].value = jfence->base.seqno;

		if (ufo_count == ARRAY_SIZE(ufos)) {
			pvr_cccb_write_command_with_header(cccb, ROGUE_FWIF_CCB_CMD_TYPE_FENCE_PR,
							   sizeof(ufos), ufos, 0, 0);
			ufo_count = 0;
		}
	}

	/* Partial render fence goes last. */
	if (job->type == DRM_PVR_JOB_TYPE_FRAGMENT && job->paired_job) {
		jfence = to_pvr_queue_job_fence(job->paired_job->done_fence);
		if (!WARN_ON(!jfence)) {
			pvr_fw_object_get_fw_addr(jfence->queue->timeline_ufo.fw_obj,
						  &ufos[ufo_count].addr);
			ufos[ufo_count++].value = job->paired_job->done_fence->seqno;
		}
	}

	if (ufo_count) {
		pvr_cccb_write_command_with_header(cccb, ROGUE_FWIF_CCB_CMD_TYPE_FENCE_PR,
						   sizeof(ufos[0]) * ufo_count, ufos, 0, 0);
	}

	if (job->type == DRM_PVR_JOB_TYPE_GEOMETRY && job->paired_job) {
		struct rogue_fwif_cmd_geom *cmd = job->cmd;

		/* Reference value for the partial render test is the current queue fence
		 * seqno minus one.
		 */
		pvr_fw_object_get_fw_addr(queue->timeline_ufo.fw_obj,
					  &cmd->partial_render_geom_frag_fence.addr);
		cmd->partial_render_geom_frag_fence.value = job->done_fence->seqno - 1;
	}

	/* Submit job to FW */
	pvr_cccb_write_command_with_header(cccb, job->fw_ccb_cmd_type, job->cmd_len, job->cmd,
					   job->id, job->id);

	/* Signal the job fence. */
	pvr_fw_object_get_fw_addr(queue->timeline_ufo.fw_obj, &ufos[0].addr);
	ufos[0].value = job->done_fence->seqno;
	pvr_cccb_write_command_with_header(cccb, ROGUE_FWIF_CCB_CMD_TYPE_UPDATE,
					   sizeof(ufos[0]), ufos, 0, 0);
}

/**
 * pvr_queue_run_job() - Submit a job to the FW.
 * @sched_job: The job to submit.
 *
 * This function is called when all non-native dependencies have been met and
 * when the commands resulting from this job are guaranteed to fit in the CCCB.
 */
static struct dma_fence *pvr_queue_run_job(struct drm_sched_job *sched_job)
{
	struct pvr_job *job = container_of(sched_job, struct pvr_job, base);
	struct pvr_device *pvr_dev = job->pvr_dev;
	int err;

	/* The fragment job is issued along the geometry job when we use combined
	 * geom+frag kicks. When we get there, we should simply return the
	 * done_fence that's been initialized earlier.
	 */
	if (job->paired_job && job->type == DRM_PVR_JOB_TYPE_FRAGMENT &&
	    job->done_fence->ops) {
		return dma_fence_get(job->done_fence);
	}

	/* The only kind of jobs that can be paired are geometry and fragment, and
	 * we bail out early if we see a fragment job that's paired with a geomtry
	 * job.
	 * Paired jobs must also target the same context and point to the same
	 * HWRT.
	 */
	if (WARN_ON(job->paired_job &&
		    (job->type != DRM_PVR_JOB_TYPE_GEOMETRY ||
		     job->paired_job->type != DRM_PVR_JOB_TYPE_FRAGMENT ||
		     job->hwrt != job->paired_job->hwrt ||
		     job->ctx != job->paired_job->ctx)))
		return ERR_PTR(-EINVAL);

	err = pvr_job_get_pm_ref(job);
	if (WARN_ON(err))
		return ERR_PTR(err);

	if (job->paired_job) {
		err = pvr_job_get_pm_ref(job->paired_job);
		if (WARN_ON(err))
			return ERR_PTR(err);
	}

	/* Submit our job to the CCCB */
	pvr_queue_submit_job_to_cccb(job);

	if (job->paired_job) {
		struct pvr_job *geom_job = job;
		struct pvr_job *frag_job = job->paired_job;
		struct pvr_queue *geom_queue = job->ctx->queues.geometry;
		struct pvr_queue *frag_queue = job->ctx->queues.fragment;

		/* Submit the fragment job along the geometry job and send a combined kick. */
		pvr_queue_submit_job_to_cccb(frag_job);
		pvr_cccb_send_kccb_combined_kick(pvr_dev,
						 &geom_queue->cccb, &frag_queue->cccb,
						 pvr_context_get_fw_addr(geom_job->ctx) +
						 geom_queue->ctx_offset,
						 pvr_context_get_fw_addr(frag_job->ctx) +
						 frag_queue->ctx_offset,
						 job->hwrt,
						 frag_job->fw_ccb_cmd_type ==
						 ROGUE_FWIF_CCB_CMD_TYPE_FRAG_PR);
	} else {
		struct pvr_queue *queue = container_of(job->base.sched,
						       struct pvr_queue, scheduler);

		pvr_cccb_send_kccb_kick(pvr_dev, &queue->cccb,
					pvr_context_get_fw_addr(job->ctx) + queue->ctx_offset,
					job->hwrt);
	}

	return dma_fence_get(job->done_fence);
}

static void pvr_queue_stop(struct pvr_queue *queue, struct pvr_job *bad_job)
{
	drm_sched_stop(&queue->scheduler, bad_job ? &bad_job->base : NULL);
}

static void pvr_queue_start(struct pvr_queue *queue)
{
	struct pvr_job *job;

	/* Make sure we CPU-signal the UFO object, so other queues don't get
	 * blocked waiting on it.
	 */
	*queue->timeline_ufo.value = atomic_read(&queue->job_fence_ctx.seqno);

	list_for_each_entry(job, &queue->scheduler.pending_list, base.list) {
		if (dma_fence_is_signaled(job->done_fence)) {
			/* Jobs might have completed after drm_sched_stop() was called.
			 * In that case, re-assign the parent field to the done_fence.
			 */
			WARN_ON(job->base.s_fence->parent);
			job->base.s_fence->parent = dma_fence_get(job->done_fence);
		} else {
			/* If we had unfinished jobs, flag the entity as guilty so no
			 * new job can be submitted.
			 */
			atomic_set(&queue->ctx->faulty, 1);
		}
	}

	drm_sched_start(&queue->scheduler, true);
}

/**
 * pvr_queue_timedout_job() - Handle a job timeout event.
 * @s_job: The job this timeout occurred on.
 *
 * FIXME: We don't do anything here to unblock the situation, we just stop+start
 * the scheduler, and re-assign parent fences in the middle.
 *
 * Return:
 *  * DRM_GPU_SCHED_STAT_NOMINAL.
 */
static enum drm_gpu_sched_stat
pvr_queue_timedout_job(struct drm_sched_job *s_job)
{
	struct drm_gpu_scheduler *sched = s_job->sched;
	struct pvr_queue *queue = container_of(sched, struct pvr_queue, scheduler);
	struct pvr_device *pvr_dev = queue->ctx->pvr_dev;
	struct pvr_job *job;
	u32 job_count = 0;

	dev_err(sched->dev, "Job timeout\n");

	/* Before we stop the scheduler, make sure the queue is out of any list, so
	 * any call to pvr_queue_update_active_state_locked() that might happen
	 * until the scheduler is really stopped doesn't end up re-inserting the
	 * queue in the active list. This would cause
	 * pvr_queue_signal_done_fences() and drm_sched_stop() to race with each
	 * other when accessing the pending_list, since drm_sched_stop() doesn't
	 * grab the job_list_lock when modifying the list (it's assuming the
	 * only other accessor is the scheduler, and it's safe to not grab the
	 * lock since it's stopped).
	 */
	mutex_lock(&pvr_dev->queues.lock);
	list_del_init(&queue->node);
	mutex_unlock(&pvr_dev->queues.lock);

	drm_sched_stop(sched, s_job);

	/* Re-assign job parent fences. */
	list_for_each_entry(job, &sched->pending_list, base.list) {
		job->base.s_fence->parent = dma_fence_get(job->done_fence);
		job_count++;
	}
	WARN_ON(atomic_read(&queue->in_flight_job_count) != job_count);

	/* Re-insert the queue in the proper list, and kick a queue processing
	 * operation if there were jobs pending.
	 */
	mutex_lock(&pvr_dev->queues.lock);
	if (!job_count) {
		list_move_tail(&queue->node, &pvr_dev->queues.idle);
	} else {
		atomic_set(&queue->in_flight_job_count, job_count);
		list_move_tail(&queue->node, &pvr_dev->queues.active);
		pvr_queue_process(queue);
	}
	mutex_unlock(&pvr_dev->queues.lock);

	drm_sched_start(sched, true);

	return DRM_GPU_SCHED_STAT_NOMINAL;
}

/**
 * pvr_queue_free_job() - Release the reference the scheduler had on a job object.
 * @sched_job: Job object to free.
 */
static void pvr_queue_free_job(struct drm_sched_job *sched_job)
{
	struct pvr_job *job = container_of(sched_job, struct pvr_job, base);

	drm_sched_job_cleanup(sched_job);
	job->paired_job = NULL;
	pvr_job_put(job);
}

static const struct drm_sched_backend_ops pvr_queue_sched_ops = {
	.prepare_job = pvr_queue_prepare_job,
	.run_job = pvr_queue_run_job,
	.timedout_job = pvr_queue_timedout_job,
	.free_job = pvr_queue_free_job,
};

/**
 * pvr_queue_fence_is_ufo_backed() - Check if a dma_fence is backed by a UFO object
 * @f: Fence to test.
 *
 * A UFO-backed fence is a fence that can be signaled or waited upon FW-side.
 * pvr_job::done_fence objects are backed by the timeline UFO attached to the queue
 * they are pushed to, but those fences are not directly exposed to the outside
 * world, so we also need to check if the fence we're being passed is a
 * drm_sched_fence that was coming from our driver.
 */
bool pvr_queue_fence_is_ufo_backed(struct dma_fence *f)
{
	struct drm_sched_fence *sched_fence = f ? to_drm_sched_fence(f) : NULL;

	if (sched_fence &&
	    sched_fence->sched->ops == &pvr_queue_sched_ops)
		return true;

	if (f && f->ops == &pvr_queue_job_fence_ops)
		return true;

	return false;
}

/**
 * pvr_queue_signal_done_fences() - Signal done fences.
 * @queue: Queue to check.
 *
 * Signal done fences of jobs whose seqno is less than the current value of
 * the UFO object attached to the queue.
 */
static void
pvr_queue_signal_done_fences(struct pvr_queue *queue)
{
	struct pvr_job *job, *tmp_job;
	u32 cur_seqno;

	spin_lock(&queue->scheduler.job_list_lock);
	cur_seqno = *queue->timeline_ufo.value;
	list_for_each_entry_safe(job, tmp_job, &queue->scheduler.pending_list, base.list) {
		if ((int)(cur_seqno - lower_32_bits(job->done_fence->seqno)) < 0)
			break;

		if (!dma_fence_is_signaled(job->done_fence)) {
			dma_fence_signal(job->done_fence);
			pvr_job_release_pm_ref(job);
			atomic_dec(&queue->in_flight_job_count);
		}
	}
	spin_unlock(&queue->scheduler.job_list_lock);
}

/**
 * pvr_queue_check_job_waiting_for_cccb_space() - Check if the job waiting for CCCB space
 * can be unblocked
 * pushed to the CCCB
 * @queue: Queue to check
 *
 * If we have a job waiting for CCCB, and this job now fits in the CCCB, we signal
 * its CCCB fence, which should kick drm_sched.
 */
static void
pvr_queue_check_job_waiting_for_cccb_space(struct pvr_queue *queue)
{
	struct pvr_queue_fence *cccb_fence;
	u32 native_deps_remaining;
	struct pvr_job *job;

	mutex_lock(&queue->cccb_fence_ctx.job_lock);
	job = queue->cccb_fence_ctx.job;
	if (!job)
		goto out_unlock;

	/* If we have a job attached to the CCCB fence context, its CCCB fence
	 * shouldn't be NULL.
	 */
	if (WARN_ON(!job->cccb_fence)) {
		job = NULL;
		goto out_unlock;
	}

	/* If we get there, CCCB fence has to be initialized. */
	cccb_fence = container_of(job->cccb_fence, struct pvr_queue_fence, base);
	if (WARN_ON(!cccb_fence->queue)) {
		job = NULL;
		goto out_unlock;
	}

	/* Evict signaled dependencies before checking for CCCB space.
	 * If the job fits, signal the CCCB fence, this should unblock
	 * the drm_sched_entity.
	 */
	native_deps_remaining = job_count_remaining_native_deps(job);
	if (!pvr_cccb_cmdseq_fits(&queue->cccb, job_cmds_size(job, native_deps_remaining))) {
		job = NULL;
		goto out_unlock;
	}

	dma_fence_signal(job->cccb_fence);
	pvr_queue_fence_put(job->cccb_fence);
	job->cccb_fence = NULL;
	queue->cccb_fence_ctx.job = NULL;

out_unlock:
	mutex_unlock(&queue->cccb_fence_ctx.job_lock);

	pvr_job_put(job);
}

/**
 * pvr_queue_process() - Process events that happened on a queue.
 * @queue: Queue to check
 *
 * Signal job fences and check if jobs waiting for CCCB space can be unblocked.
 */
void pvr_queue_process(struct pvr_queue *queue)
{
	lockdep_assert_held(&queue->ctx->pvr_dev->queues.lock);

	pvr_queue_check_job_waiting_for_cccb_space(queue);
	pvr_queue_signal_done_fences(queue);
	pvr_queue_update_active_state_locked(queue);
}

static u32 get_dm_type(struct pvr_queue *queue)
{
	switch (queue->type) {
	case DRM_PVR_JOB_TYPE_GEOMETRY:
		return PVR_FWIF_DM_GEOM;
	case DRM_PVR_JOB_TYPE_TRANSFER_FRAG:
	case DRM_PVR_JOB_TYPE_FRAGMENT:
		return PVR_FWIF_DM_FRAG;
	case DRM_PVR_JOB_TYPE_COMPUTE:
		return PVR_FWIF_DM_CDM;
	}

	return ~0;
}

/**
 * init_fw_context() - Initializes the queue part of a FW context.
 * @queue: Queue object to initialize the FW context for.
 * @fw_ctx_map: The FW context CPU mapping.
 *
 * FW contexts are containing various states, one of them being a per-queue state
 * that needs to be initialized for each queue being exposed by a context. This
 * function takes care of that.
 */
static void init_fw_context(struct pvr_queue *queue, void *fw_ctx_map)
{
	struct pvr_context *ctx = queue->ctx;
	struct pvr_fw_object *fw_mem_ctx_obj = pvr_vm_get_fw_mem_context(ctx->vm_ctx);
	struct rogue_fwif_fwcommoncontext *cctx_fw;
	struct pvr_cccb *cccb = &queue->cccb;

	cctx_fw = fw_ctx_map + queue->ctx_offset;
	cctx_fw->ccbctl_fw_addr = cccb->ctrl_fw_addr;
	cctx_fw->ccb_fw_addr = cccb->cccb_fw_addr;

	cctx_fw->dm = get_dm_type(queue);
	cctx_fw->priority = ctx->priority;
	cctx_fw->priority_seq_num = 0;
	cctx_fw->max_deadline_ms = MAX_DEADLINE_MS;
	cctx_fw->pid = task_tgid_nr(current);
	cctx_fw->server_common_context_id = ctx->ctx_id;

	pvr_fw_object_get_fw_addr(fw_mem_ctx_obj, &cctx_fw->fw_mem_context_fw_addr);

	pvr_fw_object_get_fw_addr(queue->reg_state_obj, &cctx_fw->context_state_addr);
}

/**
 * pvr_queue_cleanup_fw_context() - Wait for the FW context to be idle and clean it up.
 * @queue: Queue on FW context to clean up.
 *
 * Return:
 *  * 0 on success,
 *  * Any error returned by pvr_fw_structure_cleanup() otherwise.
 */
static int pvr_queue_cleanup_fw_context(struct pvr_queue *queue)
{
	if (!queue->ctx->fw_obj)
		return 0;

	return pvr_fw_structure_cleanup(queue->ctx->pvr_dev,
					ROGUE_FWIF_CLEANUP_FWCOMMONCONTEXT,
					queue->ctx->fw_obj, queue->ctx_offset);
}

/**
 * pvr_queue_job_init() - Initialize queue related fields in a pvr_job object.
 * @job: The job to initialize.
 *
 * Bind the job to a queue and allocate memory to guarantee pvr_queue_job_arm()
 * and pvr_queue_job_push() can't fail. We also make sure the context type is
 * valid and the job can fit in the CCCB.
 *
 * Return:
 *  * 0 on success, or
 *  * An error code if something failed.
 */
int pvr_queue_job_init(struct pvr_job *job)
{
	/* Fragment jobs need at least one native fence wait on the geometry job fence. */
	u32 min_native_dep_count = job->type == DRM_PVR_JOB_TYPE_FRAGMENT ? 1 : 0;
	struct pvr_queue *queue;
	int err;

	if (atomic_read(&job->ctx->faulty))
		return -EIO;

	queue = pvr_context_get_queue_for_job(job->ctx, job->type);
	if (!queue)
		return -EINVAL;

	if (!pvr_cccb_cmdseq_can_fit(&queue->cccb, job_cmds_size(job, min_native_dep_count)))
		return -E2BIG;

	err = drm_sched_job_init(&job->base, &queue->entity, 1, THIS_MODULE);
	if (err)
		return err;

	job->cccb_fence = pvr_queue_fence_alloc();
	job->kccb_fence = pvr_kccb_fence_alloc();
	job->done_fence = pvr_queue_fence_alloc();
	if (!job->cccb_fence || !job->kccb_fence || !job->done_fence)
		return -ENOMEM;

	return 0;
}

/**
 * pvr_queue_job_arm() - Arm a job object.
 * @job: The job to arm.
 *
 * Initializes fences and return the drm_sched finished fence so it can
 * be exposed to the outside world. Once this function is called, you should
 * make sure the job is pushed using pvr_queue_job_push(), or guarantee that
 * no one grabbed a reference to the returned fence. The latter can happen if
 * we do multi-job submission, and something failed when creating/initializing
 * a job. In that case, we know the fence didn't leave the driver, and we
 * can thus guarantee nobody will wait on an dead fence object.
 *
 * Return:
 *  * A dma_fence object.
 */
struct dma_fence *pvr_queue_job_arm(struct pvr_job *job)
{
	drm_sched_job_arm(&job->base);

	return &job->base.s_fence->finished;
}

/**
 * pvr_queue_job_cleanup() - Cleanup fence/scheduler related fields in the job object.
 * @job: The job to cleanup.
 *
 * Should be called in the job release path.
 */
void pvr_queue_job_cleanup(struct pvr_job *job)
{
	pvr_queue_fence_put(job->done_fence);
	pvr_queue_fence_put(job->cccb_fence);
	pvr_kccb_fence_put(job->kccb_fence);

	if (job->base.s_fence)
		drm_sched_job_cleanup(&job->base);
}

/**
 * pvr_queue_job_push() - Push a job to its queue.
 * @job: The job to push.
 *
 * Must be called after pvr_queue_job_init() and after all dependencies
 * have been added to the job. This will effectively queue the job to
 * the drm_sched_entity attached to the queue. We grab a reference on
 * the job object, so the caller is free to drop its reference when it's
 * done accessing the job object.
 */
void pvr_queue_job_push(struct pvr_job *job)
{
	struct pvr_queue *queue = container_of(job->base.sched, struct pvr_queue, scheduler);

	/* Keep track of the last queued job scheduled fence for combined submit. */
	dma_fence_put(queue->last_queued_job_scheduled_fence);
	queue->last_queued_job_scheduled_fence = dma_fence_get(&job->base.s_fence->scheduled);

	pvr_job_get(job);
	drm_sched_entity_push_job(&job->base);
}

static void reg_state_init(void *cpu_ptr, void *priv)
{
	struct pvr_queue *queue = priv;

	if (queue->type == DRM_PVR_JOB_TYPE_GEOMETRY) {
		struct rogue_fwif_geom_ctx_state *geom_ctx_state_fw = cpu_ptr;

		geom_ctx_state_fw->geom_core[0].geom_reg_vdm_call_stack_pointer_init =
			queue->callstack_addr;
	}
}

/**
 * pvr_queue_create() - Create a queue object.
 * @ctx: The context this queue will be attached to.
 * @type: The type of jobs being pushed to this queue.
 * @args: The arguments passed to the context creation function.
 * @fw_ctx_map: CPU mapping of the FW context object.
 *
 * Create a queue object that will be used to queue and track jobs.
 *
 * Return:
 *  * A valid pointer to a pvr_queue object, or
 *  * An error pointer if the creation/initialization failed.
 */
struct pvr_queue *pvr_queue_create(struct pvr_context *ctx,
				   enum drm_pvr_job_type type,
				   struct drm_pvr_ioctl_create_context_args *args,
				   void *fw_ctx_map)
{
	static const struct {
		u32 cccb_size;
		const char *name;
	} props[] = {
		[DRM_PVR_JOB_TYPE_GEOMETRY] = {
			.cccb_size = CTX_GEOM_CCCB_SIZE_LOG2,
			.name = "geometry",
		},
		[DRM_PVR_JOB_TYPE_FRAGMENT] = {
			.cccb_size = CTX_FRAG_CCCB_SIZE_LOG2,
			.name = "fragment"
		},
		[DRM_PVR_JOB_TYPE_COMPUTE] = {
			.cccb_size = CTX_COMPUTE_CCCB_SIZE_LOG2,
			.name = "compute"
		},
		[DRM_PVR_JOB_TYPE_TRANSFER_FRAG] = {
			.cccb_size = CTX_TRANSFER_CCCB_SIZE_LOG2,
			.name = "transfer_frag"
		},
	};
	struct pvr_device *pvr_dev = ctx->pvr_dev;
	struct drm_gpu_scheduler *sched;
	struct pvr_queue *queue;
	int ctx_state_size, err;
	void *cpu_map;

	if (WARN_ON(type >= sizeof(props)))
		return ERR_PTR(-EINVAL);

	switch (ctx->type) {
	case DRM_PVR_CTX_TYPE_RENDER:
		if (type != DRM_PVR_JOB_TYPE_GEOMETRY &&
		    type != DRM_PVR_JOB_TYPE_FRAGMENT)
			return ERR_PTR(-EINVAL);
		break;
	case DRM_PVR_CTX_TYPE_COMPUTE:
		if (type != DRM_PVR_JOB_TYPE_COMPUTE)
			return ERR_PTR(-EINVAL);
		break;
	case DRM_PVR_CTX_TYPE_TRANSFER_FRAG:
		if (type != DRM_PVR_JOB_TYPE_TRANSFER_FRAG)
			return ERR_PTR(-EINVAL);
		break;
	default:
		return ERR_PTR(-EINVAL);
	}

	ctx_state_size = get_ctx_state_size(pvr_dev, type);
	if (ctx_state_size < 0)
		return ERR_PTR(ctx_state_size);

	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
	if (!queue)
		return ERR_PTR(-ENOMEM);

	queue->type = type;
	queue->ctx_offset = get_ctx_offset(type);
	queue->ctx = ctx;
	queue->callstack_addr = args->callstack_addr;
	sched = &queue->scheduler;
	INIT_LIST_HEAD(&queue->node);
	mutex_init(&queue->cccb_fence_ctx.job_lock);
	pvr_queue_fence_ctx_init(&queue->cccb_fence_ctx.base);
	pvr_queue_fence_ctx_init(&queue->job_fence_ctx);

	err = pvr_cccb_init(pvr_dev, &queue->cccb, props[type].cccb_size, props[type].name);
	if (err)
		goto err_free_queue;

	err = pvr_fw_object_create(pvr_dev, ctx_state_size,
				   PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
				   reg_state_init, queue, &queue->reg_state_obj);
	if (err)
		goto err_cccb_fini;

	init_fw_context(queue, fw_ctx_map);

	if (type != DRM_PVR_JOB_TYPE_GEOMETRY && type != DRM_PVR_JOB_TYPE_FRAGMENT &&
	    args->callstack_addr) {
		err = -EINVAL;
		goto err_release_reg_state;
	}

	cpu_map = pvr_fw_object_create_and_map(pvr_dev, sizeof(*queue->timeline_ufo.value),
					       PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
					       NULL, NULL, &queue->timeline_ufo.fw_obj);
	if (IS_ERR(cpu_map)) {
		err = PTR_ERR(cpu_map);
		goto err_release_reg_state;
	}

	queue->timeline_ufo.value = cpu_map;

	err = drm_sched_init(&queue->scheduler,
			     &pvr_queue_sched_ops,
			     pvr_dev->sched_wq, 1, 64 * 1024, 1,
			     msecs_to_jiffies(500),
			     pvr_dev->sched_wq, NULL, "pvr-queue",
			     pvr_dev->base.dev);
	if (err)
		goto err_release_ufo;

	err = drm_sched_entity_init(&queue->entity,
				    DRM_SCHED_PRIORITY_KERNEL,
				    &sched, 1, &ctx->faulty);
	if (err)
		goto err_sched_fini;

	mutex_lock(&pvr_dev->queues.lock);
	list_add_tail(&queue->node, &pvr_dev->queues.idle);
	mutex_unlock(&pvr_dev->queues.lock);

	return queue;

err_sched_fini:
	drm_sched_fini(&queue->scheduler);

err_release_ufo:
	pvr_fw_object_unmap_and_destroy(queue->timeline_ufo.fw_obj);

err_release_reg_state:
	pvr_fw_object_destroy(queue->reg_state_obj);

err_cccb_fini:
	pvr_cccb_fini(&queue->cccb);

err_free_queue:
	mutex_destroy(&queue->cccb_fence_ctx.job_lock);
	kfree(queue);

	return ERR_PTR(err);
}

void pvr_queue_device_pre_reset(struct pvr_device *pvr_dev)
{
	struct pvr_queue *queue;

	mutex_lock(&pvr_dev->queues.lock);
	list_for_each_entry(queue, &pvr_dev->queues.idle, node)
		pvr_queue_stop(queue, NULL);
	list_for_each_entry(queue, &pvr_dev->queues.active, node)
		pvr_queue_stop(queue, NULL);
	mutex_unlock(&pvr_dev->queues.lock);
}

void pvr_queue_device_post_reset(struct pvr_device *pvr_dev)
{
	struct pvr_queue *queue;

	mutex_lock(&pvr_dev->queues.lock);
	list_for_each_entry(queue, &pvr_dev->queues.active, node)
		pvr_queue_start(queue);
	list_for_each_entry(queue, &pvr_dev->queues.idle, node)
		pvr_queue_start(queue);
	mutex_unlock(&pvr_dev->queues.lock);
}

/**
 * pvr_queue_kill() - Kill a queue.
 * @queue: The queue to kill.
 *
 * Kill the queue so no new jobs can be pushed. Should be called when the
 * context handle is destroyed. The queue object might last longer if jobs
 * are still in flight and holding a reference to the context this queue
 * belongs to.
 */
void pvr_queue_kill(struct pvr_queue *queue)
{
	drm_sched_entity_destroy(&queue->entity);
	dma_fence_put(queue->last_queued_job_scheduled_fence);
	queue->last_queued_job_scheduled_fence = NULL;
}

/**
 * pvr_queue_destroy() - Destroy a queue.
 * @queue: The queue to destroy.
 *
 * Cleanup the queue and free the resources attached to it. Should be
 * called from the context release function.
 */
void pvr_queue_destroy(struct pvr_queue *queue)
{
	if (!queue)
		return;

	mutex_lock(&queue->ctx->pvr_dev->queues.lock);
	list_del_init(&queue->node);
	mutex_unlock(&queue->ctx->pvr_dev->queues.lock);

	drm_sched_fini(&queue->scheduler);
	drm_sched_entity_fini(&queue->entity);

	if (WARN_ON(queue->last_queued_job_scheduled_fence))
		dma_fence_put(queue->last_queued_job_scheduled_fence);

	pvr_queue_cleanup_fw_context(queue);

	pvr_fw_object_unmap_and_destroy(queue->timeline_ufo.fw_obj);
	pvr_fw_object_destroy(queue->reg_state_obj);
	pvr_cccb_fini(&queue->cccb);
	mutex_destroy(&queue->cccb_fence_ctx.job_lock);
	kfree(queue);
}

/**
 * pvr_queue_device_init() - Device-level initialization of queue related fields.
 * @pvr_dev: The device to initialize.
 *
 * Initializes all fields related to queue management in pvr_device.
 *
 * Return:
 *  * 0 on success, or
 *  * An error code on failure.
 */
int pvr_queue_device_init(struct pvr_device *pvr_dev)
{
	int err;

	INIT_LIST_HEAD(&pvr_dev->queues.active);
	INIT_LIST_HEAD(&pvr_dev->queues.idle);
	err = drmm_mutex_init(from_pvr_device(pvr_dev), &pvr_dev->queues.lock);
	if (err)
		return err;

	pvr_dev->sched_wq = alloc_workqueue("powervr-sched", WQ_UNBOUND, 0);
	if (!pvr_dev->sched_wq)
		return -ENOMEM;

	return 0;
}

/**
 * pvr_queue_device_fini() - Device-level cleanup of queue related fields.
 * @pvr_dev: The device to cleanup.
 *
 * Cleanup/free all queue-related resources attached to a pvr_device object.
 */
void pvr_queue_device_fini(struct pvr_device *pvr_dev)
{
	destroy_workqueue(pvr_dev->sched_wq);
}