Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 | /* * Copyright 2021 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: AMD * */ /* FILE POLICY AND INTENDED USAGE: * * This file implements basic dpcd read/write functionality. It also does basic * dpcd range check to ensure that every dpcd request is compliant with specs * range requirements. */ #include "link_dpcd.h" #include <drm/display/drm_dp_helper.h> #include "dm_helpers.h" #define END_ADDRESS(start, size) (start + size - 1) #define ADDRESS_RANGE_SIZE(start, end) (end - start + 1) struct dpcd_address_range { uint32_t start; uint32_t end; }; static enum dc_status internal_link_read_dpcd( struct dc_link *link, uint32_t address, uint8_t *data, uint32_t size) { if (!link->aux_access_disabled && !dm_helpers_dp_read_dpcd(link->ctx, link, address, data, size)) { return DC_ERROR_UNEXPECTED; } return DC_OK; } static enum dc_status internal_link_write_dpcd( struct dc_link *link, uint32_t address, const uint8_t *data, uint32_t size) { if (!link->aux_access_disabled && !dm_helpers_dp_write_dpcd(link->ctx, link, address, data, size)) { return DC_ERROR_UNEXPECTED; } return DC_OK; } /* * Partition the entire DPCD address space * XXX: This partitioning must cover the entire DPCD address space, * and must contain no gaps or overlapping address ranges. */ static const struct dpcd_address_range mandatory_dpcd_partitions[] = { { 0, DP_TRAINING_PATTERN_SET_PHY_REPEATER(DP_PHY_LTTPR1) - 1}, { DP_TRAINING_PATTERN_SET_PHY_REPEATER(DP_PHY_LTTPR1), DP_TRAINING_PATTERN_SET_PHY_REPEATER(DP_PHY_LTTPR2) - 1 }, { DP_TRAINING_PATTERN_SET_PHY_REPEATER(DP_PHY_LTTPR2), DP_TRAINING_PATTERN_SET_PHY_REPEATER(DP_PHY_LTTPR3) - 1 }, { DP_TRAINING_PATTERN_SET_PHY_REPEATER(DP_PHY_LTTPR3), DP_TRAINING_PATTERN_SET_PHY_REPEATER(DP_PHY_LTTPR4) - 1 }, { DP_TRAINING_PATTERN_SET_PHY_REPEATER(DP_PHY_LTTPR4), DP_TRAINING_PATTERN_SET_PHY_REPEATER(DP_PHY_LTTPR5) - 1 }, { DP_TRAINING_PATTERN_SET_PHY_REPEATER(DP_PHY_LTTPR5), DP_TRAINING_PATTERN_SET_PHY_REPEATER(DP_PHY_LTTPR6) - 1 }, { DP_TRAINING_PATTERN_SET_PHY_REPEATER(DP_PHY_LTTPR6), DP_TRAINING_PATTERN_SET_PHY_REPEATER(DP_PHY_LTTPR7) - 1 }, { DP_TRAINING_PATTERN_SET_PHY_REPEATER(DP_PHY_LTTPR7), DP_TRAINING_PATTERN_SET_PHY_REPEATER(DP_PHY_LTTPR8) - 1 }, { DP_TRAINING_PATTERN_SET_PHY_REPEATER(DP_PHY_LTTPR8), DP_FEC_STATUS_PHY_REPEATER(DP_PHY_LTTPR1) - 1 }, /* * The FEC registers are contiguous */ { DP_FEC_STATUS_PHY_REPEATER(DP_PHY_LTTPR1), DP_FEC_STATUS_PHY_REPEATER(DP_PHY_LTTPR1) - 1 }, { DP_FEC_STATUS_PHY_REPEATER(DP_PHY_LTTPR2), DP_FEC_STATUS_PHY_REPEATER(DP_PHY_LTTPR2) - 1 }, { DP_FEC_STATUS_PHY_REPEATER(DP_PHY_LTTPR3), DP_FEC_STATUS_PHY_REPEATER(DP_PHY_LTTPR3) - 1 }, { DP_FEC_STATUS_PHY_REPEATER(DP_PHY_LTTPR4), DP_FEC_STATUS_PHY_REPEATER(DP_PHY_LTTPR4) - 1 }, { DP_FEC_STATUS_PHY_REPEATER(DP_PHY_LTTPR5), DP_FEC_STATUS_PHY_REPEATER(DP_PHY_LTTPR5) - 1 }, { DP_FEC_STATUS_PHY_REPEATER(DP_PHY_LTTPR6), DP_FEC_STATUS_PHY_REPEATER(DP_PHY_LTTPR6) - 1 }, { DP_FEC_STATUS_PHY_REPEATER(DP_PHY_LTTPR7), DP_FEC_STATUS_PHY_REPEATER(DP_PHY_LTTPR7) - 1 }, { DP_FEC_STATUS_PHY_REPEATER(DP_PHY_LTTPR8), DP_LTTPR_MAX_ADD }, /* all remaining DPCD addresses */ { DP_LTTPR_MAX_ADD + 1, DP_DPCD_MAX_ADD } }; static inline bool do_addresses_intersect_with_range( const struct dpcd_address_range *range, const uint32_t start_address, const uint32_t end_address) { return start_address <= range->end && end_address >= range->start; } static uint32_t dpcd_get_next_partition_size(const uint32_t address, const uint32_t size) { const uint32_t end_address = END_ADDRESS(address, size); uint32_t partition_iterator = 0; /* * find current partition * this loop spins forever if partition map above is not surjective */ while (!do_addresses_intersect_with_range(&mandatory_dpcd_partitions[partition_iterator], address, end_address)) partition_iterator++; if (end_address < mandatory_dpcd_partitions[partition_iterator].end) return size; return ADDRESS_RANGE_SIZE(address, mandatory_dpcd_partitions[partition_iterator].end); } /* * Ranges of DPCD addresses that must be read in a single transaction * XXX: Do not allow any two address ranges in this array to overlap */ static const struct dpcd_address_range mandatory_dpcd_blocks[] = { { DP_LT_TUNABLE_PHY_REPEATER_FIELD_DATA_STRUCTURE_REV, DP_PHY_REPEATER_EXTENDED_WAIT_TIMEOUT }}; /* * extend addresses to read all mandatory blocks together */ static void dpcd_extend_address_range( const uint32_t in_address, uint8_t * const in_data, const uint32_t in_size, uint32_t *out_address, uint8_t **out_data, uint32_t *out_size) { const uint32_t end_address = END_ADDRESS(in_address, in_size); const struct dpcd_address_range *addr_range; struct dpcd_address_range new_addr_range; uint32_t i; new_addr_range.start = in_address; new_addr_range.end = end_address; for (i = 0; i < ARRAY_SIZE(mandatory_dpcd_blocks); i++) { addr_range = &mandatory_dpcd_blocks[i]; if (addr_range->start <= in_address && addr_range->end >= in_address) new_addr_range.start = addr_range->start; if (addr_range->start <= end_address && addr_range->end >= end_address) new_addr_range.end = addr_range->end; } *out_address = in_address; *out_size = in_size; *out_data = in_data; if (new_addr_range.start != in_address || new_addr_range.end != end_address) { *out_address = new_addr_range.start; *out_size = ADDRESS_RANGE_SIZE(new_addr_range.start, new_addr_range.end); *out_data = kcalloc(*out_size, sizeof(**out_data), GFP_KERNEL); } } /* * Reduce the AUX reply down to the values the caller requested */ static void dpcd_reduce_address_range( const uint32_t extended_address, uint8_t * const extended_data, const uint32_t extended_size, const uint32_t reduced_address, uint8_t * const reduced_data, const uint32_t reduced_size) { const uint32_t offset = reduced_address - extended_address; /* * If the address is same, address was not extended. * So we do not need to free any memory. * The data is in original buffer(reduced_data). */ if (extended_data == reduced_data) return; memcpy(&extended_data[offset], reduced_data, reduced_size); kfree(extended_data); } enum dc_status core_link_read_dpcd( struct dc_link *link, uint32_t address, uint8_t *data, uint32_t size) { uint32_t extended_address; uint32_t partitioned_address; uint8_t *extended_data; uint32_t extended_size; /* size of the remaining partitioned address space */ uint32_t size_left_to_read; enum dc_status status = DC_ERROR_UNEXPECTED; /* size of the next partition to be read from */ uint32_t partition_size; uint32_t data_index = 0; dpcd_extend_address_range(address, data, size, &extended_address, &extended_data, &extended_size); partitioned_address = extended_address; size_left_to_read = extended_size; while (size_left_to_read) { partition_size = dpcd_get_next_partition_size(partitioned_address, size_left_to_read); status = internal_link_read_dpcd(link, partitioned_address, &extended_data[data_index], partition_size); if (status != DC_OK) break; partitioned_address += partition_size; data_index += partition_size; size_left_to_read -= partition_size; } dpcd_reduce_address_range(extended_address, extended_data, extended_size, address, data, size); return status; } enum dc_status core_link_write_dpcd( struct dc_link *link, uint32_t address, const uint8_t *data, uint32_t size) { uint32_t partition_size; uint32_t data_index = 0; enum dc_status status = DC_ERROR_UNEXPECTED; while (size) { partition_size = dpcd_get_next_partition_size(address, size); status = internal_link_write_dpcd(link, address, &data[data_index], partition_size); if (status != DC_OK) break; address += partition_size; data_index += partition_size; size -= partition_size; } return status; } |