Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 | /* * SPDX-License-Identifier: MIT * * Copyright © 2019 Intel Corporation */ #include "gem/i915_gem_pm.h" #include "gem/i915_gem_ttm_pm.h" #include "gt/intel_gt.h" #include "gt/intel_gt_pm.h" #include "gt/intel_gt_requests.h" #include "i915_driver.h" #include "i915_drv.h" #if defined(CONFIG_X86) #include <asm/smp.h> #else #define wbinvd_on_all_cpus() \ pr_warn(DRIVER_NAME ": Missing cache flush in %s\n", __func__) #endif void i915_gem_suspend(struct drm_i915_private *i915) { struct intel_gt *gt; unsigned int i; GEM_TRACE("%s\n", dev_name(i915->drm.dev)); intel_wakeref_auto(&i915->runtime_pm.userfault_wakeref, 0); /* * On rare occasions, we've observed the fence completion triggers * free_engines asynchronously via rcu_call. Ensure those are done. * This path is only called on suspend, so it's an acceptable cost. */ rcu_barrier(); flush_workqueue(i915->wq); /* * We have to flush all the executing contexts to main memory so * that they can saved in the hibernation image. To ensure the last * context image is coherent, we have to switch away from it. That * leaves the i915->kernel_context still active when * we actually suspend, and its image in memory may not match the GPU * state. Fortunately, the kernel_context is disposable and we do * not rely on its state. */ for_each_gt(gt, i915, i) intel_gt_suspend_prepare(gt); i915_gem_drain_freed_objects(i915); } static int lmem_restore(struct drm_i915_private *i915, u32 flags) { struct intel_memory_region *mr; int ret = 0, id; for_each_memory_region(mr, i915, id) { if (mr->type == INTEL_MEMORY_LOCAL) { ret = i915_ttm_restore_region(mr, flags); if (ret) break; } } return ret; } static int lmem_suspend(struct drm_i915_private *i915, u32 flags) { struct intel_memory_region *mr; int ret = 0, id; for_each_memory_region(mr, i915, id) { if (mr->type == INTEL_MEMORY_LOCAL) { ret = i915_ttm_backup_region(mr, flags); if (ret) break; } } return ret; } static void lmem_recover(struct drm_i915_private *i915) { struct intel_memory_region *mr; int id; for_each_memory_region(mr, i915, id) if (mr->type == INTEL_MEMORY_LOCAL) i915_ttm_recover_region(mr); } int i915_gem_backup_suspend(struct drm_i915_private *i915) { int ret; /* Opportunistically try to evict unpinned objects */ ret = lmem_suspend(i915, I915_TTM_BACKUP_ALLOW_GPU); if (ret) goto out_recover; i915_gem_suspend(i915); /* * More objects may have become unpinned as requests were * retired. Now try to evict again. The gt may be wedged here * in which case we automatically fall back to memcpy. * We allow also backing up pinned objects that have not been * marked for early recover, and that may contain, for example, * page-tables for the migrate context. */ ret = lmem_suspend(i915, I915_TTM_BACKUP_ALLOW_GPU | I915_TTM_BACKUP_PINNED); if (ret) goto out_recover; /* * Remaining objects are backed up using memcpy once we've stopped * using the migrate context. */ ret = lmem_suspend(i915, I915_TTM_BACKUP_PINNED); if (ret) goto out_recover; return 0; out_recover: lmem_recover(i915); return ret; } void i915_gem_suspend_late(struct drm_i915_private *i915) { struct drm_i915_gem_object *obj; struct list_head *phases[] = { &i915->mm.shrink_list, &i915->mm.purge_list, NULL }, **phase; struct intel_gt *gt; unsigned long flags; unsigned int i; bool flush = false; /* * Neither the BIOS, ourselves or any other kernel * expects the system to be in execlists mode on startup, * so we need to reset the GPU back to legacy mode. And the only * known way to disable logical contexts is through a GPU reset. * * So in order to leave the system in a known default configuration, * always reset the GPU upon unload and suspend. Afterwards we then * clean up the GEM state tracking, flushing off the requests and * leaving the system in a known idle state. * * Note that is of the upmost importance that the GPU is idle and * all stray writes are flushed *before* we dismantle the backing * storage for the pinned objects. * * However, since we are uncertain that resetting the GPU on older * machines is a good idea, we don't - just in case it leaves the * machine in an unusable condition. */ /* Like i915_gem_suspend, flush tasks staged from fence triggers */ rcu_barrier(); for_each_gt(gt, i915, i) intel_gt_suspend_late(gt); spin_lock_irqsave(&i915->mm.obj_lock, flags); for (phase = phases; *phase; phase++) { list_for_each_entry(obj, *phase, mm.link) { if (!(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)) flush |= (obj->read_domains & I915_GEM_DOMAIN_CPU) == 0; __start_cpu_write(obj); /* presume auto-hibernate */ } } spin_unlock_irqrestore(&i915->mm.obj_lock, flags); if (flush) wbinvd_on_all_cpus(); } int i915_gem_freeze(struct drm_i915_private *i915) { /* Discard all purgeable objects, let userspace recover those as * required after resuming. */ i915_gem_shrink_all(i915); return 0; } int i915_gem_freeze_late(struct drm_i915_private *i915) { struct drm_i915_gem_object *obj; intel_wakeref_t wakeref; /* * Called just before we write the hibernation image. * * We need to update the domain tracking to reflect that the CPU * will be accessing all the pages to create and restore from the * hibernation, and so upon restoration those pages will be in the * CPU domain. * * To make sure the hibernation image contains the latest state, * we update that state just before writing out the image. * * To try and reduce the hibernation image, we manually shrink * the objects as well, see i915_gem_freeze() */ with_intel_runtime_pm(&i915->runtime_pm, wakeref) i915_gem_shrink(NULL, i915, -1UL, NULL, ~0); i915_gem_drain_freed_objects(i915); wbinvd_on_all_cpus(); list_for_each_entry(obj, &i915->mm.shrink_list, mm.link) __start_cpu_write(obj); return 0; } void i915_gem_resume(struct drm_i915_private *i915) { struct intel_gt *gt; int ret, i, j; GEM_TRACE("%s\n", dev_name(i915->drm.dev)); ret = lmem_restore(i915, 0); GEM_WARN_ON(ret); /* * As we didn't flush the kernel context before suspend, we cannot * guarantee that the context image is complete. So let's just reset * it and start again. */ for_each_gt(gt, i915, i) if (intel_gt_resume(gt)) goto err_wedged; ret = lmem_restore(i915, I915_TTM_BACKUP_ALLOW_GPU); GEM_WARN_ON(ret); return; err_wedged: for_each_gt(gt, i915, j) { if (!intel_gt_is_wedged(gt)) { dev_err(i915->drm.dev, "Failed to re-initialize GPU[%u], declaring it wedged!\n", j); intel_gt_set_wedged(gt); } if (j == i) break; } } |