Linux Audio

Check our new training course

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
/* SPDX-License-Identifier: MIT */
/*
 * Copyright 2023 Advanced Micro Devices, Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 *
 * Authors: AMD
 *
 */

#include "dml2_mall_phantom.h"

#include "dml2_dc_types.h"
#include "dml2_internal_types.h"
#include "dml2_utils.h"
#include "dml2_dc_resource_mgmt.h"

#define MAX_ODM_FACTOR 4
#define MAX_MPCC_FACTOR 4

struct dc_plane_pipe_pool {
	int pipes_assigned_to_plane[MAX_ODM_FACTOR][MAX_MPCC_FACTOR];
	bool pipe_used[MAX_ODM_FACTOR][MAX_MPCC_FACTOR];
	int num_pipes_assigned_to_plane_for_mpcc_combine;
	int num_pipes_assigned_to_plane_for_odm_combine;
};

struct dc_pipe_mapping_scratch {
	struct {
		unsigned int odm_factor;
		unsigned int odm_slice_end_x[MAX_PIPES];
		struct pipe_ctx *next_higher_pipe_for_odm_slice[MAX_PIPES];
	} odm_info;
	struct {
		unsigned int mpc_factor;
		struct pipe_ctx *prev_odm_pipe;
	} mpc_info;

	struct dc_plane_pipe_pool pipe_pool;
};

static bool get_plane_id(struct dml2_context *dml2, const struct dc_state *state, const struct dc_plane_state *plane,
	unsigned int stream_id, unsigned int plane_index, unsigned int *plane_id)
{
	int i, j;
	bool is_plane_duplicate = dml2->v20.scratch.plane_duplicate_exists;

	if (!plane_id)
		return false;

	for (i = 0; i < state->stream_count; i++) {
		if (state->streams[i]->stream_id == stream_id) {
			for (j = 0; j < state->stream_status[i].plane_count; j++) {
				if (state->stream_status[i].plane_states[j] == plane &&
					(!is_plane_duplicate || (is_plane_duplicate && (j == plane_index)))) {
					*plane_id = (i << 16) | j;
					return true;
				}
			}
		}
	}

	return false;
}

static int find_disp_cfg_idx_by_plane_id(struct dml2_dml_to_dc_pipe_mapping *mapping, unsigned int plane_id)
{
	int i;

	for (i = 0; i < __DML2_WRAPPER_MAX_STREAMS_PLANES__; i++) {
		if (mapping->disp_cfg_to_plane_id_valid[i] && mapping->disp_cfg_to_plane_id[i] == plane_id)
			return  i;
	}

	return -1;
}

static int find_disp_cfg_idx_by_stream_id(struct dml2_dml_to_dc_pipe_mapping *mapping, unsigned int stream_id)
{
	int i;

	for (i = 0; i < __DML2_WRAPPER_MAX_STREAMS_PLANES__; i++) {
		if (mapping->disp_cfg_to_stream_id_valid[i] && mapping->disp_cfg_to_stream_id[i] == stream_id)
			return  i;
	}

	return -1;
}

// The master pipe of a stream is defined as the top pipe in odm slice 0
static struct pipe_ctx *find_master_pipe_of_stream(struct dml2_context *ctx, struct dc_state *state, unsigned int stream_id)
{
	int i;

	for (i = 0; i < ctx->config.dcn_pipe_count; i++) {
		if (state->res_ctx.pipe_ctx[i].stream && state->res_ctx.pipe_ctx[i].stream->stream_id == stream_id) {
			if (!state->res_ctx.pipe_ctx[i].prev_odm_pipe && !state->res_ctx.pipe_ctx[i].top_pipe)
				return &state->res_ctx.pipe_ctx[i];
		}
	}

	return NULL;
}

static struct pipe_ctx *find_master_pipe_of_plane(struct dml2_context *ctx,
	struct dc_state *state, unsigned int plane_id)
{
	int i;
	unsigned int plane_id_assigned_to_pipe;

	for (i = 0; i < ctx->config.dcn_pipe_count; i++) {
		if (state->res_ctx.pipe_ctx[i].plane_state && get_plane_id(ctx, state, state->res_ctx.pipe_ctx[i].plane_state,
			state->res_ctx.pipe_ctx[i].stream->stream_id,
			ctx->v20.scratch.dml_to_dc_pipe_mapping.dml_pipe_idx_to_plane_index[state->res_ctx.pipe_ctx[i].pipe_idx], &plane_id_assigned_to_pipe)) {
			if (plane_id_assigned_to_pipe == plane_id)
				return &state->res_ctx.pipe_ctx[i];
		}
	}

	return NULL;
}

static unsigned int find_pipes_assigned_to_plane(struct dml2_context *ctx,
	struct dc_state *state, unsigned int plane_id, unsigned int *pipes)
{
	int i;
	unsigned int num_found = 0;
	unsigned int plane_id_assigned_to_pipe = -1;

	for (i = 0; i < ctx->config.dcn_pipe_count; i++) {
		struct pipe_ctx *pipe = &state->res_ctx.pipe_ctx[i];

		if (!pipe->plane_state || !pipe->stream)
			continue;

		get_plane_id(ctx, state, pipe->plane_state, pipe->stream->stream_id,
					ctx->v20.scratch.dml_to_dc_pipe_mapping.dml_pipe_idx_to_plane_index[pipe->pipe_idx],
					&plane_id_assigned_to_pipe);
		if (plane_id_assigned_to_pipe == plane_id && !pipe->prev_odm_pipe
				&& (!pipe->top_pipe || pipe->top_pipe->plane_state != pipe->plane_state)) {
			while (pipe) {
				struct pipe_ctx *mpc_pipe = pipe;

				while (mpc_pipe) {
					pipes[num_found++] = mpc_pipe->pipe_idx;
					mpc_pipe = mpc_pipe->bottom_pipe;
					if (!mpc_pipe)
						break;
					if (mpc_pipe->plane_state != pipe->plane_state)
						mpc_pipe = NULL;
				}
				pipe = pipe->next_odm_pipe;
			}
			break;
		}
	}

	return num_found;
}

static bool validate_pipe_assignment(const struct dml2_context *ctx, const struct dc_state *state, const struct dml_display_cfg_st *disp_cfg, const struct dml2_dml_to_dc_pipe_mapping *mapping)
{
//	int i, j, k;
//
//	unsigned int plane_id;
//
//	unsigned int disp_cfg_index;
//
//	unsigned int pipes_assigned_to_plane[MAX_PIPES];
//	unsigned int num_pipes_assigned_to_plane;
//
//	struct pipe_ctx *top_pipe;
//
//	for (i = 0; i < state->stream_count; i++) {
//		for (j = 0; j < state->stream_status[i]->plane_count; j++) {
//			if (get_plane_id(state, state->stream_status.plane_states[j], &plane_id)) {
//				disp_cfg_index = find_disp_cfg_idx_by_plane_id(mapping, plane_id);
//				num_pipes_assigned_to_plane = find_pipes_assigned_to_plane(ctx, state, plane_id, pipes_assigned_to_plane);
//
//				if (disp_cfg_index >= 0 && num_pipes_assigned_to_plane > 0) {
//					// Verify the number of pipes assigned matches
//					if (disp_cfg->hw.DPPPerSurface != num_pipes_assigned_to_plane)
//						return false;
//
//					top_pipe = find_top_pipe_in_tree(state->res_ctx.pipe_ctx[pipes_assigned_to_plane[0]]);
//
//					// Verify MPC and ODM combine
//					if (disp_cfg->hw.ODMMode == dml_odm_mode_bypass) {
//						verify_combine_tree(top_pipe, state->streams[i]->stream_id, plane_id, state, false);
//					} else {
//						verify_combine_tree(top_pipe, state->streams[i]->stream_id, plane_id, state, true);
//					}
//
//					// TODO: could also do additional verification that the pipes in tree are the same as
//					// pipes_assigned_to_plane
//				} else {
//					ASSERT(false);
//					return false;
//				}
//			} else {
//				ASSERT(false);
//				return false;
//			}
//		}
//	}
	return true;
}

static bool is_plane_using_pipe(const struct pipe_ctx *pipe)
{
	if (pipe->plane_state)
		return true;

	return false;
}

static bool is_pipe_free(const struct pipe_ctx *pipe)
{
	if (!pipe->plane_state && !pipe->stream)
		return true;

	return false;
}

static unsigned int find_preferred_pipe_candidates(const struct dc_state *existing_state,
	const int pipe_count,
	const unsigned int stream_id,
	unsigned int *preferred_pipe_candidates)
{
	unsigned int num_preferred_candidates = 0;
	int i;

	/* There is only one case which we consider for adding a pipe to the preferred
	 * pipe candidate array:
	 *
	 * 1. If the existing stream id of the pipe is equivalent to the stream id
	 * of the stream we are trying to achieve MPC/ODM combine for. This allows
	 * us to minimize the changes in pipe topology during the transition.
	 *
	 * However this condition comes with a caveat. We need to ignore pipes that will
	 * require a change in OPP but still have the same stream id. For example during
	 * an MPC to ODM transiton.
	 */
	if (existing_state) {
		for (i = 0; i < pipe_count; i++) {
			if (existing_state->res_ctx.pipe_ctx[i].stream && existing_state->res_ctx.pipe_ctx[i].stream->stream_id == stream_id) {
				if (existing_state->res_ctx.pipe_ctx[i].plane_res.hubp &&
					existing_state->res_ctx.pipe_ctx[i].plane_res.hubp->opp_id != i)
					continue;

				preferred_pipe_candidates[num_preferred_candidates++] = i;
			}
		}
	}

	return num_preferred_candidates;
}

static unsigned int find_last_resort_pipe_candidates(const struct dc_state *existing_state,
	const int pipe_count,
	const unsigned int stream_id,
	unsigned int *last_resort_pipe_candidates)
{
	unsigned int num_last_resort_candidates = 0;
	int i;

	/* There are two cases where we would like to add a given pipe into the last
	 * candidate array:
	 *
	 * 1. If the pipe requires a change in OPP, for example during an MPC
	 * to ODM transiton.
	 *
	 * 2. If the pipe already has an enabled OTG.
	 */
	if (existing_state) {
		for (i  = 0; i < pipe_count; i++) {
			if ((existing_state->res_ctx.pipe_ctx[i].plane_res.hubp &&
				existing_state->res_ctx.pipe_ctx[i].plane_res.hubp->opp_id != i) ||
				existing_state->res_ctx.pipe_ctx[i].stream_res.tg)
				last_resort_pipe_candidates[num_last_resort_candidates++] = i;
		}
	}

	return num_last_resort_candidates;
}

static bool is_pipe_in_candidate_array(const unsigned int pipe_idx,
	const unsigned int *candidate_array,
	const unsigned int candidate_array_size)
{
	int i;

	for (i = 0; i < candidate_array_size; i++) {
		if (candidate_array[i] == pipe_idx)
			return true;
	}

	return false;
}

static bool find_more_pipes_for_stream(struct dml2_context *ctx,
	struct dc_state *state, // The state we want to find a free mapping in
	unsigned int stream_id, // The stream we want this pipe to drive
	int *assigned_pipes,
	int *assigned_pipe_count,
	int pipes_needed,
	const struct dc_state *existing_state) // The state (optional) that we want to minimize remapping relative to
{
	struct pipe_ctx *pipe = NULL;
	unsigned int preferred_pipe_candidates[MAX_PIPES] = {0};
	unsigned int last_resort_pipe_candidates[MAX_PIPES] = {0};
	unsigned int num_preferred_candidates = 0;
	unsigned int num_last_resort_candidates = 0;
	int i;

	if (existing_state) {
		num_preferred_candidates =
			find_preferred_pipe_candidates(existing_state, ctx->config.dcn_pipe_count, stream_id, preferred_pipe_candidates);

		num_last_resort_candidates =
			find_last_resort_pipe_candidates(existing_state, ctx->config.dcn_pipe_count, stream_id, last_resort_pipe_candidates);
	}

	// First see if any of the preferred are unmapped, and choose those instead
	for (i = 0; pipes_needed > 0 && i < num_preferred_candidates; i++) {
		pipe = &state->res_ctx.pipe_ctx[preferred_pipe_candidates[i]];
		if (!is_plane_using_pipe(pipe)) {
			pipes_needed--;
			// TODO: This doens't make sense really, pipe_idx should always be valid
			pipe->pipe_idx = preferred_pipe_candidates[i];
			assigned_pipes[(*assigned_pipe_count)++] = pipe->pipe_idx;
		}
	}

	// We like to pair pipes starting from the higher order indicies for combining
	for (i = ctx->config.dcn_pipe_count - 1; pipes_needed > 0 && i >= 0; i--) {
		// Ignore any pipes that are the preferred or last resort candidate
		if (is_pipe_in_candidate_array(i, preferred_pipe_candidates, num_preferred_candidates) ||
			is_pipe_in_candidate_array(i, last_resort_pipe_candidates, num_last_resort_candidates))
			continue;

		pipe = &state->res_ctx.pipe_ctx[i];
		if (!is_plane_using_pipe(pipe)) {
			pipes_needed--;
			// TODO: This doens't make sense really, pipe_idx should always be valid
			pipe->pipe_idx = i;
			assigned_pipes[(*assigned_pipe_count)++] = pipe->pipe_idx;
		}
	}

	// Only use the last resort pipe candidates as a last resort
	for (i = 0; pipes_needed > 0 && i < num_last_resort_candidates; i++) {
		pipe = &state->res_ctx.pipe_ctx[last_resort_pipe_candidates[i]];
		if (!is_plane_using_pipe(pipe)) {
			pipes_needed--;
			// TODO: This doens't make sense really, pipe_idx should always be valid
			pipe->pipe_idx = last_resort_pipe_candidates[i];
			assigned_pipes[(*assigned_pipe_count)++] = pipe->pipe_idx;
		}
	}

	ASSERT(pipes_needed <= 0); // Validation should prevent us from building a pipe context that exceeds the number of HW resoruces available

	return pipes_needed <= 0;
}

static bool find_more_free_pipes(struct dml2_context *ctx,
	struct dc_state *state, // The state we want to find a free mapping in
	unsigned int stream_id, // The stream we want this pipe to drive
	int *assigned_pipes,
	int *assigned_pipe_count,
	int pipes_needed,
	const struct dc_state *existing_state) // The state (optional) that we want to minimize remapping relative to
{
	struct pipe_ctx *pipe = NULL;
	unsigned int preferred_pipe_candidates[MAX_PIPES] = {0};
	unsigned int last_resort_pipe_candidates[MAX_PIPES] = {0};
	unsigned int num_preferred_candidates = 0;
	unsigned int num_last_resort_candidates = 0;
	int i;

	if (existing_state) {
		num_preferred_candidates =
			find_preferred_pipe_candidates(existing_state, ctx->config.dcn_pipe_count, stream_id, preferred_pipe_candidates);

		num_last_resort_candidates =
			find_last_resort_pipe_candidates(existing_state, ctx->config.dcn_pipe_count, stream_id, last_resort_pipe_candidates);
	}

	// First see if any of the preferred are unmapped, and choose those instead
	for (i = 0; pipes_needed > 0 && i < num_preferred_candidates; i++) {
		pipe = &state->res_ctx.pipe_ctx[preferred_pipe_candidates[i]];
		if (is_pipe_free(pipe)) {
			pipes_needed--;
			// TODO: This doens't make sense really, pipe_idx should always be valid
			pipe->pipe_idx = preferred_pipe_candidates[i];
			assigned_pipes[(*assigned_pipe_count)++] = pipe->pipe_idx;
		}
	}

	// We like to pair pipes starting from the higher order indicies for combining
	for (i = ctx->config.dcn_pipe_count - 1; pipes_needed > 0 && i >= 0; i--) {
		// Ignore any pipes that are the preferred or last resort candidate
		if (is_pipe_in_candidate_array(i, preferred_pipe_candidates, num_preferred_candidates) ||
			is_pipe_in_candidate_array(i, last_resort_pipe_candidates, num_last_resort_candidates))
			continue;

		pipe = &state->res_ctx.pipe_ctx[i];
		if (is_pipe_free(pipe)) {
			pipes_needed--;
			// TODO: This doens't make sense really, pipe_idx should always be valid
			pipe->pipe_idx = i;
			assigned_pipes[(*assigned_pipe_count)++] = pipe->pipe_idx;
		}
	}

	// Only use the last resort pipe candidates as a last resort
	for (i = 0; pipes_needed > 0 && i < num_last_resort_candidates; i++) {
		pipe = &state->res_ctx.pipe_ctx[last_resort_pipe_candidates[i]];
		if (is_pipe_free(pipe)) {
			pipes_needed--;
			// TODO: This doens't make sense really, pipe_idx should always be valid
			pipe->pipe_idx = last_resort_pipe_candidates[i];
			assigned_pipes[(*assigned_pipe_count)++] = pipe->pipe_idx;
		}
	}

	ASSERT(pipes_needed == 0); // Validation should prevent us from building a pipe context that exceeds the number of HW resoruces available

	return pipes_needed == 0;
}

static void sort_pipes_for_splitting(struct dc_plane_pipe_pool *pipes)
{
	bool sorted, swapped;
	unsigned int cur_index;
	unsigned int temp;
	int odm_slice_index;

	for (odm_slice_index = 0; odm_slice_index < pipes->num_pipes_assigned_to_plane_for_odm_combine; odm_slice_index++) {
		// Sort each MPCC set
		//Un-optimized bubble sort, but that's okay for array sizes <= 6

		if (pipes->num_pipes_assigned_to_plane_for_mpcc_combine <= 1)
			sorted = true;
		else
			sorted = false;

		cur_index = 0;
		swapped = false;
		while (!sorted) {
			if (pipes->pipes_assigned_to_plane[odm_slice_index][cur_index] > pipes->pipes_assigned_to_plane[odm_slice_index][cur_index + 1]) {
				temp = pipes->pipes_assigned_to_plane[odm_slice_index][cur_index];
				pipes->pipes_assigned_to_plane[odm_slice_index][cur_index] = pipes->pipes_assigned_to_plane[odm_slice_index][cur_index + 1];
				pipes->pipes_assigned_to_plane[odm_slice_index][cur_index + 1] = temp;

				swapped = true;
			}

			cur_index++;

			if (cur_index == pipes->num_pipes_assigned_to_plane_for_mpcc_combine - 1) {
				cur_index = 0;

				if (swapped)
					sorted = false;
				else
					sorted = true;

				swapped = false;
			}

		}
	}
}

// For example, 3840 x 2160, ODM2:1 has a slice array of [1919, 3839], meaning, slice0 spans h_pixels 0->1919, and slice1 spans 1920->3840
static void calculate_odm_slices(const struct dc_stream_state *stream, unsigned int odm_factor, unsigned int *odm_slice_end_x)
{
	unsigned int slice_size = 0;
	int i;

	if (odm_factor < 1 || odm_factor > 4) {
		ASSERT(false);
		return;
	}

	slice_size = stream->src.width / odm_factor;

	for (i = 0; i < odm_factor; i++)
		odm_slice_end_x[i] = (slice_size * (i + 1)) - 1;

	odm_slice_end_x[odm_factor - 1] = stream->src.width - 1;
}

static bool is_plane_in_odm_slice(const struct dc_plane_state *plane, unsigned int slice_index, unsigned int *odm_slice_end_x, unsigned int num_slices)
{
	unsigned int slice_start_x, slice_end_x;

	if (slice_index == 0)
		slice_start_x = 0;
	else
		slice_start_x = odm_slice_end_x[slice_index - 1] + 1;

	slice_end_x = odm_slice_end_x[slice_index];

	if (plane->clip_rect.x + plane->clip_rect.width < slice_start_x)
		return false;

	if (plane->clip_rect.x > slice_end_x)
		return false;

	return true;
}

static void add_odm_slice_to_odm_tree(struct dml2_context *ctx,
		struct dc_state *state,
		struct dc_pipe_mapping_scratch *scratch,
		unsigned int odm_slice_index)
{
	struct pipe_ctx *pipe = NULL;
	int i;

	// MPCC Combine + ODM Combine is not supported, so there should never be a case where the current plane
	// has more than 1 pipe mapped to it for a given slice.
	ASSERT(scratch->pipe_pool.num_pipes_assigned_to_plane_for_mpcc_combine == 1 || scratch->pipe_pool.num_pipes_assigned_to_plane_for_odm_combine == 1);

	for (i = 0; i < scratch->pipe_pool.num_pipes_assigned_to_plane_for_mpcc_combine; i++) {
		pipe = &state->res_ctx.pipe_ctx[scratch->pipe_pool.pipes_assigned_to_plane[odm_slice_index][i]];

		if (scratch->mpc_info.prev_odm_pipe)
			scratch->mpc_info.prev_odm_pipe->next_odm_pipe = pipe;

		pipe->prev_odm_pipe = scratch->mpc_info.prev_odm_pipe;
		pipe->next_odm_pipe = NULL;
	}
	scratch->mpc_info.prev_odm_pipe = pipe;
}

static struct pipe_ctx *add_plane_to_blend_tree(struct dml2_context *ctx,
	struct dc_state *state,
	const struct dc_plane_state *plane,
	struct dc_plane_pipe_pool *pipe_pool,
	unsigned int odm_slice,
	struct pipe_ctx *top_pipe)
{
	int i;

	for (i = 0; i < pipe_pool->num_pipes_assigned_to_plane_for_mpcc_combine; i++) {
		if (top_pipe)
			top_pipe->bottom_pipe = &state->res_ctx.pipe_ctx[pipe_pool->pipes_assigned_to_plane[odm_slice][i]];

		pipe_pool->pipe_used[odm_slice][i] = true;

		state->res_ctx.pipe_ctx[pipe_pool->pipes_assigned_to_plane[odm_slice][i]].top_pipe = top_pipe;
		state->res_ctx.pipe_ctx[pipe_pool->pipes_assigned_to_plane[odm_slice][i]].bottom_pipe = NULL;

		top_pipe = &state->res_ctx.pipe_ctx[pipe_pool->pipes_assigned_to_plane[odm_slice][i]];
	}

	// After running the above loop, the top pipe actually ends up pointing to the bottom of this MPCC combine tree, so we are actually
	// returning the bottom pipe here
	return top_pipe;
}

static unsigned int find_pipes_assigned_to_stream(struct dml2_context *ctx, struct dc_state *state, unsigned int stream_id, unsigned int *pipes)
{
	int i;
	unsigned int num_found = 0;

	for (i = 0; i < ctx->config.dcn_pipe_count; i++) {
		struct pipe_ctx *pipe = &state->res_ctx.pipe_ctx[i];

		if (pipe->stream && pipe->stream->stream_id == stream_id && !pipe->top_pipe && !pipe->prev_odm_pipe) {
			while (pipe) {
				pipes[num_found++] = pipe->pipe_idx;
				pipe = pipe->next_odm_pipe;
			}
			break;
		}
	}

	return num_found;
}

static struct pipe_ctx *assign_pipes_to_stream(struct dml2_context *ctx, struct dc_state *state,
		const struct dc_stream_state *stream,
		int odm_factor,
		struct dc_plane_pipe_pool *pipe_pool,
		const struct dc_state *existing_state)
{
	struct pipe_ctx *master_pipe;
	unsigned int pipes_needed;
	unsigned int pipes_assigned;
	unsigned int pipes[MAX_PIPES] = {0};
	unsigned int next_pipe_to_assign;
	int odm_slice;

	pipes_needed = odm_factor;

	master_pipe = find_master_pipe_of_stream(ctx, state, stream->stream_id);
	ASSERT(master_pipe);

	pipes_assigned = find_pipes_assigned_to_stream(ctx, state, stream->stream_id, pipes);

	find_more_free_pipes(ctx, state, stream->stream_id, pipes, &pipes_assigned, pipes_needed - pipes_assigned, existing_state);

	ASSERT(pipes_assigned == pipes_needed);

	next_pipe_to_assign = 0;
	for (odm_slice = 0; odm_slice < odm_factor; odm_slice++)
		pipe_pool->pipes_assigned_to_plane[odm_slice][0] = pipes[next_pipe_to_assign++];

	pipe_pool->num_pipes_assigned_to_plane_for_mpcc_combine = 1;
	pipe_pool->num_pipes_assigned_to_plane_for_odm_combine = odm_factor;

	return master_pipe;
}

static struct pipe_ctx *assign_pipes_to_plane(struct dml2_context *ctx, struct dc_state *state,
		const struct dc_stream_state *stream,
		const struct dc_plane_state *plane,
		int odm_factor,
		int mpc_factor,
		int plane_index,
		struct dc_plane_pipe_pool *pipe_pool,
		const struct dc_state *existing_state)
{
	struct pipe_ctx *master_pipe = NULL;
	unsigned int plane_id;
	unsigned int pipes_needed;
	unsigned int pipes_assigned;
	unsigned int pipes[MAX_PIPES] = {0};
	unsigned int next_pipe_to_assign;
	int odm_slice, mpc_slice;

	if (!get_plane_id(ctx, state, plane, stream->stream_id, plane_index, &plane_id)) {
		ASSERT(false);
		return master_pipe;
	}

	pipes_needed = mpc_factor * odm_factor;

	master_pipe = find_master_pipe_of_plane(ctx, state, plane_id);
	ASSERT(master_pipe);

	pipes_assigned = find_pipes_assigned_to_plane(ctx, state, plane_id, pipes);

	find_more_pipes_for_stream(ctx, state, stream->stream_id, pipes, &pipes_assigned, pipes_needed - pipes_assigned, existing_state);

	ASSERT(pipes_assigned >= pipes_needed);

	next_pipe_to_assign = 0;
	for (odm_slice = 0; odm_slice < odm_factor; odm_slice++)
		for (mpc_slice = 0; mpc_slice < mpc_factor; mpc_slice++)
			pipe_pool->pipes_assigned_to_plane[odm_slice][mpc_slice] = pipes[next_pipe_to_assign++];

	pipe_pool->num_pipes_assigned_to_plane_for_mpcc_combine = mpc_factor;
	pipe_pool->num_pipes_assigned_to_plane_for_odm_combine = odm_factor;

	return master_pipe;
}

static bool is_pipe_used(const struct dc_plane_pipe_pool *pool, unsigned int pipe_idx)
{
	int i, j;

	for (i = 0; i < pool->num_pipes_assigned_to_plane_for_odm_combine; i++) {
		for (j = 0; j < pool->num_pipes_assigned_to_plane_for_mpcc_combine; j++) {
			if (pool->pipes_assigned_to_plane[i][j] == pipe_idx && pool->pipe_used[i][j])
				return true;
		}
	}

	return false;
}

static void free_pipe(struct pipe_ctx *pipe)
{
	memset(pipe, 0, sizeof(struct pipe_ctx));
}

static void free_unused_pipes_for_plane(struct dml2_context *ctx, struct dc_state *state,
	const struct dc_plane_state *plane, const struct dc_plane_pipe_pool *pool, unsigned int stream_id, int plane_index)
{
	int i;
	bool is_plane_duplicate = ctx->v20.scratch.plane_duplicate_exists;

	for (i = 0; i < ctx->config.dcn_pipe_count; i++) {
		if (state->res_ctx.pipe_ctx[i].plane_state == plane &&
			state->res_ctx.pipe_ctx[i].stream->stream_id == stream_id &&
			(!is_plane_duplicate || (is_plane_duplicate &&
			ctx->v20.scratch.dml_to_dc_pipe_mapping.dml_pipe_idx_to_plane_index[state->res_ctx.pipe_ctx[i].pipe_idx] == plane_index)) &&
			!is_pipe_used(pool, state->res_ctx.pipe_ctx[i].pipe_idx)) {
			free_pipe(&state->res_ctx.pipe_ctx[i]);
		}
	}
}

static void remove_pipes_from_blend_trees(struct dml2_context *ctx, struct dc_state *state, struct dc_plane_pipe_pool *pipe_pool, unsigned int odm_slice)
{
	struct pipe_ctx *pipe;
	int i;

	for (i = 0; i < pipe_pool->num_pipes_assigned_to_plane_for_mpcc_combine; i++) {
		pipe = &state->res_ctx.pipe_ctx[pipe_pool->pipes_assigned_to_plane[odm_slice][0]];
		if (pipe->top_pipe)
			pipe->top_pipe->bottom_pipe = pipe->bottom_pipe;

		if (pipe->bottom_pipe)
			pipe->bottom_pipe = pipe->top_pipe;

		pipe_pool->pipe_used[odm_slice][i] = true;
	}
}

static void map_pipes_for_stream(struct dml2_context *ctx, struct dc_state *state, const struct dc_stream_state *stream,
		struct dc_pipe_mapping_scratch *scratch, const struct dc_state *existing_state)
{
	int odm_slice_index;
	struct pipe_ctx *master_pipe = NULL;


	master_pipe = assign_pipes_to_stream(ctx, state, stream, scratch->odm_info.odm_factor, &scratch->pipe_pool, existing_state);
	sort_pipes_for_splitting(&scratch->pipe_pool);

	for (odm_slice_index = 0; odm_slice_index < scratch->odm_info.odm_factor; odm_slice_index++) {
		remove_pipes_from_blend_trees(ctx, state, &scratch->pipe_pool, odm_slice_index);

		add_odm_slice_to_odm_tree(ctx, state, scratch, odm_slice_index);

		ctx->config.callbacks.acquire_secondary_pipe_for_mpc_odm(ctx->config.callbacks.dc, state,
			master_pipe, &state->res_ctx.pipe_ctx[scratch->pipe_pool.pipes_assigned_to_plane[odm_slice_index][0]], true);
	}
}

static void map_pipes_for_plane(struct dml2_context *ctx, struct dc_state *state, const struct dc_stream_state *stream, const struct dc_plane_state *plane,
		int plane_index, struct dc_pipe_mapping_scratch *scratch, const struct dc_state *existing_state)
{
	int odm_slice_index;
	unsigned int plane_id;
	struct pipe_ctx *master_pipe = NULL;
	int i;

	if (!get_plane_id(ctx, state, plane, stream->stream_id, plane_index, &plane_id)) {
		ASSERT(false);
		return;
	}

	master_pipe = assign_pipes_to_plane(ctx, state, stream, plane, scratch->odm_info.odm_factor,
			scratch->mpc_info.mpc_factor, plane_index, &scratch->pipe_pool, existing_state);
	sort_pipes_for_splitting(&scratch->pipe_pool);

	for (odm_slice_index = 0; odm_slice_index < scratch->odm_info.odm_factor; odm_slice_index++) {
		// We build the tree for one ODM slice at a time.
		// Each ODM slice shares a common OPP
		if (!is_plane_in_odm_slice(plane, odm_slice_index, scratch->odm_info.odm_slice_end_x, scratch->odm_info.odm_factor)) {
			continue;
		}

		// Now we have a list of all pipes to be used for this plane/stream, now setup the tree.
		scratch->odm_info.next_higher_pipe_for_odm_slice[odm_slice_index] = add_plane_to_blend_tree(ctx, state,
				plane,
				&scratch->pipe_pool,
				odm_slice_index,
				scratch->odm_info.next_higher_pipe_for_odm_slice[odm_slice_index]);

		add_odm_slice_to_odm_tree(ctx, state, scratch, odm_slice_index);

		for (i = 0; i < scratch->pipe_pool.num_pipes_assigned_to_plane_for_mpcc_combine; i++) {

			ctx->config.callbacks.acquire_secondary_pipe_for_mpc_odm(ctx->config.callbacks.dc, state,
				master_pipe, &state->res_ctx.pipe_ctx[scratch->pipe_pool.pipes_assigned_to_plane[odm_slice_index][i]], true);
		}
	}

	free_unused_pipes_for_plane(ctx, state, plane, &scratch->pipe_pool, stream->stream_id, plane_index);
}

static unsigned int get_mpc_factor(struct dml2_context *ctx,
		const struct dc_state *state,
		const struct dml_display_cfg_st *disp_cfg,
		struct dml2_dml_to_dc_pipe_mapping *mapping,
		const struct dc_stream_status *status,
		const struct dc_stream_state *stream,
		int plane_idx)
{
	unsigned int plane_id;
	unsigned int cfg_idx;
	unsigned int mpc_factor;

	get_plane_id(ctx, state, status->plane_states[plane_idx],
			stream->stream_id, plane_idx, &plane_id);
	cfg_idx = find_disp_cfg_idx_by_plane_id(mapping, plane_id);
	if (ctx->architecture == dml2_architecture_20) {
		mpc_factor = (unsigned int)disp_cfg->hw.DPPPerSurface[cfg_idx];
	} else {
		mpc_factor = 1;
		ASSERT(false);
	}

	/* For stereo timings, we need to pipe split */
	if (dml2_is_stereo_timing(stream))
		mpc_factor = 2;

	return mpc_factor;
}

static unsigned int get_odm_factor(
		const struct dml2_context *ctx,
		const struct dml_display_cfg_st *disp_cfg,
		struct dml2_dml_to_dc_pipe_mapping *mapping,
		const struct dc_stream_state *stream)
{
	unsigned int cfg_idx = find_disp_cfg_idx_by_stream_id(
			mapping, stream->stream_id);

	if (ctx->architecture == dml2_architecture_20)
		switch (disp_cfg->hw.ODMMode[cfg_idx]) {
		case dml_odm_mode_bypass:
			return 1;
		case dml_odm_mode_combine_2to1:
			return 2;
		case dml_odm_mode_combine_4to1:
			return 4;
		default:
			break;
		}
	ASSERT(false);
	return 1;
}

static void populate_mpc_factors_for_stream(
		struct dml2_context *ctx,
		const struct dml_display_cfg_st *disp_cfg,
		struct dml2_dml_to_dc_pipe_mapping *mapping,
		const struct dc_state *state,
		unsigned int stream_idx,
		unsigned int odm_factor,
		unsigned int mpc_factors[MAX_PIPES])
{
	const struct dc_stream_status *status = &state->stream_status[stream_idx];
	int i;

	for (i = 0; i < status->plane_count; i++)
		if (odm_factor == 1)
			mpc_factors[i] = get_mpc_factor(
					ctx, state, disp_cfg, mapping, status,
					state->streams[stream_idx], i);
		else
			mpc_factors[i] = 1;
}

static void populate_odm_factors(const struct dml2_context *ctx,
		const struct dml_display_cfg_st *disp_cfg,
		struct dml2_dml_to_dc_pipe_mapping *mapping,
		const struct dc_state *state,
		unsigned int odm_factors[MAX_PIPES])
{
	int i;

	for (i = 0; i < state->stream_count; i++)
		odm_factors[i] = get_odm_factor(
				ctx, disp_cfg, mapping, state->streams[i]);
}

static bool map_dc_pipes_for_stream(struct dml2_context *ctx,
		struct dc_state *state,
		const struct dc_state *existing_state,
		const struct dc_stream_state *stream,
		const struct dc_stream_status *status,
		unsigned int odm_factor,
		unsigned int mpc_factors[MAX_PIPES])
{
	int plane_idx;
	bool result = true;

	if (odm_factor == 1)
		/*
		 * ODM and MPC combines are by DML design mutually exclusive.
		 * ODM factor of 1 means MPC factors may be greater than 1.
		 * In this case, we want to set ODM factor to 1 first to free up
		 * pipe resources from previous ODM configuration before setting
		 * up MPC combine to acquire more pipe resources.
		 */
		result &= ctx->config.callbacks.update_pipes_for_stream_with_slice_count(
				state,
				existing_state,
				ctx->config.callbacks.dc->res_pool,
				stream,
				odm_factor);
	for (plane_idx = 0; plane_idx < status->plane_count; plane_idx++)
		result &= ctx->config.callbacks.update_pipes_for_plane_with_slice_count(
				state,
				existing_state,
				ctx->config.callbacks.dc->res_pool,
				status->plane_states[plane_idx],
				mpc_factors[plane_idx]);
	if (odm_factor > 1)
		result &= ctx->config.callbacks.update_pipes_for_stream_with_slice_count(
				state,
				existing_state,
				ctx->config.callbacks.dc->res_pool,
				stream,
				odm_factor);
	return result;
}

static bool map_dc_pipes_with_callbacks(struct dml2_context *ctx,
		struct dc_state *state,
		const struct dml_display_cfg_st *disp_cfg,
		struct dml2_dml_to_dc_pipe_mapping *mapping,
		const struct dc_state *existing_state)
{
	unsigned int odm_factors[MAX_PIPES];
	unsigned int mpc_factors_for_stream[MAX_PIPES];
	int i;
	bool result = true;

	populate_odm_factors(ctx, disp_cfg, mapping, state, odm_factors);
	for (i = 0; i < state->stream_count; i++) {
		populate_mpc_factors_for_stream(ctx, disp_cfg, mapping, state,
				i, odm_factors[i], mpc_factors_for_stream);
		result &= map_dc_pipes_for_stream(ctx, state, existing_state,
				state->streams[i],
				&state->stream_status[i],
				odm_factors[i], mpc_factors_for_stream);
	}
	return result;
}

bool dml2_map_dc_pipes(struct dml2_context *ctx, struct dc_state *state, const struct dml_display_cfg_st *disp_cfg, struct dml2_dml_to_dc_pipe_mapping *mapping, const struct dc_state *existing_state)
{
	int stream_index, plane_index, i;

	unsigned int stream_disp_cfg_index;
	unsigned int plane_disp_cfg_index;

	unsigned int plane_id;
	unsigned int stream_id;

	const unsigned int *ODMMode, *DPPPerSurface;
	struct dc_pipe_mapping_scratch scratch;

	if (ctx->config.map_dc_pipes_with_callbacks)
		return map_dc_pipes_with_callbacks(
				ctx, state, disp_cfg, mapping, existing_state);

	ODMMode = (unsigned int *)disp_cfg->hw.ODMMode;
	DPPPerSurface = disp_cfg->hw.DPPPerSurface;

	for (stream_index = 0; stream_index < state->stream_count; stream_index++) {
		memset(&scratch, 0, sizeof(struct dc_pipe_mapping_scratch));

		stream_id = state->streams[stream_index]->stream_id;
		stream_disp_cfg_index = find_disp_cfg_idx_by_stream_id(mapping, stream_id);

		if (ODMMode[stream_disp_cfg_index] == dml_odm_mode_bypass) {
			scratch.odm_info.odm_factor = 1;
		} else if (ODMMode[stream_disp_cfg_index] == dml_odm_mode_combine_2to1) {
			scratch.odm_info.odm_factor = 2;
		} else if (ODMMode[stream_disp_cfg_index] == dml_odm_mode_combine_4to1) {
			scratch.odm_info.odm_factor = 4;
		} else {
			ASSERT(false);
			scratch.odm_info.odm_factor = 1;
		}

		calculate_odm_slices(state->streams[stream_index], scratch.odm_info.odm_factor, scratch.odm_info.odm_slice_end_x);

		// If there are no planes, you still want to setup ODM...
		if (state->stream_status[stream_index].plane_count == 0) {
			map_pipes_for_stream(ctx, state, state->streams[stream_index], &scratch, existing_state);
		}

		for (plane_index = 0; plane_index < state->stream_status[stream_index].plane_count; plane_index++) {
			// Planes are ordered top to bottom.
			if (get_plane_id(ctx, state, state->stream_status[stream_index].plane_states[plane_index],
				stream_id, plane_index, &plane_id)) {
				plane_disp_cfg_index = find_disp_cfg_idx_by_plane_id(mapping, plane_id);

				// Setup mpc_info for this plane
				scratch.mpc_info.prev_odm_pipe = NULL;
				if (scratch.odm_info.odm_factor == 1) {
					// If ODM combine is not inuse, then the number of pipes
					// per plane is determined by MPC combine factor
					scratch.mpc_info.mpc_factor = DPPPerSurface[plane_disp_cfg_index];

					//For stereo timings, we need to pipe split
					if (dml2_is_stereo_timing(state->streams[stream_index]))
						scratch.mpc_info.mpc_factor = 2;
				} else {
					// If ODM combine is enabled, then we use at most 1 pipe per
					// odm slice per plane, i.e. MPC combine is never used
					scratch.mpc_info.mpc_factor = 1;
				}

				ASSERT(scratch.odm_info.odm_factor * scratch.mpc_info.mpc_factor > 0);

				// Clear the pool assignment scratch (which is per plane)
				memset(&scratch.pipe_pool, 0, sizeof(struct dc_plane_pipe_pool));

				map_pipes_for_plane(ctx, state, state->streams[stream_index],
					state->stream_status[stream_index].plane_states[plane_index], plane_index, &scratch, existing_state);
			} else {
				// Plane ID cannot be generated, therefore no DML mapping can be performed.
				ASSERT(false);
			}
		}

	}

	if (!validate_pipe_assignment(ctx, state, disp_cfg, mapping))
		ASSERT(false);

	for (i = 0; i < ctx->config.dcn_pipe_count; i++) {
		struct pipe_ctx *pipe = &state->res_ctx.pipe_ctx[i];

		if (pipe->plane_state) {
			if (!ctx->config.callbacks.build_scaling_params(pipe)) {
				ASSERT(false);
			}
		}
	}

	return true;
}