Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 | /* * Copyright 2016 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: AMD * */ #include "dm_services.h" #include "core_types.h" #include "reg_helper.h" #include "dcn10_dpp.h" #include "basics/conversion.h" #include "dcn10_cm_common.h" #define NUM_PHASES 64 #define HORZ_MAX_TAPS 8 #define VERT_MAX_TAPS 8 #define BLACK_OFFSET_RGB_Y 0x0 #define BLACK_OFFSET_CBCR 0x8000 #define REG(reg)\ dpp->tf_regs->reg #define CTX \ dpp->base.ctx #undef FN #define FN(reg_name, field_name) \ dpp->tf_shift->field_name, dpp->tf_mask->field_name #define NUM_ELEMENTS(a) (sizeof(a) / sizeof((a)[0])) enum dcn10_coef_filter_type_sel { SCL_COEF_LUMA_VERT_FILTER = 0, SCL_COEF_LUMA_HORZ_FILTER = 1, SCL_COEF_CHROMA_VERT_FILTER = 2, SCL_COEF_CHROMA_HORZ_FILTER = 3, SCL_COEF_ALPHA_VERT_FILTER = 4, SCL_COEF_ALPHA_HORZ_FILTER = 5 }; enum dscl_autocal_mode { AUTOCAL_MODE_OFF = 0, /* Autocal calculate the scaling ratio and initial phase and the * DSCL_MODE_SEL must be set to 1 */ AUTOCAL_MODE_AUTOSCALE = 1, /* Autocal perform auto centering without replication and the * DSCL_MODE_SEL must be set to 0 */ AUTOCAL_MODE_AUTOCENTER = 2, /* Autocal perform auto centering and auto replication and the * DSCL_MODE_SEL must be set to 0 */ AUTOCAL_MODE_AUTOREPLICATE = 3 }; enum dscl_mode_sel { DSCL_MODE_SCALING_444_BYPASS = 0, DSCL_MODE_SCALING_444_RGB_ENABLE = 1, DSCL_MODE_SCALING_444_YCBCR_ENABLE = 2, DSCL_MODE_SCALING_420_YCBCR_ENABLE = 3, DSCL_MODE_SCALING_420_LUMA_BYPASS = 4, DSCL_MODE_SCALING_420_CHROMA_BYPASS = 5, DSCL_MODE_DSCL_BYPASS = 6 }; static void program_gamut_remap( struct dcn10_dpp *dpp, const uint16_t *regval, enum gamut_remap_select select) { uint16_t selection = 0; struct color_matrices_reg gam_regs; if (regval == NULL || select == GAMUT_REMAP_BYPASS) { REG_SET(CM_GAMUT_REMAP_CONTROL, 0, CM_GAMUT_REMAP_MODE, 0); return; } switch (select) { case GAMUT_REMAP_COEFF: selection = 1; break; case GAMUT_REMAP_COMA_COEFF: selection = 2; break; case GAMUT_REMAP_COMB_COEFF: selection = 3; break; default: break; } gam_regs.shifts.csc_c11 = dpp->tf_shift->CM_GAMUT_REMAP_C11; gam_regs.masks.csc_c11 = dpp->tf_mask->CM_GAMUT_REMAP_C11; gam_regs.shifts.csc_c12 = dpp->tf_shift->CM_GAMUT_REMAP_C12; gam_regs.masks.csc_c12 = dpp->tf_mask->CM_GAMUT_REMAP_C12; if (select == GAMUT_REMAP_COEFF) { gam_regs.csc_c11_c12 = REG(CM_GAMUT_REMAP_C11_C12); gam_regs.csc_c33_c34 = REG(CM_GAMUT_REMAP_C33_C34); cm_helper_program_color_matrices( dpp->base.ctx, regval, &gam_regs); } else if (select == GAMUT_REMAP_COMA_COEFF) { gam_regs.csc_c11_c12 = REG(CM_COMA_C11_C12); gam_regs.csc_c33_c34 = REG(CM_COMA_C33_C34); cm_helper_program_color_matrices( dpp->base.ctx, regval, &gam_regs); } else { gam_regs.csc_c11_c12 = REG(CM_COMB_C11_C12); gam_regs.csc_c33_c34 = REG(CM_COMB_C33_C34); cm_helper_program_color_matrices( dpp->base.ctx, regval, &gam_regs); } REG_SET( CM_GAMUT_REMAP_CONTROL, 0, CM_GAMUT_REMAP_MODE, selection); } void dpp1_cm_set_gamut_remap( struct dpp *dpp_base, const struct dpp_grph_csc_adjustment *adjust) { struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base); int i = 0; if (adjust->gamut_adjust_type != GRAPHICS_GAMUT_ADJUST_TYPE_SW) /* Bypass if type is bypass or hw */ program_gamut_remap(dpp, NULL, GAMUT_REMAP_BYPASS); else { struct fixed31_32 arr_matrix[12]; uint16_t arr_reg_val[12]; for (i = 0; i < 12; i++) arr_matrix[i] = adjust->temperature_matrix[i]; convert_float_matrix( arr_reg_val, arr_matrix, 12); program_gamut_remap(dpp, arr_reg_val, GAMUT_REMAP_COEFF); } } static void read_gamut_remap(struct dcn10_dpp *dpp, uint16_t *regval, enum gamut_remap_select *select) { struct color_matrices_reg gam_regs; uint32_t selection; REG_GET(CM_GAMUT_REMAP_CONTROL, CM_GAMUT_REMAP_MODE, &selection); *select = selection; gam_regs.shifts.csc_c11 = dpp->tf_shift->CM_GAMUT_REMAP_C11; gam_regs.masks.csc_c11 = dpp->tf_mask->CM_GAMUT_REMAP_C11; gam_regs.shifts.csc_c12 = dpp->tf_shift->CM_GAMUT_REMAP_C12; gam_regs.masks.csc_c12 = dpp->tf_mask->CM_GAMUT_REMAP_C12; if (*select == GAMUT_REMAP_COEFF) { gam_regs.csc_c11_c12 = REG(CM_GAMUT_REMAP_C11_C12); gam_regs.csc_c33_c34 = REG(CM_GAMUT_REMAP_C33_C34); cm_helper_read_color_matrices( dpp->base.ctx, regval, &gam_regs); } else if (*select == GAMUT_REMAP_COMA_COEFF) { gam_regs.csc_c11_c12 = REG(CM_COMA_C11_C12); gam_regs.csc_c33_c34 = REG(CM_COMA_C33_C34); cm_helper_read_color_matrices( dpp->base.ctx, regval, &gam_regs); } else if (*select == GAMUT_REMAP_COMB_COEFF) { gam_regs.csc_c11_c12 = REG(CM_COMB_C11_C12); gam_regs.csc_c33_c34 = REG(CM_COMB_C33_C34); cm_helper_read_color_matrices( dpp->base.ctx, regval, &gam_regs); } } void dpp1_cm_get_gamut_remap(struct dpp *dpp_base, struct dpp_grph_csc_adjustment *adjust) { struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base); uint16_t arr_reg_val[12]; enum gamut_remap_select select; read_gamut_remap(dpp, arr_reg_val, &select); if (select == GAMUT_REMAP_BYPASS) { adjust->gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_BYPASS; return; } adjust->gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_SW; convert_hw_matrix(adjust->temperature_matrix, arr_reg_val, ARRAY_SIZE(arr_reg_val)); } static void dpp1_cm_program_color_matrix( struct dcn10_dpp *dpp, const uint16_t *regval) { uint32_t ocsc_mode; uint32_t cur_mode; struct color_matrices_reg gam_regs; if (regval == NULL) { BREAK_TO_DEBUGGER(); return; } /* determine which CSC matrix (ocsc or comb) we are using * currently. select the alternate set to double buffer * the CSC update so CSC is updated on frame boundary */ REG_SET(CM_TEST_DEBUG_INDEX, 0, CM_TEST_DEBUG_INDEX, 9); REG_GET(CM_TEST_DEBUG_DATA, CM_TEST_DEBUG_DATA_ID9_OCSC_MODE, &cur_mode); if (cur_mode != 4) ocsc_mode = 4; else ocsc_mode = 5; gam_regs.shifts.csc_c11 = dpp->tf_shift->CM_OCSC_C11; gam_regs.masks.csc_c11 = dpp->tf_mask->CM_OCSC_C11; gam_regs.shifts.csc_c12 = dpp->tf_shift->CM_OCSC_C12; gam_regs.masks.csc_c12 = dpp->tf_mask->CM_OCSC_C12; if (ocsc_mode == 4) { gam_regs.csc_c11_c12 = REG(CM_OCSC_C11_C12); gam_regs.csc_c33_c34 = REG(CM_OCSC_C33_C34); } else { gam_regs.csc_c11_c12 = REG(CM_COMB_C11_C12); gam_regs.csc_c33_c34 = REG(CM_COMB_C33_C34); } cm_helper_program_color_matrices( dpp->base.ctx, regval, &gam_regs); REG_SET(CM_OCSC_CONTROL, 0, CM_OCSC_MODE, ocsc_mode); } void dpp1_cm_set_output_csc_default( struct dpp *dpp_base, enum dc_color_space colorspace) { struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base); const uint16_t *regval = NULL; int arr_size; regval = find_color_matrix(colorspace, &arr_size); if (regval == NULL) { BREAK_TO_DEBUGGER(); return; } dpp1_cm_program_color_matrix(dpp, regval); } static void dpp1_cm_get_reg_field( struct dcn10_dpp *dpp, struct xfer_func_reg *reg) { reg->shifts.exp_region0_lut_offset = dpp->tf_shift->CM_RGAM_RAMA_EXP_REGION0_LUT_OFFSET; reg->masks.exp_region0_lut_offset = dpp->tf_mask->CM_RGAM_RAMA_EXP_REGION0_LUT_OFFSET; reg->shifts.exp_region0_num_segments = dpp->tf_shift->CM_RGAM_RAMA_EXP_REGION0_NUM_SEGMENTS; reg->masks.exp_region0_num_segments = dpp->tf_mask->CM_RGAM_RAMA_EXP_REGION0_NUM_SEGMENTS; reg->shifts.exp_region1_lut_offset = dpp->tf_shift->CM_RGAM_RAMA_EXP_REGION1_LUT_OFFSET; reg->masks.exp_region1_lut_offset = dpp->tf_mask->CM_RGAM_RAMA_EXP_REGION1_LUT_OFFSET; reg->shifts.exp_region1_num_segments = dpp->tf_shift->CM_RGAM_RAMA_EXP_REGION1_NUM_SEGMENTS; reg->masks.exp_region1_num_segments = dpp->tf_mask->CM_RGAM_RAMA_EXP_REGION1_NUM_SEGMENTS; reg->shifts.field_region_end = dpp->tf_shift->CM_RGAM_RAMB_EXP_REGION_END_B; reg->masks.field_region_end = dpp->tf_mask->CM_RGAM_RAMB_EXP_REGION_END_B; reg->shifts.field_region_end_slope = dpp->tf_shift->CM_RGAM_RAMB_EXP_REGION_END_SLOPE_B; reg->masks.field_region_end_slope = dpp->tf_mask->CM_RGAM_RAMB_EXP_REGION_END_SLOPE_B; reg->shifts.field_region_end_base = dpp->tf_shift->CM_RGAM_RAMB_EXP_REGION_END_BASE_B; reg->masks.field_region_end_base = dpp->tf_mask->CM_RGAM_RAMB_EXP_REGION_END_BASE_B; reg->shifts.field_region_linear_slope = dpp->tf_shift->CM_RGAM_RAMB_EXP_REGION_LINEAR_SLOPE_B; reg->masks.field_region_linear_slope = dpp->tf_mask->CM_RGAM_RAMB_EXP_REGION_LINEAR_SLOPE_B; reg->shifts.exp_region_start = dpp->tf_shift->CM_RGAM_RAMB_EXP_REGION_START_B; reg->masks.exp_region_start = dpp->tf_mask->CM_RGAM_RAMB_EXP_REGION_START_B; reg->shifts.exp_resion_start_segment = dpp->tf_shift->CM_RGAM_RAMB_EXP_REGION_START_SEGMENT_B; reg->masks.exp_resion_start_segment = dpp->tf_mask->CM_RGAM_RAMB_EXP_REGION_START_SEGMENT_B; } static void dpp1_cm_get_degamma_reg_field( struct dcn10_dpp *dpp, struct xfer_func_reg *reg) { reg->shifts.exp_region0_lut_offset = dpp->tf_shift->CM_DGAM_RAMA_EXP_REGION0_LUT_OFFSET; reg->masks.exp_region0_lut_offset = dpp->tf_mask->CM_DGAM_RAMA_EXP_REGION0_LUT_OFFSET; reg->shifts.exp_region0_num_segments = dpp->tf_shift->CM_DGAM_RAMA_EXP_REGION0_NUM_SEGMENTS; reg->masks.exp_region0_num_segments = dpp->tf_mask->CM_DGAM_RAMA_EXP_REGION0_NUM_SEGMENTS; reg->shifts.exp_region1_lut_offset = dpp->tf_shift->CM_DGAM_RAMA_EXP_REGION1_LUT_OFFSET; reg->masks.exp_region1_lut_offset = dpp->tf_mask->CM_DGAM_RAMA_EXP_REGION1_LUT_OFFSET; reg->shifts.exp_region1_num_segments = dpp->tf_shift->CM_DGAM_RAMA_EXP_REGION1_NUM_SEGMENTS; reg->masks.exp_region1_num_segments = dpp->tf_mask->CM_DGAM_RAMA_EXP_REGION1_NUM_SEGMENTS; reg->shifts.field_region_end = dpp->tf_shift->CM_DGAM_RAMB_EXP_REGION_END_B; reg->masks.field_region_end = dpp->tf_mask->CM_DGAM_RAMB_EXP_REGION_END_B; reg->shifts.field_region_end_slope = dpp->tf_shift->CM_DGAM_RAMB_EXP_REGION_END_SLOPE_B; reg->masks.field_region_end_slope = dpp->tf_mask->CM_DGAM_RAMB_EXP_REGION_END_SLOPE_B; reg->shifts.field_region_end_base = dpp->tf_shift->CM_DGAM_RAMB_EXP_REGION_END_BASE_B; reg->masks.field_region_end_base = dpp->tf_mask->CM_DGAM_RAMB_EXP_REGION_END_BASE_B; reg->shifts.field_region_linear_slope = dpp->tf_shift->CM_DGAM_RAMB_EXP_REGION_LINEAR_SLOPE_B; reg->masks.field_region_linear_slope = dpp->tf_mask->CM_DGAM_RAMB_EXP_REGION_LINEAR_SLOPE_B; reg->shifts.exp_region_start = dpp->tf_shift->CM_DGAM_RAMB_EXP_REGION_START_B; reg->masks.exp_region_start = dpp->tf_mask->CM_DGAM_RAMB_EXP_REGION_START_B; reg->shifts.exp_resion_start_segment = dpp->tf_shift->CM_DGAM_RAMB_EXP_REGION_START_SEGMENT_B; reg->masks.exp_resion_start_segment = dpp->tf_mask->CM_DGAM_RAMB_EXP_REGION_START_SEGMENT_B; } void dpp1_cm_set_output_csc_adjustment( struct dpp *dpp_base, const uint16_t *regval) { struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base); dpp1_cm_program_color_matrix(dpp, regval); } void dpp1_cm_power_on_regamma_lut(struct dpp *dpp_base, bool power_on) { struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base); REG_SET(CM_MEM_PWR_CTRL, 0, RGAM_MEM_PWR_FORCE, power_on == true ? 0:1); } void dpp1_cm_program_regamma_lut(struct dpp *dpp_base, const struct pwl_result_data *rgb, uint32_t num) { uint32_t i; struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base); REG_SEQ_START(); for (i = 0 ; i < num; i++) { REG_SET(CM_RGAM_LUT_DATA, 0, CM_RGAM_LUT_DATA, rgb[i].red_reg); REG_SET(CM_RGAM_LUT_DATA, 0, CM_RGAM_LUT_DATA, rgb[i].green_reg); REG_SET(CM_RGAM_LUT_DATA, 0, CM_RGAM_LUT_DATA, rgb[i].blue_reg); REG_SET(CM_RGAM_LUT_DATA, 0, CM_RGAM_LUT_DATA, rgb[i].delta_red_reg); REG_SET(CM_RGAM_LUT_DATA, 0, CM_RGAM_LUT_DATA, rgb[i].delta_green_reg); REG_SET(CM_RGAM_LUT_DATA, 0, CM_RGAM_LUT_DATA, rgb[i].delta_blue_reg); } } void dpp1_cm_configure_regamma_lut( struct dpp *dpp_base, bool is_ram_a) { struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base); REG_UPDATE(CM_RGAM_LUT_WRITE_EN_MASK, CM_RGAM_LUT_WRITE_EN_MASK, 7); REG_UPDATE(CM_RGAM_LUT_WRITE_EN_MASK, CM_RGAM_LUT_WRITE_SEL, is_ram_a == true ? 0:1); REG_SET(CM_RGAM_LUT_INDEX, 0, CM_RGAM_LUT_INDEX, 0); } /*program re gamma RAM A*/ void dpp1_cm_program_regamma_luta_settings( struct dpp *dpp_base, const struct pwl_params *params) { struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base); struct xfer_func_reg gam_regs; dpp1_cm_get_reg_field(dpp, &gam_regs); gam_regs.start_cntl_b = REG(CM_RGAM_RAMA_START_CNTL_B); gam_regs.start_cntl_g = REG(CM_RGAM_RAMA_START_CNTL_G); gam_regs.start_cntl_r = REG(CM_RGAM_RAMA_START_CNTL_R); gam_regs.start_slope_cntl_b = REG(CM_RGAM_RAMA_SLOPE_CNTL_B); gam_regs.start_slope_cntl_g = REG(CM_RGAM_RAMA_SLOPE_CNTL_G); gam_regs.start_slope_cntl_r = REG(CM_RGAM_RAMA_SLOPE_CNTL_R); gam_regs.start_end_cntl1_b = REG(CM_RGAM_RAMA_END_CNTL1_B); gam_regs.start_end_cntl2_b = REG(CM_RGAM_RAMA_END_CNTL2_B); gam_regs.start_end_cntl1_g = REG(CM_RGAM_RAMA_END_CNTL1_G); gam_regs.start_end_cntl2_g = REG(CM_RGAM_RAMA_END_CNTL2_G); gam_regs.start_end_cntl1_r = REG(CM_RGAM_RAMA_END_CNTL1_R); gam_regs.start_end_cntl2_r = REG(CM_RGAM_RAMA_END_CNTL2_R); gam_regs.region_start = REG(CM_RGAM_RAMA_REGION_0_1); gam_regs.region_end = REG(CM_RGAM_RAMA_REGION_32_33); cm_helper_program_xfer_func(dpp->base.ctx, params, &gam_regs); } /*program re gamma RAM B*/ void dpp1_cm_program_regamma_lutb_settings( struct dpp *dpp_base, const struct pwl_params *params) { struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base); struct xfer_func_reg gam_regs; dpp1_cm_get_reg_field(dpp, &gam_regs); gam_regs.start_cntl_b = REG(CM_RGAM_RAMB_START_CNTL_B); gam_regs.start_cntl_g = REG(CM_RGAM_RAMB_START_CNTL_G); gam_regs.start_cntl_r = REG(CM_RGAM_RAMB_START_CNTL_R); gam_regs.start_slope_cntl_b = REG(CM_RGAM_RAMB_SLOPE_CNTL_B); gam_regs.start_slope_cntl_g = REG(CM_RGAM_RAMB_SLOPE_CNTL_G); gam_regs.start_slope_cntl_r = REG(CM_RGAM_RAMB_SLOPE_CNTL_R); gam_regs.start_end_cntl1_b = REG(CM_RGAM_RAMB_END_CNTL1_B); gam_regs.start_end_cntl2_b = REG(CM_RGAM_RAMB_END_CNTL2_B); gam_regs.start_end_cntl1_g = REG(CM_RGAM_RAMB_END_CNTL1_G); gam_regs.start_end_cntl2_g = REG(CM_RGAM_RAMB_END_CNTL2_G); gam_regs.start_end_cntl1_r = REG(CM_RGAM_RAMB_END_CNTL1_R); gam_regs.start_end_cntl2_r = REG(CM_RGAM_RAMB_END_CNTL2_R); gam_regs.region_start = REG(CM_RGAM_RAMB_REGION_0_1); gam_regs.region_end = REG(CM_RGAM_RAMB_REGION_32_33); cm_helper_program_xfer_func(dpp->base.ctx, params, &gam_regs); } void dpp1_program_input_csc( struct dpp *dpp_base, enum dc_color_space color_space, enum dcn10_input_csc_select input_select, const struct out_csc_color_matrix *tbl_entry) { struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base); int i; int arr_size = sizeof(dpp_input_csc_matrix)/sizeof(struct dpp_input_csc_matrix); const uint16_t *regval = NULL; uint32_t cur_select = 0; enum dcn10_input_csc_select select; struct color_matrices_reg gam_regs; if (input_select == INPUT_CSC_SELECT_BYPASS) { REG_SET(CM_ICSC_CONTROL, 0, CM_ICSC_MODE, 0); return; } if (tbl_entry == NULL) { for (i = 0; i < arr_size; i++) if (dpp_input_csc_matrix[i].color_space == color_space) { regval = dpp_input_csc_matrix[i].regval; break; } if (regval == NULL) { BREAK_TO_DEBUGGER(); return; } } else { regval = tbl_entry->regval; } /* determine which CSC matrix (icsc or coma) we are using * currently. select the alternate set to double buffer * the CSC update so CSC is updated on frame boundary */ REG_SET(CM_TEST_DEBUG_INDEX, 0, CM_TEST_DEBUG_INDEX, 9); REG_GET(CM_TEST_DEBUG_DATA, CM_TEST_DEBUG_DATA_ID9_ICSC_MODE, &cur_select); if (cur_select != INPUT_CSC_SELECT_ICSC) select = INPUT_CSC_SELECT_ICSC; else select = INPUT_CSC_SELECT_COMA; gam_regs.shifts.csc_c11 = dpp->tf_shift->CM_ICSC_C11; gam_regs.masks.csc_c11 = dpp->tf_mask->CM_ICSC_C11; gam_regs.shifts.csc_c12 = dpp->tf_shift->CM_ICSC_C12; gam_regs.masks.csc_c12 = dpp->tf_mask->CM_ICSC_C12; if (select == INPUT_CSC_SELECT_ICSC) { gam_regs.csc_c11_c12 = REG(CM_ICSC_C11_C12); gam_regs.csc_c33_c34 = REG(CM_ICSC_C33_C34); } else { gam_regs.csc_c11_c12 = REG(CM_COMA_C11_C12); gam_regs.csc_c33_c34 = REG(CM_COMA_C33_C34); } cm_helper_program_color_matrices( dpp->base.ctx, regval, &gam_regs); REG_SET(CM_ICSC_CONTROL, 0, CM_ICSC_MODE, select); } //keep here for now, decide multi dce support later void dpp1_program_bias_and_scale( struct dpp *dpp_base, struct dc_bias_and_scale *params) { struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base); REG_SET_2(CM_BNS_VALUES_R, 0, CM_BNS_SCALE_R, params->scale_red, CM_BNS_BIAS_R, params->bias_red); REG_SET_2(CM_BNS_VALUES_G, 0, CM_BNS_SCALE_G, params->scale_green, CM_BNS_BIAS_G, params->bias_green); REG_SET_2(CM_BNS_VALUES_B, 0, CM_BNS_SCALE_B, params->scale_blue, CM_BNS_BIAS_B, params->bias_blue); } /*program de gamma RAM B*/ void dpp1_program_degamma_lutb_settings( struct dpp *dpp_base, const struct pwl_params *params) { struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base); struct xfer_func_reg gam_regs; dpp1_cm_get_degamma_reg_field(dpp, &gam_regs); gam_regs.start_cntl_b = REG(CM_DGAM_RAMB_START_CNTL_B); gam_regs.start_cntl_g = REG(CM_DGAM_RAMB_START_CNTL_G); gam_regs.start_cntl_r = REG(CM_DGAM_RAMB_START_CNTL_R); gam_regs.start_slope_cntl_b = REG(CM_DGAM_RAMB_SLOPE_CNTL_B); gam_regs.start_slope_cntl_g = REG(CM_DGAM_RAMB_SLOPE_CNTL_G); gam_regs.start_slope_cntl_r = REG(CM_DGAM_RAMB_SLOPE_CNTL_R); gam_regs.start_end_cntl1_b = REG(CM_DGAM_RAMB_END_CNTL1_B); gam_regs.start_end_cntl2_b = REG(CM_DGAM_RAMB_END_CNTL2_B); gam_regs.start_end_cntl1_g = REG(CM_DGAM_RAMB_END_CNTL1_G); gam_regs.start_end_cntl2_g = REG(CM_DGAM_RAMB_END_CNTL2_G); gam_regs.start_end_cntl1_r = REG(CM_DGAM_RAMB_END_CNTL1_R); gam_regs.start_end_cntl2_r = REG(CM_DGAM_RAMB_END_CNTL2_R); gam_regs.region_start = REG(CM_DGAM_RAMB_REGION_0_1); gam_regs.region_end = REG(CM_DGAM_RAMB_REGION_14_15); cm_helper_program_xfer_func(dpp->base.ctx, params, &gam_regs); } /*program de gamma RAM A*/ void dpp1_program_degamma_luta_settings( struct dpp *dpp_base, const struct pwl_params *params) { struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base); struct xfer_func_reg gam_regs; dpp1_cm_get_degamma_reg_field(dpp, &gam_regs); gam_regs.start_cntl_b = REG(CM_DGAM_RAMA_START_CNTL_B); gam_regs.start_cntl_g = REG(CM_DGAM_RAMA_START_CNTL_G); gam_regs.start_cntl_r = REG(CM_DGAM_RAMA_START_CNTL_R); gam_regs.start_slope_cntl_b = REG(CM_DGAM_RAMA_SLOPE_CNTL_B); gam_regs.start_slope_cntl_g = REG(CM_DGAM_RAMA_SLOPE_CNTL_G); gam_regs.start_slope_cntl_r = REG(CM_DGAM_RAMA_SLOPE_CNTL_R); gam_regs.start_end_cntl1_b = REG(CM_DGAM_RAMA_END_CNTL1_B); gam_regs.start_end_cntl2_b = REG(CM_DGAM_RAMA_END_CNTL2_B); gam_regs.start_end_cntl1_g = REG(CM_DGAM_RAMA_END_CNTL1_G); gam_regs.start_end_cntl2_g = REG(CM_DGAM_RAMA_END_CNTL2_G); gam_regs.start_end_cntl1_r = REG(CM_DGAM_RAMA_END_CNTL1_R); gam_regs.start_end_cntl2_r = REG(CM_DGAM_RAMA_END_CNTL2_R); gam_regs.region_start = REG(CM_DGAM_RAMA_REGION_0_1); gam_regs.region_end = REG(CM_DGAM_RAMA_REGION_14_15); cm_helper_program_xfer_func(dpp->base.ctx, params, &gam_regs); } void dpp1_power_on_degamma_lut( struct dpp *dpp_base, bool power_on) { struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base); REG_SET(CM_MEM_PWR_CTRL, 0, SHARED_MEM_PWR_DIS, power_on ? 0:1); } static void dpp1_enable_cm_block( struct dpp *dpp_base) { struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base); REG_UPDATE(CM_CMOUT_CONTROL, CM_CMOUT_ROUND_TRUNC_MODE, 8); REG_UPDATE(CM_CONTROL, CM_BYPASS_EN, 0); } void dpp1_set_degamma( struct dpp *dpp_base, enum ipp_degamma_mode mode) { struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base); dpp1_enable_cm_block(dpp_base); switch (mode) { case IPP_DEGAMMA_MODE_BYPASS: /* Setting de gamma bypass for now */ REG_UPDATE(CM_DGAM_CONTROL, CM_DGAM_LUT_MODE, 0); break; case IPP_DEGAMMA_MODE_HW_sRGB: REG_UPDATE(CM_DGAM_CONTROL, CM_DGAM_LUT_MODE, 1); break; case IPP_DEGAMMA_MODE_HW_xvYCC: REG_UPDATE(CM_DGAM_CONTROL, CM_DGAM_LUT_MODE, 2); break; case IPP_DEGAMMA_MODE_USER_PWL: REG_UPDATE(CM_DGAM_CONTROL, CM_DGAM_LUT_MODE, 3); break; default: BREAK_TO_DEBUGGER(); break; } REG_SEQ_SUBMIT(); REG_SEQ_WAIT_DONE(); } void dpp1_degamma_ram_select( struct dpp *dpp_base, bool use_ram_a) { struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base); if (use_ram_a) REG_UPDATE(CM_DGAM_CONTROL, CM_DGAM_LUT_MODE, 3); else REG_UPDATE(CM_DGAM_CONTROL, CM_DGAM_LUT_MODE, 4); } static bool dpp1_degamma_ram_inuse( struct dpp *dpp_base, bool *ram_a_inuse) { bool ret = false; uint32_t status_reg = 0; struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base); REG_GET(CM_IGAM_LUT_RW_CONTROL, CM_IGAM_DGAM_CONFIG_STATUS, &status_reg); if (status_reg == 9) { *ram_a_inuse = true; ret = true; } else if (status_reg == 10) { *ram_a_inuse = false; ret = true; } return ret; } void dpp1_program_degamma_lut( struct dpp *dpp_base, const struct pwl_result_data *rgb, uint32_t num, bool is_ram_a) { uint32_t i; struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base); REG_UPDATE(CM_IGAM_LUT_RW_CONTROL, CM_IGAM_LUT_HOST_EN, 0); REG_UPDATE(CM_DGAM_LUT_WRITE_EN_MASK, CM_DGAM_LUT_WRITE_EN_MASK, 7); REG_UPDATE(CM_DGAM_LUT_WRITE_EN_MASK, CM_DGAM_LUT_WRITE_SEL, is_ram_a == true ? 0:1); REG_SET(CM_DGAM_LUT_INDEX, 0, CM_DGAM_LUT_INDEX, 0); for (i = 0 ; i < num; i++) { REG_SET(CM_DGAM_LUT_DATA, 0, CM_DGAM_LUT_DATA, rgb[i].red_reg); REG_SET(CM_DGAM_LUT_DATA, 0, CM_DGAM_LUT_DATA, rgb[i].green_reg); REG_SET(CM_DGAM_LUT_DATA, 0, CM_DGAM_LUT_DATA, rgb[i].blue_reg); REG_SET(CM_DGAM_LUT_DATA, 0, CM_DGAM_LUT_DATA, rgb[i].delta_red_reg); REG_SET(CM_DGAM_LUT_DATA, 0, CM_DGAM_LUT_DATA, rgb[i].delta_green_reg); REG_SET(CM_DGAM_LUT_DATA, 0, CM_DGAM_LUT_DATA, rgb[i].delta_blue_reg); } } void dpp1_set_degamma_pwl(struct dpp *dpp_base, const struct pwl_params *params) { bool is_ram_a = true; dpp1_power_on_degamma_lut(dpp_base, true); dpp1_enable_cm_block(dpp_base); dpp1_degamma_ram_inuse(dpp_base, &is_ram_a); if (is_ram_a == true) dpp1_program_degamma_lutb_settings(dpp_base, params); else dpp1_program_degamma_luta_settings(dpp_base, params); dpp1_program_degamma_lut(dpp_base, params->rgb_resulted, params->hw_points_num, !is_ram_a); dpp1_degamma_ram_select(dpp_base, !is_ram_a); } void dpp1_full_bypass(struct dpp *dpp_base) { struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base); /* Input pixel format: ARGB8888 */ REG_SET(CNVC_SURFACE_PIXEL_FORMAT, 0, CNVC_SURFACE_PIXEL_FORMAT, 0x8); /* Zero expansion */ REG_SET_3(FORMAT_CONTROL, 0, CNVC_BYPASS, 0, FORMAT_CONTROL__ALPHA_EN, 0, FORMAT_EXPANSION_MODE, 0); /* COLOR_KEYER_CONTROL.COLOR_KEYER_EN = 0 this should be default */ if (dpp->tf_mask->CM_BYPASS_EN) REG_SET(CM_CONTROL, 0, CM_BYPASS_EN, 1); else REG_SET(CM_CONTROL, 0, CM_BYPASS, 1); /* Setting degamma bypass for now */ REG_SET(CM_DGAM_CONTROL, 0, CM_DGAM_LUT_MODE, 0); } static bool dpp1_ingamma_ram_inuse(struct dpp *dpp_base, bool *ram_a_inuse) { bool in_use = false; uint32_t status_reg = 0; struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base); REG_GET(CM_IGAM_LUT_RW_CONTROL, CM_IGAM_DGAM_CONFIG_STATUS, &status_reg); // 1 => IGAM_RAMA, 3 => IGAM_RAMA & DGAM_ROMA, 4 => IGAM_RAMA & DGAM_ROMB if (status_reg == 1 || status_reg == 3 || status_reg == 4) { *ram_a_inuse = true; in_use = true; // 2 => IGAM_RAMB, 5 => IGAM_RAMB & DGAM_ROMA, 6 => IGAM_RAMB & DGAM_ROMB } else if (status_reg == 2 || status_reg == 5 || status_reg == 6) { *ram_a_inuse = false; in_use = true; } return in_use; } /* * Input gamma LUT currently supports 256 values only. This means input color * can have a maximum of 8 bits per channel (= 256 possible values) in order to * have a one-to-one mapping with the LUT. Truncation will occur with color * values greater than 8 bits. * * In the future, this function should support additional input gamma methods, * such as piecewise linear mapping, and input gamma bypass. */ void dpp1_program_input_lut( struct dpp *dpp_base, const struct dc_gamma *gamma) { int i; struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base); bool rama_occupied = false; uint32_t ram_num; // Power on LUT memory. REG_SET(CM_MEM_PWR_CTRL, 0, SHARED_MEM_PWR_DIS, 1); dpp1_enable_cm_block(dpp_base); // Determine whether to use RAM A or RAM B dpp1_ingamma_ram_inuse(dpp_base, &rama_occupied); if (!rama_occupied) REG_UPDATE(CM_IGAM_LUT_RW_CONTROL, CM_IGAM_LUT_SEL, 0); else REG_UPDATE(CM_IGAM_LUT_RW_CONTROL, CM_IGAM_LUT_SEL, 1); // RW mode is 256-entry LUT REG_UPDATE(CM_IGAM_LUT_RW_CONTROL, CM_IGAM_LUT_RW_MODE, 0); // IGAM Input format should be 8 bits per channel. REG_UPDATE(CM_IGAM_CONTROL, CM_IGAM_INPUT_FORMAT, 0); // Do not mask any R,G,B values REG_UPDATE(CM_IGAM_LUT_RW_CONTROL, CM_IGAM_LUT_WRITE_EN_MASK, 7); // LUT-256, unsigned, integer, new u0.12 format REG_UPDATE_3( CM_IGAM_CONTROL, CM_IGAM_LUT_FORMAT_R, 3, CM_IGAM_LUT_FORMAT_G, 3, CM_IGAM_LUT_FORMAT_B, 3); // Start at index 0 of IGAM LUT REG_UPDATE(CM_IGAM_LUT_RW_INDEX, CM_IGAM_LUT_RW_INDEX, 0); for (i = 0; i < gamma->num_entries; i++) { REG_SET(CM_IGAM_LUT_SEQ_COLOR, 0, CM_IGAM_LUT_SEQ_COLOR, dc_fixpt_round( gamma->entries.red[i])); REG_SET(CM_IGAM_LUT_SEQ_COLOR, 0, CM_IGAM_LUT_SEQ_COLOR, dc_fixpt_round( gamma->entries.green[i])); REG_SET(CM_IGAM_LUT_SEQ_COLOR, 0, CM_IGAM_LUT_SEQ_COLOR, dc_fixpt_round( gamma->entries.blue[i])); } // Power off LUT memory REG_SET(CM_MEM_PWR_CTRL, 0, SHARED_MEM_PWR_DIS, 0); // Enable IGAM LUT on ram we just wrote to. 2 => RAMA, 3 => RAMB REG_UPDATE(CM_IGAM_CONTROL, CM_IGAM_LUT_MODE, rama_occupied ? 3 : 2); REG_GET(CM_IGAM_CONTROL, CM_IGAM_LUT_MODE, &ram_num); } void dpp1_set_hdr_multiplier( struct dpp *dpp_base, uint32_t multiplier) { struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base); REG_UPDATE(CM_HDR_MULT_COEF, CM_HDR_MULT_COEF, multiplier); } |