Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 | // SPDX-License-Identifier: GPL-2.0-only OR MIT /* Copyright (c) 2023 Imagination Technologies Ltd. */ #include <drm/drm_managed.h> #include <drm/gpu_scheduler.h> #include "pvr_cccb.h" #include "pvr_context.h" #include "pvr_device.h" #include "pvr_drv.h" #include "pvr_job.h" #include "pvr_queue.h" #include "pvr_vm.h" #include "pvr_rogue_fwif_client.h" #define MAX_DEADLINE_MS 30000 #define CTX_COMPUTE_CCCB_SIZE_LOG2 15 #define CTX_FRAG_CCCB_SIZE_LOG2 15 #define CTX_GEOM_CCCB_SIZE_LOG2 15 #define CTX_TRANSFER_CCCB_SIZE_LOG2 15 static int get_xfer_ctx_state_size(struct pvr_device *pvr_dev) { u32 num_isp_store_registers; if (PVR_HAS_FEATURE(pvr_dev, xe_memory_hierarchy)) { num_isp_store_registers = 1; } else { int err; err = PVR_FEATURE_VALUE(pvr_dev, num_isp_ipp_pipes, &num_isp_store_registers); if (WARN_ON(err)) return err; } return sizeof(struct rogue_fwif_frag_ctx_state) + (num_isp_store_registers * sizeof(((struct rogue_fwif_frag_ctx_state *)0)->frag_reg_isp_store[0])); } static int get_frag_ctx_state_size(struct pvr_device *pvr_dev) { u32 num_isp_store_registers; int err; if (PVR_HAS_FEATURE(pvr_dev, xe_memory_hierarchy)) { err = PVR_FEATURE_VALUE(pvr_dev, num_raster_pipes, &num_isp_store_registers); if (WARN_ON(err)) return err; if (PVR_HAS_FEATURE(pvr_dev, gpu_multicore_support)) { u32 xpu_max_slaves; err = PVR_FEATURE_VALUE(pvr_dev, xpu_max_slaves, &xpu_max_slaves); if (WARN_ON(err)) return err; num_isp_store_registers *= (1 + xpu_max_slaves); } } else { err = PVR_FEATURE_VALUE(pvr_dev, num_isp_ipp_pipes, &num_isp_store_registers); if (WARN_ON(err)) return err; } return sizeof(struct rogue_fwif_frag_ctx_state) + (num_isp_store_registers * sizeof(((struct rogue_fwif_frag_ctx_state *)0)->frag_reg_isp_store[0])); } static int get_ctx_state_size(struct pvr_device *pvr_dev, enum drm_pvr_job_type type) { switch (type) { case DRM_PVR_JOB_TYPE_GEOMETRY: return sizeof(struct rogue_fwif_geom_ctx_state); case DRM_PVR_JOB_TYPE_FRAGMENT: return get_frag_ctx_state_size(pvr_dev); case DRM_PVR_JOB_TYPE_COMPUTE: return sizeof(struct rogue_fwif_compute_ctx_state); case DRM_PVR_JOB_TYPE_TRANSFER_FRAG: return get_xfer_ctx_state_size(pvr_dev); } WARN(1, "Invalid queue type"); return -EINVAL; } static u32 get_ctx_offset(enum drm_pvr_job_type type) { switch (type) { case DRM_PVR_JOB_TYPE_GEOMETRY: return offsetof(struct rogue_fwif_fwrendercontext, geom_context); case DRM_PVR_JOB_TYPE_FRAGMENT: return offsetof(struct rogue_fwif_fwrendercontext, frag_context); case DRM_PVR_JOB_TYPE_COMPUTE: return offsetof(struct rogue_fwif_fwcomputecontext, cdm_context); case DRM_PVR_JOB_TYPE_TRANSFER_FRAG: return offsetof(struct rogue_fwif_fwtransfercontext, tq_context); } return 0; } static const char * pvr_queue_fence_get_driver_name(struct dma_fence *f) { return PVR_DRIVER_NAME; } static void pvr_queue_fence_release(struct dma_fence *f) { struct pvr_queue_fence *fence = container_of(f, struct pvr_queue_fence, base); pvr_context_put(fence->queue->ctx); dma_fence_free(f); } static const char * pvr_queue_job_fence_get_timeline_name(struct dma_fence *f) { struct pvr_queue_fence *fence = container_of(f, struct pvr_queue_fence, base); switch (fence->queue->type) { case DRM_PVR_JOB_TYPE_GEOMETRY: return "geometry"; case DRM_PVR_JOB_TYPE_FRAGMENT: return "fragment"; case DRM_PVR_JOB_TYPE_COMPUTE: return "compute"; case DRM_PVR_JOB_TYPE_TRANSFER_FRAG: return "transfer"; } WARN(1, "Invalid queue type"); return "invalid"; } static const char * pvr_queue_cccb_fence_get_timeline_name(struct dma_fence *f) { struct pvr_queue_fence *fence = container_of(f, struct pvr_queue_fence, base); switch (fence->queue->type) { case DRM_PVR_JOB_TYPE_GEOMETRY: return "geometry-cccb"; case DRM_PVR_JOB_TYPE_FRAGMENT: return "fragment-cccb"; case DRM_PVR_JOB_TYPE_COMPUTE: return "compute-cccb"; case DRM_PVR_JOB_TYPE_TRANSFER_FRAG: return "transfer-cccb"; } WARN(1, "Invalid queue type"); return "invalid"; } static const struct dma_fence_ops pvr_queue_job_fence_ops = { .get_driver_name = pvr_queue_fence_get_driver_name, .get_timeline_name = pvr_queue_job_fence_get_timeline_name, .release = pvr_queue_fence_release, }; /** * to_pvr_queue_job_fence() - Return a pvr_queue_fence object if the fence is * backed by a UFO. * @f: The dma_fence to turn into a pvr_queue_fence. * * Return: * * A non-NULL pvr_queue_fence object if the dma_fence is backed by a UFO, or * * NULL otherwise. */ static struct pvr_queue_fence * to_pvr_queue_job_fence(struct dma_fence *f) { struct drm_sched_fence *sched_fence = to_drm_sched_fence(f); if (sched_fence) f = sched_fence->parent; if (f && f->ops == &pvr_queue_job_fence_ops) return container_of(f, struct pvr_queue_fence, base); return NULL; } static const struct dma_fence_ops pvr_queue_cccb_fence_ops = { .get_driver_name = pvr_queue_fence_get_driver_name, .get_timeline_name = pvr_queue_cccb_fence_get_timeline_name, .release = pvr_queue_fence_release, }; /** * pvr_queue_fence_put() - Put wrapper for pvr_queue_fence objects. * @f: The dma_fence object to put. * * If the pvr_queue_fence has been initialized, we call dma_fence_put(), * otherwise we free the object with dma_fence_free(). This allows us * to do the right thing before and after pvr_queue_fence_init() had been * called. */ static void pvr_queue_fence_put(struct dma_fence *f) { if (!f) return; if (WARN_ON(f->ops && f->ops != &pvr_queue_cccb_fence_ops && f->ops != &pvr_queue_job_fence_ops)) return; /* If the fence hasn't been initialized yet, free the object directly. */ if (f->ops) dma_fence_put(f); else dma_fence_free(f); } /** * pvr_queue_fence_alloc() - Allocate a pvr_queue_fence fence object * * Call this function to allocate job CCCB and done fences. This only * allocates the objects. Initialization happens when the underlying * dma_fence object is to be returned to drm_sched (in prepare_job() or * run_job()). * * Return: * * A valid pointer if the allocation succeeds, or * * NULL if the allocation fails. */ static struct dma_fence * pvr_queue_fence_alloc(void) { struct pvr_queue_fence *fence; fence = kzalloc(sizeof(*fence), GFP_KERNEL); if (!fence) return NULL; return &fence->base; } /** * pvr_queue_fence_init() - Initializes a pvr_queue_fence object. * @f: The fence to initialize * @queue: The queue this fence belongs to. * @fence_ops: The fence operations. * @fence_ctx: The fence context. * * Wrapper around dma_fence_init() that takes care of initializing the * pvr_queue_fence::queue field too. */ static void pvr_queue_fence_init(struct dma_fence *f, struct pvr_queue *queue, const struct dma_fence_ops *fence_ops, struct pvr_queue_fence_ctx *fence_ctx) { struct pvr_queue_fence *fence = container_of(f, struct pvr_queue_fence, base); pvr_context_get(queue->ctx); fence->queue = queue; dma_fence_init(&fence->base, fence_ops, &fence_ctx->lock, fence_ctx->id, atomic_inc_return(&fence_ctx->seqno)); } /** * pvr_queue_cccb_fence_init() - Initializes a CCCB fence object. * @fence: The fence to initialize. * @queue: The queue this fence belongs to. * * Initializes a fence that can be used to wait for CCCB space. * * Should be called in the ::prepare_job() path, so the fence returned to * drm_sched is valid. */ static void pvr_queue_cccb_fence_init(struct dma_fence *fence, struct pvr_queue *queue) { pvr_queue_fence_init(fence, queue, &pvr_queue_cccb_fence_ops, &queue->cccb_fence_ctx.base); } /** * pvr_queue_job_fence_init() - Initializes a job done fence object. * @fence: The fence to initialize. * @queue: The queue this fence belongs to. * * Initializes a fence that will be signaled when the GPU is done executing * a job. * * Should be called *before* the ::run_job() path, so the fence is initialised * before being placed in the pending_list. */ static void pvr_queue_job_fence_init(struct dma_fence *fence, struct pvr_queue *queue) { pvr_queue_fence_init(fence, queue, &pvr_queue_job_fence_ops, &queue->job_fence_ctx); } /** * pvr_queue_fence_ctx_init() - Queue fence context initialization. * @fence_ctx: The context to initialize */ static void pvr_queue_fence_ctx_init(struct pvr_queue_fence_ctx *fence_ctx) { spin_lock_init(&fence_ctx->lock); fence_ctx->id = dma_fence_context_alloc(1); atomic_set(&fence_ctx->seqno, 0); } static u32 ufo_cmds_size(u32 elem_count) { /* We can pass at most ROGUE_FWIF_CCB_CMD_MAX_UFOS per UFO-related command. */ u32 full_cmd_count = elem_count / ROGUE_FWIF_CCB_CMD_MAX_UFOS; u32 remaining_elems = elem_count % ROGUE_FWIF_CCB_CMD_MAX_UFOS; u32 size = full_cmd_count * pvr_cccb_get_size_of_cmd_with_hdr(ROGUE_FWIF_CCB_CMD_MAX_UFOS * sizeof(struct rogue_fwif_ufo)); if (remaining_elems) { size += pvr_cccb_get_size_of_cmd_with_hdr(remaining_elems * sizeof(struct rogue_fwif_ufo)); } return size; } static u32 job_cmds_size(struct pvr_job *job, u32 ufo_wait_count) { /* One UFO cmd for the fence signaling, one UFO cmd per native fence native, * and a command for the job itself. */ return ufo_cmds_size(1) + ufo_cmds_size(ufo_wait_count) + pvr_cccb_get_size_of_cmd_with_hdr(job->cmd_len); } /** * job_count_remaining_native_deps() - Count the number of non-signaled native dependencies. * @job: Job to operate on. * * Returns: Number of non-signaled native deps remaining. */ static unsigned long job_count_remaining_native_deps(struct pvr_job *job) { unsigned long remaining_count = 0; struct dma_fence *fence = NULL; unsigned long index; xa_for_each(&job->base.dependencies, index, fence) { struct pvr_queue_fence *jfence; jfence = to_pvr_queue_job_fence(fence); if (!jfence) continue; if (!dma_fence_is_signaled(&jfence->base)) remaining_count++; } return remaining_count; } /** * pvr_queue_get_job_cccb_fence() - Get the CCCB fence attached to a job. * @queue: The queue this job will be submitted to. * @job: The job to get the CCCB fence on. * * The CCCB fence is a synchronization primitive allowing us to delay job * submission until there's enough space in the CCCB to submit the job. * * Return: * * NULL if there's enough space in the CCCB to submit this job, or * * A valid dma_fence object otherwise. */ static struct dma_fence * pvr_queue_get_job_cccb_fence(struct pvr_queue *queue, struct pvr_job *job) { struct pvr_queue_fence *cccb_fence; unsigned int native_deps_remaining; /* If the fence is NULL, that means we already checked that we had * enough space in the cccb for our job. */ if (!job->cccb_fence) return NULL; mutex_lock(&queue->cccb_fence_ctx.job_lock); /* Count remaining native dependencies and check if the job fits in the CCCB. */ native_deps_remaining = job_count_remaining_native_deps(job); if (pvr_cccb_cmdseq_fits(&queue->cccb, job_cmds_size(job, native_deps_remaining))) { pvr_queue_fence_put(job->cccb_fence); job->cccb_fence = NULL; goto out_unlock; } /* There should be no job attached to the CCCB fence context: * drm_sched_entity guarantees that jobs are submitted one at a time. */ if (WARN_ON(queue->cccb_fence_ctx.job)) pvr_job_put(queue->cccb_fence_ctx.job); queue->cccb_fence_ctx.job = pvr_job_get(job); /* Initialize the fence before returning it. */ cccb_fence = container_of(job->cccb_fence, struct pvr_queue_fence, base); if (!WARN_ON(cccb_fence->queue)) pvr_queue_cccb_fence_init(job->cccb_fence, queue); out_unlock: mutex_unlock(&queue->cccb_fence_ctx.job_lock); return dma_fence_get(job->cccb_fence); } /** * pvr_queue_get_job_kccb_fence() - Get the KCCB fence attached to a job. * @queue: The queue this job will be submitted to. * @job: The job to get the KCCB fence on. * * The KCCB fence is a synchronization primitive allowing us to delay job * submission until there's enough space in the KCCB to submit the job. * * Return: * * NULL if there's enough space in the KCCB to submit this job, or * * A valid dma_fence object otherwise. */ static struct dma_fence * pvr_queue_get_job_kccb_fence(struct pvr_queue *queue, struct pvr_job *job) { struct pvr_device *pvr_dev = queue->ctx->pvr_dev; struct dma_fence *kccb_fence = NULL; /* If the fence is NULL, that means we already checked that we had * enough space in the KCCB for our job. */ if (!job->kccb_fence) return NULL; if (!WARN_ON(job->kccb_fence->ops)) { kccb_fence = pvr_kccb_reserve_slot(pvr_dev, job->kccb_fence); job->kccb_fence = NULL; } return kccb_fence; } static struct dma_fence * pvr_queue_get_paired_frag_job_dep(struct pvr_queue *queue, struct pvr_job *job) { struct pvr_job *frag_job = job->type == DRM_PVR_JOB_TYPE_GEOMETRY ? job->paired_job : NULL; struct dma_fence *f; unsigned long index; if (!frag_job) return NULL; xa_for_each(&frag_job->base.dependencies, index, f) { /* Skip already signaled fences. */ if (dma_fence_is_signaled(f)) continue; /* Skip our own fence. */ if (f == &job->base.s_fence->scheduled) continue; return dma_fence_get(f); } return frag_job->base.sched->ops->prepare_job(&frag_job->base, &queue->entity); } /** * pvr_queue_prepare_job() - Return the next internal dependencies expressed as a dma_fence. * @sched_job: The job to query the next internal dependency on * @s_entity: The entity this job is queue on. * * After iterating over drm_sched_job::dependencies, drm_sched let the driver return * its own internal dependencies. We use this function to return our internal dependencies. */ static struct dma_fence * pvr_queue_prepare_job(struct drm_sched_job *sched_job, struct drm_sched_entity *s_entity) { struct pvr_job *job = container_of(sched_job, struct pvr_job, base); struct pvr_queue *queue = container_of(s_entity, struct pvr_queue, entity); struct dma_fence *internal_dep = NULL; /* * Initialize the done_fence, so we can signal it. This must be done * here because otherwise by the time of run_job() the job will end up * in the pending list without a valid fence. */ if (job->type == DRM_PVR_JOB_TYPE_FRAGMENT && job->paired_job) { /* * This will be called on a paired fragment job after being * submitted to firmware. We can tell if this is the case and * bail early from whether run_job() has been called on the * geometry job, which would issue a pm ref. */ if (job->paired_job->has_pm_ref) return NULL; /* * In this case we need to use the job's own ctx to initialise * the done_fence. The other steps are done in the ctx of the * paired geometry job. */ pvr_queue_job_fence_init(job->done_fence, job->ctx->queues.fragment); } else { pvr_queue_job_fence_init(job->done_fence, queue); } /* CCCB fence is used to make sure we have enough space in the CCCB to * submit our commands. */ internal_dep = pvr_queue_get_job_cccb_fence(queue, job); /* KCCB fence is used to make sure we have a KCCB slot to queue our * CMD_KICK. */ if (!internal_dep) internal_dep = pvr_queue_get_job_kccb_fence(queue, job); /* Any extra internal dependency should be added here, using the following * pattern: * * if (!internal_dep) * internal_dep = pvr_queue_get_job_xxxx_fence(queue, job); */ /* The paired job fence should come last, when everything else is ready. */ if (!internal_dep) internal_dep = pvr_queue_get_paired_frag_job_dep(queue, job); return internal_dep; } /** * pvr_queue_update_active_state_locked() - Update the queue active state. * @queue: Queue to update the state on. * * Locked version of pvr_queue_update_active_state(). Must be called with * pvr_device::queue::lock held. */ static void pvr_queue_update_active_state_locked(struct pvr_queue *queue) { struct pvr_device *pvr_dev = queue->ctx->pvr_dev; lockdep_assert_held(&pvr_dev->queues.lock); /* The queue is temporary out of any list when it's being reset, * we don't want a call to pvr_queue_update_active_state_locked() * to re-insert it behind our back. */ if (list_empty(&queue->node)) return; if (!atomic_read(&queue->in_flight_job_count)) list_move_tail(&queue->node, &pvr_dev->queues.idle); else list_move_tail(&queue->node, &pvr_dev->queues.active); } /** * pvr_queue_update_active_state() - Update the queue active state. * @queue: Queue to update the state on. * * Active state is based on the in_flight_job_count value. * * Updating the active state implies moving the queue in or out of the * active queue list, which also defines whether the queue is checked * or not when a FW event is received. * * This function should be called any time a job is submitted or it done * fence is signaled. */ static void pvr_queue_update_active_state(struct pvr_queue *queue) { struct pvr_device *pvr_dev = queue->ctx->pvr_dev; mutex_lock(&pvr_dev->queues.lock); pvr_queue_update_active_state_locked(queue); mutex_unlock(&pvr_dev->queues.lock); } static void pvr_queue_submit_job_to_cccb(struct pvr_job *job) { struct pvr_queue *queue = container_of(job->base.sched, struct pvr_queue, scheduler); struct rogue_fwif_ufo ufos[ROGUE_FWIF_CCB_CMD_MAX_UFOS]; struct pvr_cccb *cccb = &queue->cccb; struct pvr_queue_fence *jfence; struct dma_fence *fence; unsigned long index; u32 ufo_count = 0; /* We need to add the queue to the active list before updating the CCCB, * otherwise we might miss the FW event informing us that something * happened on this queue. */ atomic_inc(&queue->in_flight_job_count); pvr_queue_update_active_state(queue); xa_for_each(&job->base.dependencies, index, fence) { jfence = to_pvr_queue_job_fence(fence); if (!jfence) continue; /* Skip the partial render fence, we will place it at the end. */ if (job->type == DRM_PVR_JOB_TYPE_FRAGMENT && job->paired_job && &job->paired_job->base.s_fence->scheduled == fence) continue; if (dma_fence_is_signaled(&jfence->base)) continue; pvr_fw_object_get_fw_addr(jfence->queue->timeline_ufo.fw_obj, &ufos[ufo_count].addr); ufos[ufo_count++].value = jfence->base.seqno; if (ufo_count == ARRAY_SIZE(ufos)) { pvr_cccb_write_command_with_header(cccb, ROGUE_FWIF_CCB_CMD_TYPE_FENCE_PR, sizeof(ufos), ufos, 0, 0); ufo_count = 0; } } /* Partial render fence goes last. */ if (job->type == DRM_PVR_JOB_TYPE_FRAGMENT && job->paired_job) { jfence = to_pvr_queue_job_fence(job->paired_job->done_fence); if (!WARN_ON(!jfence)) { pvr_fw_object_get_fw_addr(jfence->queue->timeline_ufo.fw_obj, &ufos[ufo_count].addr); ufos[ufo_count++].value = job->paired_job->done_fence->seqno; } } if (ufo_count) { pvr_cccb_write_command_with_header(cccb, ROGUE_FWIF_CCB_CMD_TYPE_FENCE_PR, sizeof(ufos[0]) * ufo_count, ufos, 0, 0); } if (job->type == DRM_PVR_JOB_TYPE_GEOMETRY && job->paired_job) { struct rogue_fwif_cmd_geom *cmd = job->cmd; /* Reference value for the partial render test is the current queue fence * seqno minus one. */ pvr_fw_object_get_fw_addr(queue->timeline_ufo.fw_obj, &cmd->partial_render_geom_frag_fence.addr); cmd->partial_render_geom_frag_fence.value = job->done_fence->seqno - 1; } /* Submit job to FW */ pvr_cccb_write_command_with_header(cccb, job->fw_ccb_cmd_type, job->cmd_len, job->cmd, job->id, job->id); /* Signal the job fence. */ pvr_fw_object_get_fw_addr(queue->timeline_ufo.fw_obj, &ufos[0].addr); ufos[0].value = job->done_fence->seqno; pvr_cccb_write_command_with_header(cccb, ROGUE_FWIF_CCB_CMD_TYPE_UPDATE, sizeof(ufos[0]), ufos, 0, 0); } /** * pvr_queue_run_job() - Submit a job to the FW. * @sched_job: The job to submit. * * This function is called when all non-native dependencies have been met and * when the commands resulting from this job are guaranteed to fit in the CCCB. */ static struct dma_fence *pvr_queue_run_job(struct drm_sched_job *sched_job) { struct pvr_job *job = container_of(sched_job, struct pvr_job, base); struct pvr_device *pvr_dev = job->pvr_dev; int err; /* The fragment job is issued along the geometry job when we use combined * geom+frag kicks. When we get there, we should simply return the * done_fence that's been initialized earlier. */ if (job->paired_job && job->type == DRM_PVR_JOB_TYPE_FRAGMENT && job->done_fence->ops) { return dma_fence_get(job->done_fence); } /* The only kind of jobs that can be paired are geometry and fragment, and * we bail out early if we see a fragment job that's paired with a geomtry * job. * Paired jobs must also target the same context and point to the same * HWRT. */ if (WARN_ON(job->paired_job && (job->type != DRM_PVR_JOB_TYPE_GEOMETRY || job->paired_job->type != DRM_PVR_JOB_TYPE_FRAGMENT || job->hwrt != job->paired_job->hwrt || job->ctx != job->paired_job->ctx))) return ERR_PTR(-EINVAL); err = pvr_job_get_pm_ref(job); if (WARN_ON(err)) return ERR_PTR(err); if (job->paired_job) { err = pvr_job_get_pm_ref(job->paired_job); if (WARN_ON(err)) return ERR_PTR(err); } /* Submit our job to the CCCB */ pvr_queue_submit_job_to_cccb(job); if (job->paired_job) { struct pvr_job *geom_job = job; struct pvr_job *frag_job = job->paired_job; struct pvr_queue *geom_queue = job->ctx->queues.geometry; struct pvr_queue *frag_queue = job->ctx->queues.fragment; /* Submit the fragment job along the geometry job and send a combined kick. */ pvr_queue_submit_job_to_cccb(frag_job); pvr_cccb_send_kccb_combined_kick(pvr_dev, &geom_queue->cccb, &frag_queue->cccb, pvr_context_get_fw_addr(geom_job->ctx) + geom_queue->ctx_offset, pvr_context_get_fw_addr(frag_job->ctx) + frag_queue->ctx_offset, job->hwrt, frag_job->fw_ccb_cmd_type == ROGUE_FWIF_CCB_CMD_TYPE_FRAG_PR); } else { struct pvr_queue *queue = container_of(job->base.sched, struct pvr_queue, scheduler); pvr_cccb_send_kccb_kick(pvr_dev, &queue->cccb, pvr_context_get_fw_addr(job->ctx) + queue->ctx_offset, job->hwrt); } return dma_fence_get(job->done_fence); } static void pvr_queue_stop(struct pvr_queue *queue, struct pvr_job *bad_job) { drm_sched_stop(&queue->scheduler, bad_job ? &bad_job->base : NULL); } static void pvr_queue_start(struct pvr_queue *queue) { struct pvr_job *job; /* Make sure we CPU-signal the UFO object, so other queues don't get * blocked waiting on it. */ *queue->timeline_ufo.value = atomic_read(&queue->job_fence_ctx.seqno); list_for_each_entry(job, &queue->scheduler.pending_list, base.list) { if (dma_fence_is_signaled(job->done_fence)) { /* Jobs might have completed after drm_sched_stop() was called. * In that case, re-assign the parent field to the done_fence. */ WARN_ON(job->base.s_fence->parent); job->base.s_fence->parent = dma_fence_get(job->done_fence); } else { /* If we had unfinished jobs, flag the entity as guilty so no * new job can be submitted. */ atomic_set(&queue->ctx->faulty, 1); } } drm_sched_start(&queue->scheduler, true); } /** * pvr_queue_timedout_job() - Handle a job timeout event. * @s_job: The job this timeout occurred on. * * FIXME: We don't do anything here to unblock the situation, we just stop+start * the scheduler, and re-assign parent fences in the middle. * * Return: * * DRM_GPU_SCHED_STAT_NOMINAL. */ static enum drm_gpu_sched_stat pvr_queue_timedout_job(struct drm_sched_job *s_job) { struct drm_gpu_scheduler *sched = s_job->sched; struct pvr_queue *queue = container_of(sched, struct pvr_queue, scheduler); struct pvr_device *pvr_dev = queue->ctx->pvr_dev; struct pvr_job *job; u32 job_count = 0; dev_err(sched->dev, "Job timeout\n"); /* Before we stop the scheduler, make sure the queue is out of any list, so * any call to pvr_queue_update_active_state_locked() that might happen * until the scheduler is really stopped doesn't end up re-inserting the * queue in the active list. This would cause * pvr_queue_signal_done_fences() and drm_sched_stop() to race with each * other when accessing the pending_list, since drm_sched_stop() doesn't * grab the job_list_lock when modifying the list (it's assuming the * only other accessor is the scheduler, and it's safe to not grab the * lock since it's stopped). */ mutex_lock(&pvr_dev->queues.lock); list_del_init(&queue->node); mutex_unlock(&pvr_dev->queues.lock); drm_sched_stop(sched, s_job); /* Re-assign job parent fences. */ list_for_each_entry(job, &sched->pending_list, base.list) { job->base.s_fence->parent = dma_fence_get(job->done_fence); job_count++; } WARN_ON(atomic_read(&queue->in_flight_job_count) != job_count); /* Re-insert the queue in the proper list, and kick a queue processing * operation if there were jobs pending. */ mutex_lock(&pvr_dev->queues.lock); if (!job_count) { list_move_tail(&queue->node, &pvr_dev->queues.idle); } else { atomic_set(&queue->in_flight_job_count, job_count); list_move_tail(&queue->node, &pvr_dev->queues.active); pvr_queue_process(queue); } mutex_unlock(&pvr_dev->queues.lock); drm_sched_start(sched, true); return DRM_GPU_SCHED_STAT_NOMINAL; } /** * pvr_queue_free_job() - Release the reference the scheduler had on a job object. * @sched_job: Job object to free. */ static void pvr_queue_free_job(struct drm_sched_job *sched_job) { struct pvr_job *job = container_of(sched_job, struct pvr_job, base); drm_sched_job_cleanup(sched_job); job->paired_job = NULL; pvr_job_put(job); } static const struct drm_sched_backend_ops pvr_queue_sched_ops = { .prepare_job = pvr_queue_prepare_job, .run_job = pvr_queue_run_job, .timedout_job = pvr_queue_timedout_job, .free_job = pvr_queue_free_job, }; /** * pvr_queue_fence_is_ufo_backed() - Check if a dma_fence is backed by a UFO object * @f: Fence to test. * * A UFO-backed fence is a fence that can be signaled or waited upon FW-side. * pvr_job::done_fence objects are backed by the timeline UFO attached to the queue * they are pushed to, but those fences are not directly exposed to the outside * world, so we also need to check if the fence we're being passed is a * drm_sched_fence that was coming from our driver. */ bool pvr_queue_fence_is_ufo_backed(struct dma_fence *f) { struct drm_sched_fence *sched_fence = f ? to_drm_sched_fence(f) : NULL; if (sched_fence && sched_fence->sched->ops == &pvr_queue_sched_ops) return true; if (f && f->ops == &pvr_queue_job_fence_ops) return true; return false; } /** * pvr_queue_signal_done_fences() - Signal done fences. * @queue: Queue to check. * * Signal done fences of jobs whose seqno is less than the current value of * the UFO object attached to the queue. */ static void pvr_queue_signal_done_fences(struct pvr_queue *queue) { struct pvr_job *job, *tmp_job; u32 cur_seqno; spin_lock(&queue->scheduler.job_list_lock); cur_seqno = *queue->timeline_ufo.value; list_for_each_entry_safe(job, tmp_job, &queue->scheduler.pending_list, base.list) { if ((int)(cur_seqno - lower_32_bits(job->done_fence->seqno)) < 0) break; if (!dma_fence_is_signaled(job->done_fence)) { dma_fence_signal(job->done_fence); pvr_job_release_pm_ref(job); atomic_dec(&queue->in_flight_job_count); } } spin_unlock(&queue->scheduler.job_list_lock); } /** * pvr_queue_check_job_waiting_for_cccb_space() - Check if the job waiting for CCCB space * can be unblocked * pushed to the CCCB * @queue: Queue to check * * If we have a job waiting for CCCB, and this job now fits in the CCCB, we signal * its CCCB fence, which should kick drm_sched. */ static void pvr_queue_check_job_waiting_for_cccb_space(struct pvr_queue *queue) { struct pvr_queue_fence *cccb_fence; u32 native_deps_remaining; struct pvr_job *job; mutex_lock(&queue->cccb_fence_ctx.job_lock); job = queue->cccb_fence_ctx.job; if (!job) goto out_unlock; /* If we have a job attached to the CCCB fence context, its CCCB fence * shouldn't be NULL. */ if (WARN_ON(!job->cccb_fence)) { job = NULL; goto out_unlock; } /* If we get there, CCCB fence has to be initialized. */ cccb_fence = container_of(job->cccb_fence, struct pvr_queue_fence, base); if (WARN_ON(!cccb_fence->queue)) { job = NULL; goto out_unlock; } /* Evict signaled dependencies before checking for CCCB space. * If the job fits, signal the CCCB fence, this should unblock * the drm_sched_entity. */ native_deps_remaining = job_count_remaining_native_deps(job); if (!pvr_cccb_cmdseq_fits(&queue->cccb, job_cmds_size(job, native_deps_remaining))) { job = NULL; goto out_unlock; } dma_fence_signal(job->cccb_fence); pvr_queue_fence_put(job->cccb_fence); job->cccb_fence = NULL; queue->cccb_fence_ctx.job = NULL; out_unlock: mutex_unlock(&queue->cccb_fence_ctx.job_lock); pvr_job_put(job); } /** * pvr_queue_process() - Process events that happened on a queue. * @queue: Queue to check * * Signal job fences and check if jobs waiting for CCCB space can be unblocked. */ void pvr_queue_process(struct pvr_queue *queue) { lockdep_assert_held(&queue->ctx->pvr_dev->queues.lock); pvr_queue_check_job_waiting_for_cccb_space(queue); pvr_queue_signal_done_fences(queue); pvr_queue_update_active_state_locked(queue); } static u32 get_dm_type(struct pvr_queue *queue) { switch (queue->type) { case DRM_PVR_JOB_TYPE_GEOMETRY: return PVR_FWIF_DM_GEOM; case DRM_PVR_JOB_TYPE_TRANSFER_FRAG: case DRM_PVR_JOB_TYPE_FRAGMENT: return PVR_FWIF_DM_FRAG; case DRM_PVR_JOB_TYPE_COMPUTE: return PVR_FWIF_DM_CDM; } return ~0; } /** * init_fw_context() - Initializes the queue part of a FW context. * @queue: Queue object to initialize the FW context for. * @fw_ctx_map: The FW context CPU mapping. * * FW contexts are containing various states, one of them being a per-queue state * that needs to be initialized for each queue being exposed by a context. This * function takes care of that. */ static void init_fw_context(struct pvr_queue *queue, void *fw_ctx_map) { struct pvr_context *ctx = queue->ctx; struct pvr_fw_object *fw_mem_ctx_obj = pvr_vm_get_fw_mem_context(ctx->vm_ctx); struct rogue_fwif_fwcommoncontext *cctx_fw; struct pvr_cccb *cccb = &queue->cccb; cctx_fw = fw_ctx_map + queue->ctx_offset; cctx_fw->ccbctl_fw_addr = cccb->ctrl_fw_addr; cctx_fw->ccb_fw_addr = cccb->cccb_fw_addr; cctx_fw->dm = get_dm_type(queue); cctx_fw->priority = ctx->priority; cctx_fw->priority_seq_num = 0; cctx_fw->max_deadline_ms = MAX_DEADLINE_MS; cctx_fw->pid = task_tgid_nr(current); cctx_fw->server_common_context_id = ctx->ctx_id; pvr_fw_object_get_fw_addr(fw_mem_ctx_obj, &cctx_fw->fw_mem_context_fw_addr); pvr_fw_object_get_fw_addr(queue->reg_state_obj, &cctx_fw->context_state_addr); } /** * pvr_queue_cleanup_fw_context() - Wait for the FW context to be idle and clean it up. * @queue: Queue on FW context to clean up. * * Return: * * 0 on success, * * Any error returned by pvr_fw_structure_cleanup() otherwise. */ static int pvr_queue_cleanup_fw_context(struct pvr_queue *queue) { if (!queue->ctx->fw_obj) return 0; return pvr_fw_structure_cleanup(queue->ctx->pvr_dev, ROGUE_FWIF_CLEANUP_FWCOMMONCONTEXT, queue->ctx->fw_obj, queue->ctx_offset); } /** * pvr_queue_job_init() - Initialize queue related fields in a pvr_job object. * @job: The job to initialize. * * Bind the job to a queue and allocate memory to guarantee pvr_queue_job_arm() * and pvr_queue_job_push() can't fail. We also make sure the context type is * valid and the job can fit in the CCCB. * * Return: * * 0 on success, or * * An error code if something failed. */ int pvr_queue_job_init(struct pvr_job *job) { /* Fragment jobs need at least one native fence wait on the geometry job fence. */ u32 min_native_dep_count = job->type == DRM_PVR_JOB_TYPE_FRAGMENT ? 1 : 0; struct pvr_queue *queue; int err; if (atomic_read(&job->ctx->faulty)) return -EIO; queue = pvr_context_get_queue_for_job(job->ctx, job->type); if (!queue) return -EINVAL; if (!pvr_cccb_cmdseq_can_fit(&queue->cccb, job_cmds_size(job, min_native_dep_count))) return -E2BIG; err = drm_sched_job_init(&job->base, &queue->entity, 1, THIS_MODULE); if (err) return err; job->cccb_fence = pvr_queue_fence_alloc(); job->kccb_fence = pvr_kccb_fence_alloc(); job->done_fence = pvr_queue_fence_alloc(); if (!job->cccb_fence || !job->kccb_fence || !job->done_fence) return -ENOMEM; return 0; } /** * pvr_queue_job_arm() - Arm a job object. * @job: The job to arm. * * Initializes fences and return the drm_sched finished fence so it can * be exposed to the outside world. Once this function is called, you should * make sure the job is pushed using pvr_queue_job_push(), or guarantee that * no one grabbed a reference to the returned fence. The latter can happen if * we do multi-job submission, and something failed when creating/initializing * a job. In that case, we know the fence didn't leave the driver, and we * can thus guarantee nobody will wait on an dead fence object. * * Return: * * A dma_fence object. */ struct dma_fence *pvr_queue_job_arm(struct pvr_job *job) { drm_sched_job_arm(&job->base); return &job->base.s_fence->finished; } /** * pvr_queue_job_cleanup() - Cleanup fence/scheduler related fields in the job object. * @job: The job to cleanup. * * Should be called in the job release path. */ void pvr_queue_job_cleanup(struct pvr_job *job) { pvr_queue_fence_put(job->done_fence); pvr_queue_fence_put(job->cccb_fence); pvr_kccb_fence_put(job->kccb_fence); if (job->base.s_fence) drm_sched_job_cleanup(&job->base); } /** * pvr_queue_job_push() - Push a job to its queue. * @job: The job to push. * * Must be called after pvr_queue_job_init() and after all dependencies * have been added to the job. This will effectively queue the job to * the drm_sched_entity attached to the queue. We grab a reference on * the job object, so the caller is free to drop its reference when it's * done accessing the job object. */ void pvr_queue_job_push(struct pvr_job *job) { struct pvr_queue *queue = container_of(job->base.sched, struct pvr_queue, scheduler); /* Keep track of the last queued job scheduled fence for combined submit. */ dma_fence_put(queue->last_queued_job_scheduled_fence); queue->last_queued_job_scheduled_fence = dma_fence_get(&job->base.s_fence->scheduled); pvr_job_get(job); drm_sched_entity_push_job(&job->base); } static void reg_state_init(void *cpu_ptr, void *priv) { struct pvr_queue *queue = priv; if (queue->type == DRM_PVR_JOB_TYPE_GEOMETRY) { struct rogue_fwif_geom_ctx_state *geom_ctx_state_fw = cpu_ptr; geom_ctx_state_fw->geom_core[0].geom_reg_vdm_call_stack_pointer_init = queue->callstack_addr; } } /** * pvr_queue_create() - Create a queue object. * @ctx: The context this queue will be attached to. * @type: The type of jobs being pushed to this queue. * @args: The arguments passed to the context creation function. * @fw_ctx_map: CPU mapping of the FW context object. * * Create a queue object that will be used to queue and track jobs. * * Return: * * A valid pointer to a pvr_queue object, or * * An error pointer if the creation/initialization failed. */ struct pvr_queue *pvr_queue_create(struct pvr_context *ctx, enum drm_pvr_job_type type, struct drm_pvr_ioctl_create_context_args *args, void *fw_ctx_map) { static const struct { u32 cccb_size; const char *name; } props[] = { [DRM_PVR_JOB_TYPE_GEOMETRY] = { .cccb_size = CTX_GEOM_CCCB_SIZE_LOG2, .name = "geometry", }, [DRM_PVR_JOB_TYPE_FRAGMENT] = { .cccb_size = CTX_FRAG_CCCB_SIZE_LOG2, .name = "fragment" }, [DRM_PVR_JOB_TYPE_COMPUTE] = { .cccb_size = CTX_COMPUTE_CCCB_SIZE_LOG2, .name = "compute" }, [DRM_PVR_JOB_TYPE_TRANSFER_FRAG] = { .cccb_size = CTX_TRANSFER_CCCB_SIZE_LOG2, .name = "transfer_frag" }, }; struct pvr_device *pvr_dev = ctx->pvr_dev; struct drm_gpu_scheduler *sched; struct pvr_queue *queue; int ctx_state_size, err; void *cpu_map; if (WARN_ON(type >= sizeof(props))) return ERR_PTR(-EINVAL); switch (ctx->type) { case DRM_PVR_CTX_TYPE_RENDER: if (type != DRM_PVR_JOB_TYPE_GEOMETRY && type != DRM_PVR_JOB_TYPE_FRAGMENT) return ERR_PTR(-EINVAL); break; case DRM_PVR_CTX_TYPE_COMPUTE: if (type != DRM_PVR_JOB_TYPE_COMPUTE) return ERR_PTR(-EINVAL); break; case DRM_PVR_CTX_TYPE_TRANSFER_FRAG: if (type != DRM_PVR_JOB_TYPE_TRANSFER_FRAG) return ERR_PTR(-EINVAL); break; default: return ERR_PTR(-EINVAL); } ctx_state_size = get_ctx_state_size(pvr_dev, type); if (ctx_state_size < 0) return ERR_PTR(ctx_state_size); queue = kzalloc(sizeof(*queue), GFP_KERNEL); if (!queue) return ERR_PTR(-ENOMEM); queue->type = type; queue->ctx_offset = get_ctx_offset(type); queue->ctx = ctx; queue->callstack_addr = args->callstack_addr; sched = &queue->scheduler; INIT_LIST_HEAD(&queue->node); mutex_init(&queue->cccb_fence_ctx.job_lock); pvr_queue_fence_ctx_init(&queue->cccb_fence_ctx.base); pvr_queue_fence_ctx_init(&queue->job_fence_ctx); err = pvr_cccb_init(pvr_dev, &queue->cccb, props[type].cccb_size, props[type].name); if (err) goto err_free_queue; err = pvr_fw_object_create(pvr_dev, ctx_state_size, PVR_BO_FW_FLAGS_DEVICE_UNCACHED, reg_state_init, queue, &queue->reg_state_obj); if (err) goto err_cccb_fini; init_fw_context(queue, fw_ctx_map); if (type != DRM_PVR_JOB_TYPE_GEOMETRY && type != DRM_PVR_JOB_TYPE_FRAGMENT && args->callstack_addr) { err = -EINVAL; goto err_release_reg_state; } cpu_map = pvr_fw_object_create_and_map(pvr_dev, sizeof(*queue->timeline_ufo.value), PVR_BO_FW_FLAGS_DEVICE_UNCACHED, NULL, NULL, &queue->timeline_ufo.fw_obj); if (IS_ERR(cpu_map)) { err = PTR_ERR(cpu_map); goto err_release_reg_state; } queue->timeline_ufo.value = cpu_map; err = drm_sched_init(&queue->scheduler, &pvr_queue_sched_ops, pvr_dev->sched_wq, 1, 64 * 1024, 1, msecs_to_jiffies(500), pvr_dev->sched_wq, NULL, "pvr-queue", pvr_dev->base.dev); if (err) goto err_release_ufo; err = drm_sched_entity_init(&queue->entity, DRM_SCHED_PRIORITY_KERNEL, &sched, 1, &ctx->faulty); if (err) goto err_sched_fini; mutex_lock(&pvr_dev->queues.lock); list_add_tail(&queue->node, &pvr_dev->queues.idle); mutex_unlock(&pvr_dev->queues.lock); return queue; err_sched_fini: drm_sched_fini(&queue->scheduler); err_release_ufo: pvr_fw_object_unmap_and_destroy(queue->timeline_ufo.fw_obj); err_release_reg_state: pvr_fw_object_destroy(queue->reg_state_obj); err_cccb_fini: pvr_cccb_fini(&queue->cccb); err_free_queue: mutex_destroy(&queue->cccb_fence_ctx.job_lock); kfree(queue); return ERR_PTR(err); } void pvr_queue_device_pre_reset(struct pvr_device *pvr_dev) { struct pvr_queue *queue; mutex_lock(&pvr_dev->queues.lock); list_for_each_entry(queue, &pvr_dev->queues.idle, node) pvr_queue_stop(queue, NULL); list_for_each_entry(queue, &pvr_dev->queues.active, node) pvr_queue_stop(queue, NULL); mutex_unlock(&pvr_dev->queues.lock); } void pvr_queue_device_post_reset(struct pvr_device *pvr_dev) { struct pvr_queue *queue; mutex_lock(&pvr_dev->queues.lock); list_for_each_entry(queue, &pvr_dev->queues.active, node) pvr_queue_start(queue); list_for_each_entry(queue, &pvr_dev->queues.idle, node) pvr_queue_start(queue); mutex_unlock(&pvr_dev->queues.lock); } /** * pvr_queue_kill() - Kill a queue. * @queue: The queue to kill. * * Kill the queue so no new jobs can be pushed. Should be called when the * context handle is destroyed. The queue object might last longer if jobs * are still in flight and holding a reference to the context this queue * belongs to. */ void pvr_queue_kill(struct pvr_queue *queue) { drm_sched_entity_destroy(&queue->entity); dma_fence_put(queue->last_queued_job_scheduled_fence); queue->last_queued_job_scheduled_fence = NULL; } /** * pvr_queue_destroy() - Destroy a queue. * @queue: The queue to destroy. * * Cleanup the queue and free the resources attached to it. Should be * called from the context release function. */ void pvr_queue_destroy(struct pvr_queue *queue) { if (!queue) return; mutex_lock(&queue->ctx->pvr_dev->queues.lock); list_del_init(&queue->node); mutex_unlock(&queue->ctx->pvr_dev->queues.lock); drm_sched_fini(&queue->scheduler); drm_sched_entity_fini(&queue->entity); if (WARN_ON(queue->last_queued_job_scheduled_fence)) dma_fence_put(queue->last_queued_job_scheduled_fence); pvr_queue_cleanup_fw_context(queue); pvr_fw_object_unmap_and_destroy(queue->timeline_ufo.fw_obj); pvr_fw_object_destroy(queue->reg_state_obj); pvr_cccb_fini(&queue->cccb); mutex_destroy(&queue->cccb_fence_ctx.job_lock); kfree(queue); } /** * pvr_queue_device_init() - Device-level initialization of queue related fields. * @pvr_dev: The device to initialize. * * Initializes all fields related to queue management in pvr_device. * * Return: * * 0 on success, or * * An error code on failure. */ int pvr_queue_device_init(struct pvr_device *pvr_dev) { int err; INIT_LIST_HEAD(&pvr_dev->queues.active); INIT_LIST_HEAD(&pvr_dev->queues.idle); err = drmm_mutex_init(from_pvr_device(pvr_dev), &pvr_dev->queues.lock); if (err) return err; pvr_dev->sched_wq = alloc_workqueue("powervr-sched", WQ_UNBOUND, 0); if (!pvr_dev->sched_wq) return -ENOMEM; return 0; } /** * pvr_queue_device_fini() - Device-level cleanup of queue related fields. * @pvr_dev: The device to cleanup. * * Cleanup/free all queue-related resources attached to a pvr_device object. */ void pvr_queue_device_fini(struct pvr_device *pvr_dev) { destroy_workqueue(pvr_dev->sched_wq); } |