Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 | // SPDX-License-Identifier: GPL-2.0 /* * Driver for Intel(R) 10nm server memory controller. * Copyright (c) 2019, Intel Corporation. * */ #include <linux/kernel.h> #include <linux/io.h> #include <asm/cpu_device_id.h> #include <asm/intel-family.h> #include <asm/mce.h> #include "edac_module.h" #include "skx_common.h" #define I10NM_REVISION "v0.0.6" #define EDAC_MOD_STR "i10nm_edac" /* Debug macros */ #define i10nm_printk(level, fmt, arg...) \ edac_printk(level, "i10nm", fmt, ##arg) #define I10NM_GET_SCK_BAR(d, reg) \ pci_read_config_dword((d)->uracu, 0xd0, &(reg)) #define I10NM_GET_IMC_BAR(d, i, reg) \ pci_read_config_dword((d)->uracu, \ (res_cfg->type == GNR ? 0xd4 : 0xd8) + (i) * 4, &(reg)) #define I10NM_GET_SAD(d, offset, i, reg)\ pci_read_config_dword((d)->sad_all, (offset) + (i) * \ (res_cfg->type == GNR ? 12 : 8), &(reg)) #define I10NM_GET_HBM_IMC_BAR(d, reg) \ pci_read_config_dword((d)->uracu, 0xd4, &(reg)) #define I10NM_GET_CAPID3_CFG(d, reg) \ pci_read_config_dword((d)->pcu_cr3, \ res_cfg->type == GNR ? 0x290 : 0x90, &(reg)) #define I10NM_GET_CAPID5_CFG(d, reg) \ pci_read_config_dword((d)->pcu_cr3, \ res_cfg->type == GNR ? 0x298 : 0x98, &(reg)) #define I10NM_GET_DIMMMTR(m, i, j) \ readl((m)->mbase + ((m)->hbm_mc ? 0x80c : \ (res_cfg->type == GNR ? 0xc0c : 0x2080c)) + \ (i) * (m)->chan_mmio_sz + (j) * 4) #define I10NM_GET_MCDDRTCFG(m, i) \ readl((m)->mbase + ((m)->hbm_mc ? 0x970 : 0x20970) + \ (i) * (m)->chan_mmio_sz) #define I10NM_GET_MCMTR(m, i) \ readl((m)->mbase + ((m)->hbm_mc ? 0xef8 : \ (res_cfg->type == GNR ? 0xaf8 : 0x20ef8)) + \ (i) * (m)->chan_mmio_sz) #define I10NM_GET_AMAP(m, i) \ readl((m)->mbase + ((m)->hbm_mc ? 0x814 : \ (res_cfg->type == GNR ? 0xc14 : 0x20814)) + \ (i) * (m)->chan_mmio_sz) #define I10NM_GET_REG32(m, i, offset) \ readl((m)->mbase + (i) * (m)->chan_mmio_sz + (offset)) #define I10NM_GET_REG64(m, i, offset) \ readq((m)->mbase + (i) * (m)->chan_mmio_sz + (offset)) #define I10NM_SET_REG32(m, i, offset, v) \ writel(v, (m)->mbase + (i) * (m)->chan_mmio_sz + (offset)) #define I10NM_GET_SCK_MMIO_BASE(reg) (GET_BITFIELD(reg, 0, 28) << 23) #define I10NM_GET_IMC_MMIO_OFFSET(reg) (GET_BITFIELD(reg, 0, 10) << 12) #define I10NM_GET_IMC_MMIO_SIZE(reg) ((GET_BITFIELD(reg, 13, 23) - \ GET_BITFIELD(reg, 0, 10) + 1) << 12) #define I10NM_GET_HBM_IMC_MMIO_OFFSET(reg) \ ((GET_BITFIELD(reg, 0, 10) << 12) + 0x140000) #define I10NM_GNR_IMC_MMIO_OFFSET 0x24c000 #define I10NM_GNR_IMC_MMIO_SIZE 0x4000 #define I10NM_HBM_IMC_MMIO_SIZE 0x9000 #define I10NM_DDR_IMC_CH_CNT(reg) GET_BITFIELD(reg, 21, 24) #define I10NM_IS_HBM_PRESENT(reg) GET_BITFIELD(reg, 27, 30) #define I10NM_IS_HBM_IMC(reg) GET_BITFIELD(reg, 29, 29) #define I10NM_MAX_SAD 16 #define I10NM_SAD_ENABLE(reg) GET_BITFIELD(reg, 0, 0) #define I10NM_SAD_NM_CACHEABLE(reg) GET_BITFIELD(reg, 5, 5) #define RETRY_RD_ERR_LOG_UC BIT(1) #define RETRY_RD_ERR_LOG_NOOVER BIT(14) #define RETRY_RD_ERR_LOG_EN BIT(15) #define RETRY_RD_ERR_LOG_NOOVER_UC (BIT(14) | BIT(1)) #define RETRY_RD_ERR_LOG_OVER_UC_V (BIT(2) | BIT(1) | BIT(0)) static struct list_head *i10nm_edac_list; static struct res_config *res_cfg; static int retry_rd_err_log; static int decoding_via_mca; static bool mem_cfg_2lm; static u32 offsets_scrub_icx[] = {0x22c60, 0x22c54, 0x22c5c, 0x22c58, 0x22c28, 0x20ed8}; static u32 offsets_scrub_spr[] = {0x22c60, 0x22c54, 0x22f08, 0x22c58, 0x22c28, 0x20ed8}; static u32 offsets_scrub_spr_hbm0[] = {0x2860, 0x2854, 0x2b08, 0x2858, 0x2828, 0x0ed8}; static u32 offsets_scrub_spr_hbm1[] = {0x2c60, 0x2c54, 0x2f08, 0x2c58, 0x2c28, 0x0fa8}; static u32 offsets_demand_icx[] = {0x22e54, 0x22e60, 0x22e64, 0x22e58, 0x22e5c, 0x20ee0}; static u32 offsets_demand_spr[] = {0x22e54, 0x22e60, 0x22f10, 0x22e58, 0x22e5c, 0x20ee0}; static u32 offsets_demand2_spr[] = {0x22c70, 0x22d80, 0x22f18, 0x22d58, 0x22c64, 0x20f10}; static u32 offsets_demand_spr_hbm0[] = {0x2a54, 0x2a60, 0x2b10, 0x2a58, 0x2a5c, 0x0ee0}; static u32 offsets_demand_spr_hbm1[] = {0x2e54, 0x2e60, 0x2f10, 0x2e58, 0x2e5c, 0x0fb0}; static void __enable_retry_rd_err_log(struct skx_imc *imc, int chan, bool enable, u32 *offsets_scrub, u32 *offsets_demand, u32 *offsets_demand2) { u32 s, d, d2; s = I10NM_GET_REG32(imc, chan, offsets_scrub[0]); d = I10NM_GET_REG32(imc, chan, offsets_demand[0]); if (offsets_demand2) d2 = I10NM_GET_REG32(imc, chan, offsets_demand2[0]); if (enable) { /* Save default configurations */ imc->chan[chan].retry_rd_err_log_s = s; imc->chan[chan].retry_rd_err_log_d = d; if (offsets_demand2) imc->chan[chan].retry_rd_err_log_d2 = d2; s &= ~RETRY_RD_ERR_LOG_NOOVER_UC; s |= RETRY_RD_ERR_LOG_EN; d &= ~RETRY_RD_ERR_LOG_NOOVER_UC; d |= RETRY_RD_ERR_LOG_EN; if (offsets_demand2) { d2 &= ~RETRY_RD_ERR_LOG_UC; d2 |= RETRY_RD_ERR_LOG_NOOVER; d2 |= RETRY_RD_ERR_LOG_EN; } } else { /* Restore default configurations */ if (imc->chan[chan].retry_rd_err_log_s & RETRY_RD_ERR_LOG_UC) s |= RETRY_RD_ERR_LOG_UC; if (imc->chan[chan].retry_rd_err_log_s & RETRY_RD_ERR_LOG_NOOVER) s |= RETRY_RD_ERR_LOG_NOOVER; if (!(imc->chan[chan].retry_rd_err_log_s & RETRY_RD_ERR_LOG_EN)) s &= ~RETRY_RD_ERR_LOG_EN; if (imc->chan[chan].retry_rd_err_log_d & RETRY_RD_ERR_LOG_UC) d |= RETRY_RD_ERR_LOG_UC; if (imc->chan[chan].retry_rd_err_log_d & RETRY_RD_ERR_LOG_NOOVER) d |= RETRY_RD_ERR_LOG_NOOVER; if (!(imc->chan[chan].retry_rd_err_log_d & RETRY_RD_ERR_LOG_EN)) d &= ~RETRY_RD_ERR_LOG_EN; if (offsets_demand2) { if (imc->chan[chan].retry_rd_err_log_d2 & RETRY_RD_ERR_LOG_UC) d2 |= RETRY_RD_ERR_LOG_UC; if (!(imc->chan[chan].retry_rd_err_log_d2 & RETRY_RD_ERR_LOG_NOOVER)) d2 &= ~RETRY_RD_ERR_LOG_NOOVER; if (!(imc->chan[chan].retry_rd_err_log_d2 & RETRY_RD_ERR_LOG_EN)) d2 &= ~RETRY_RD_ERR_LOG_EN; } } I10NM_SET_REG32(imc, chan, offsets_scrub[0], s); I10NM_SET_REG32(imc, chan, offsets_demand[0], d); if (offsets_demand2) I10NM_SET_REG32(imc, chan, offsets_demand2[0], d2); } static void enable_retry_rd_err_log(bool enable) { int i, j, imc_num, chan_num; struct skx_imc *imc; struct skx_dev *d; edac_dbg(2, "\n"); list_for_each_entry(d, i10nm_edac_list, list) { imc_num = res_cfg->ddr_imc_num; chan_num = res_cfg->ddr_chan_num; for (i = 0; i < imc_num; i++) { imc = &d->imc[i]; if (!imc->mbase) continue; for (j = 0; j < chan_num; j++) __enable_retry_rd_err_log(imc, j, enable, res_cfg->offsets_scrub, res_cfg->offsets_demand, res_cfg->offsets_demand2); } imc_num += res_cfg->hbm_imc_num; chan_num = res_cfg->hbm_chan_num; for (; i < imc_num; i++) { imc = &d->imc[i]; if (!imc->mbase || !imc->hbm_mc) continue; for (j = 0; j < chan_num; j++) { __enable_retry_rd_err_log(imc, j, enable, res_cfg->offsets_scrub_hbm0, res_cfg->offsets_demand_hbm0, NULL); __enable_retry_rd_err_log(imc, j, enable, res_cfg->offsets_scrub_hbm1, res_cfg->offsets_demand_hbm1, NULL); } } } } static void show_retry_rd_err_log(struct decoded_addr *res, char *msg, int len, bool scrub_err) { struct skx_imc *imc = &res->dev->imc[res->imc]; u32 log0, log1, log2, log3, log4; u32 corr0, corr1, corr2, corr3; u32 lxg0, lxg1, lxg3, lxg4; u32 *xffsets = NULL; u64 log2a, log5; u64 lxg2a, lxg5; u32 *offsets; int n, pch; if (!imc->mbase) return; if (imc->hbm_mc) { pch = res->cs & 1; if (pch) offsets = scrub_err ? res_cfg->offsets_scrub_hbm1 : res_cfg->offsets_demand_hbm1; else offsets = scrub_err ? res_cfg->offsets_scrub_hbm0 : res_cfg->offsets_demand_hbm0; } else { if (scrub_err) { offsets = res_cfg->offsets_scrub; } else { offsets = res_cfg->offsets_demand; xffsets = res_cfg->offsets_demand2; } } log0 = I10NM_GET_REG32(imc, res->channel, offsets[0]); log1 = I10NM_GET_REG32(imc, res->channel, offsets[1]); log3 = I10NM_GET_REG32(imc, res->channel, offsets[3]); log4 = I10NM_GET_REG32(imc, res->channel, offsets[4]); log5 = I10NM_GET_REG64(imc, res->channel, offsets[5]); if (xffsets) { lxg0 = I10NM_GET_REG32(imc, res->channel, xffsets[0]); lxg1 = I10NM_GET_REG32(imc, res->channel, xffsets[1]); lxg3 = I10NM_GET_REG32(imc, res->channel, xffsets[3]); lxg4 = I10NM_GET_REG32(imc, res->channel, xffsets[4]); lxg5 = I10NM_GET_REG64(imc, res->channel, xffsets[5]); } if (res_cfg->type == SPR) { log2a = I10NM_GET_REG64(imc, res->channel, offsets[2]); n = snprintf(msg, len, " retry_rd_err_log[%.8x %.8x %.16llx %.8x %.8x %.16llx", log0, log1, log2a, log3, log4, log5); if (len - n > 0) { if (xffsets) { lxg2a = I10NM_GET_REG64(imc, res->channel, xffsets[2]); n += snprintf(msg + n, len - n, " %.8x %.8x %.16llx %.8x %.8x %.16llx]", lxg0, lxg1, lxg2a, lxg3, lxg4, lxg5); } else { n += snprintf(msg + n, len - n, "]"); } } } else { log2 = I10NM_GET_REG32(imc, res->channel, offsets[2]); n = snprintf(msg, len, " retry_rd_err_log[%.8x %.8x %.8x %.8x %.8x %.16llx]", log0, log1, log2, log3, log4, log5); } if (imc->hbm_mc) { if (pch) { corr0 = I10NM_GET_REG32(imc, res->channel, 0x2c18); corr1 = I10NM_GET_REG32(imc, res->channel, 0x2c1c); corr2 = I10NM_GET_REG32(imc, res->channel, 0x2c20); corr3 = I10NM_GET_REG32(imc, res->channel, 0x2c24); } else { corr0 = I10NM_GET_REG32(imc, res->channel, 0x2818); corr1 = I10NM_GET_REG32(imc, res->channel, 0x281c); corr2 = I10NM_GET_REG32(imc, res->channel, 0x2820); corr3 = I10NM_GET_REG32(imc, res->channel, 0x2824); } } else { corr0 = I10NM_GET_REG32(imc, res->channel, 0x22c18); corr1 = I10NM_GET_REG32(imc, res->channel, 0x22c1c); corr2 = I10NM_GET_REG32(imc, res->channel, 0x22c20); corr3 = I10NM_GET_REG32(imc, res->channel, 0x22c24); } if (len - n > 0) snprintf(msg + n, len - n, " correrrcnt[%.4x %.4x %.4x %.4x %.4x %.4x %.4x %.4x]", corr0 & 0xffff, corr0 >> 16, corr1 & 0xffff, corr1 >> 16, corr2 & 0xffff, corr2 >> 16, corr3 & 0xffff, corr3 >> 16); /* Clear status bits */ if (retry_rd_err_log == 2) { if (log0 & RETRY_RD_ERR_LOG_OVER_UC_V) { log0 &= ~RETRY_RD_ERR_LOG_OVER_UC_V; I10NM_SET_REG32(imc, res->channel, offsets[0], log0); } if (xffsets && (lxg0 & RETRY_RD_ERR_LOG_OVER_UC_V)) { lxg0 &= ~RETRY_RD_ERR_LOG_OVER_UC_V; I10NM_SET_REG32(imc, res->channel, xffsets[0], lxg0); } } } static struct pci_dev *pci_get_dev_wrapper(int dom, unsigned int bus, unsigned int dev, unsigned int fun) { struct pci_dev *pdev; pdev = pci_get_domain_bus_and_slot(dom, bus, PCI_DEVFN(dev, fun)); if (!pdev) { edac_dbg(2, "No device %02x:%02x.%x\n", bus, dev, fun); return NULL; } if (unlikely(pci_enable_device(pdev) < 0)) { edac_dbg(2, "Failed to enable device %02x:%02x.%x\n", bus, dev, fun); pci_dev_put(pdev); return NULL; } return pdev; } /** * i10nm_get_imc_num() - Get the number of present DDR memory controllers. * * @cfg : The pointer to the structure of EDAC resource configurations. * * For Granite Rapids CPUs, the number of present DDR memory controllers read * at runtime overwrites the value statically configured in @cfg->ddr_imc_num. * For other CPUs, the number of present DDR memory controllers is statically * configured in @cfg->ddr_imc_num. * * RETURNS : 0 on success, < 0 on failure. */ static int i10nm_get_imc_num(struct res_config *cfg) { int n, imc_num, chan_num = 0; struct skx_dev *d; u32 reg; list_for_each_entry(d, i10nm_edac_list, list) { d->pcu_cr3 = pci_get_dev_wrapper(d->seg, d->bus[res_cfg->pcu_cr3_bdf.bus], res_cfg->pcu_cr3_bdf.dev, res_cfg->pcu_cr3_bdf.fun); if (!d->pcu_cr3) continue; if (I10NM_GET_CAPID5_CFG(d, reg)) continue; n = I10NM_DDR_IMC_CH_CNT(reg); if (!chan_num) { chan_num = n; edac_dbg(2, "Get DDR CH number: %d\n", chan_num); } else if (chan_num != n) { i10nm_printk(KERN_NOTICE, "Get DDR CH numbers: %d, %d\n", chan_num, n); } } switch (cfg->type) { case GNR: /* * One channel per DDR memory controller for Granite Rapids CPUs. */ imc_num = chan_num; if (!imc_num) { i10nm_printk(KERN_ERR, "Invalid DDR MC number\n"); return -ENODEV; } if (imc_num > I10NM_NUM_DDR_IMC) { i10nm_printk(KERN_ERR, "Need to make I10NM_NUM_DDR_IMC >= %d\n", imc_num); return -EINVAL; } if (cfg->ddr_imc_num != imc_num) { /* * Store the number of present DDR memory controllers. */ cfg->ddr_imc_num = imc_num; edac_dbg(2, "Set DDR MC number: %d", imc_num); } return 0; default: /* * For other CPUs, the number of present DDR memory controllers * is statically pre-configured in cfg->ddr_imc_num. */ return 0; } } static bool i10nm_check_2lm(struct res_config *cfg) { struct skx_dev *d; u32 reg; int i; list_for_each_entry(d, i10nm_edac_list, list) { d->sad_all = pci_get_dev_wrapper(d->seg, d->bus[res_cfg->sad_all_bdf.bus], res_cfg->sad_all_bdf.dev, res_cfg->sad_all_bdf.fun); if (!d->sad_all) continue; for (i = 0; i < I10NM_MAX_SAD; i++) { I10NM_GET_SAD(d, cfg->sad_all_offset, i, reg); if (I10NM_SAD_ENABLE(reg) && I10NM_SAD_NM_CACHEABLE(reg)) { edac_dbg(2, "2-level memory configuration.\n"); return true; } } } return false; } /* * Check whether the error comes from DDRT by ICX/Tremont/SPR model specific error code. * Refer to SDM vol3B 17.11.3/17.13.2 Intel IMC MC error codes for IA32_MCi_STATUS. */ static bool i10nm_mscod_is_ddrt(u32 mscod) { switch (res_cfg->type) { case I10NM: switch (mscod) { case 0x0106: case 0x0107: case 0x0800: case 0x0804: case 0x0806 ... 0x0808: case 0x080a ... 0x080e: case 0x0810: case 0x0811: case 0x0816: case 0x081e: case 0x081f: return true; } break; case SPR: switch (mscod) { case 0x0800: case 0x0804: case 0x0806 ... 0x0808: case 0x080a ... 0x080e: case 0x0810: case 0x0811: case 0x0816: case 0x081e: case 0x081f: return true; } break; default: return false; } return false; } static bool i10nm_mc_decode_available(struct mce *mce) { #define ICX_IMCx_CHy 0x06666000 u8 bank; if (!decoding_via_mca || mem_cfg_2lm) return false; if ((mce->status & (MCI_STATUS_MISCV | MCI_STATUS_ADDRV)) != (MCI_STATUS_MISCV | MCI_STATUS_ADDRV)) return false; bank = mce->bank; switch (res_cfg->type) { case I10NM: /* Check whether the bank is one of {13,14,17,18,21,22,25,26} */ if (!(ICX_IMCx_CHy & (1 << bank))) return false; break; case SPR: if (bank < 13 || bank > 20) return false; break; default: return false; } /* DDRT errors can't be decoded from MCA bank registers */ if (MCI_MISC_ECC_MODE(mce->misc) == MCI_MISC_ECC_DDRT) return false; if (i10nm_mscod_is_ddrt(MCI_STATUS_MSCOD(mce->status))) return false; return true; } static bool i10nm_mc_decode(struct decoded_addr *res) { struct mce *m = res->mce; struct skx_dev *d; u8 bank; if (!i10nm_mc_decode_available(m)) return false; list_for_each_entry(d, i10nm_edac_list, list) { if (d->imc[0].src_id == m->socketid) { res->socket = m->socketid; res->dev = d; break; } } switch (res_cfg->type) { case I10NM: bank = m->bank - 13; res->imc = bank / 4; res->channel = bank % 2; res->column = GET_BITFIELD(m->misc, 9, 18) << 2; res->row = GET_BITFIELD(m->misc, 19, 39); res->bank_group = GET_BITFIELD(m->misc, 40, 41); res->bank_address = GET_BITFIELD(m->misc, 42, 43); res->bank_group |= GET_BITFIELD(m->misc, 44, 44) << 2; res->rank = GET_BITFIELD(m->misc, 56, 58); res->dimm = res->rank >> 2; res->rank = res->rank % 4; break; case SPR: bank = m->bank - 13; res->imc = bank / 2; res->channel = bank % 2; res->column = GET_BITFIELD(m->misc, 9, 18) << 2; res->row = GET_BITFIELD(m->misc, 19, 36); res->bank_group = GET_BITFIELD(m->misc, 37, 38); res->bank_address = GET_BITFIELD(m->misc, 39, 40); res->bank_group |= GET_BITFIELD(m->misc, 41, 41) << 2; res->rank = GET_BITFIELD(m->misc, 57, 57); res->dimm = GET_BITFIELD(m->misc, 58, 58); break; default: return false; } if (!res->dev) { skx_printk(KERN_ERR, "No device for src_id %d imc %d\n", m->socketid, res->imc); return false; } return true; } /** * get_gnr_mdev() - Get the PCI device of the @logical_idx-th DDR memory controller. * * @d : The pointer to the structure of CPU socket EDAC device. * @logical_idx : The logical index of the present memory controller (0 ~ max present MC# - 1). * @physical_idx : To store the corresponding physical index of @logical_idx. * * RETURNS : The PCI device of the @logical_idx-th DDR memory controller, NULL on failure. */ static struct pci_dev *get_gnr_mdev(struct skx_dev *d, int logical_idx, int *physical_idx) { #define GNR_MAX_IMC_PCI_CNT 28 struct pci_dev *mdev; int i, logical = 0; /* * Detect present memory controllers from { PCI device: 8-5, function 7-1 } */ for (i = 0; i < GNR_MAX_IMC_PCI_CNT; i++) { mdev = pci_get_dev_wrapper(d->seg, d->bus[res_cfg->ddr_mdev_bdf.bus], res_cfg->ddr_mdev_bdf.dev + i / 7, res_cfg->ddr_mdev_bdf.fun + i % 7); if (mdev) { if (logical == logical_idx) { *physical_idx = i; return mdev; } pci_dev_put(mdev); logical++; } } return NULL; } /** * get_ddr_munit() - Get the resource of the i-th DDR memory controller. * * @d : The pointer to the structure of CPU socket EDAC device. * @i : The index of the CPU socket relative DDR memory controller. * @offset : To store the MMIO offset of the i-th DDR memory controller. * @size : To store the MMIO size of the i-th DDR memory controller. * * RETURNS : The PCI device of the i-th DDR memory controller, NULL on failure. */ static struct pci_dev *get_ddr_munit(struct skx_dev *d, int i, u32 *offset, unsigned long *size) { struct pci_dev *mdev; int physical_idx; u32 reg; switch (res_cfg->type) { case GNR: if (I10NM_GET_IMC_BAR(d, 0, reg)) { i10nm_printk(KERN_ERR, "Failed to get mc0 bar\n"); return NULL; } mdev = get_gnr_mdev(d, i, &physical_idx); if (!mdev) return NULL; *offset = I10NM_GET_IMC_MMIO_OFFSET(reg) + I10NM_GNR_IMC_MMIO_OFFSET + physical_idx * I10NM_GNR_IMC_MMIO_SIZE; *size = I10NM_GNR_IMC_MMIO_SIZE; break; default: if (I10NM_GET_IMC_BAR(d, i, reg)) { i10nm_printk(KERN_ERR, "Failed to get mc%d bar\n", i); return NULL; } mdev = pci_get_dev_wrapper(d->seg, d->bus[res_cfg->ddr_mdev_bdf.bus], res_cfg->ddr_mdev_bdf.dev + i, res_cfg->ddr_mdev_bdf.fun); if (!mdev) return NULL; *offset = I10NM_GET_IMC_MMIO_OFFSET(reg); *size = I10NM_GET_IMC_MMIO_SIZE(reg); } return mdev; } /** * i10nm_imc_absent() - Check whether the memory controller @imc is absent * * @imc : The pointer to the structure of memory controller EDAC device. * * RETURNS : true if the memory controller EDAC device is absent, false otherwise. */ static bool i10nm_imc_absent(struct skx_imc *imc) { u32 mcmtr; int i; switch (res_cfg->type) { case SPR: for (i = 0; i < res_cfg->ddr_chan_num; i++) { mcmtr = I10NM_GET_MCMTR(imc, i); edac_dbg(1, "ch%d mcmtr reg %x\n", i, mcmtr); if (mcmtr != ~0) return false; } /* * Some workstations' absent memory controllers still * appear as PCIe devices, misleading the EDAC driver. * By observing that the MMIO registers of these absent * memory controllers consistently hold the value of ~0. * * We identify a memory controller as absent by checking * if its MMIO register "mcmtr" == ~0 in all its channels. */ return true; default: return false; } } static int i10nm_get_ddr_munits(void) { struct pci_dev *mdev; void __iomem *mbase; unsigned long size; struct skx_dev *d; int i, lmc, j = 0; u32 reg, off; u64 base; list_for_each_entry(d, i10nm_edac_list, list) { d->util_all = pci_get_dev_wrapper(d->seg, d->bus[res_cfg->util_all_bdf.bus], res_cfg->util_all_bdf.dev, res_cfg->util_all_bdf.fun); if (!d->util_all) return -ENODEV; d->uracu = pci_get_dev_wrapper(d->seg, d->bus[res_cfg->uracu_bdf.bus], res_cfg->uracu_bdf.dev, res_cfg->uracu_bdf.fun); if (!d->uracu) return -ENODEV; if (I10NM_GET_SCK_BAR(d, reg)) { i10nm_printk(KERN_ERR, "Failed to socket bar\n"); return -ENODEV; } base = I10NM_GET_SCK_MMIO_BASE(reg); edac_dbg(2, "socket%d mmio base 0x%llx (reg 0x%x)\n", j++, base, reg); for (lmc = 0, i = 0; i < res_cfg->ddr_imc_num; i++) { mdev = get_ddr_munit(d, i, &off, &size); if (i == 0 && !mdev) { i10nm_printk(KERN_ERR, "No IMC found\n"); return -ENODEV; } if (!mdev) continue; edac_dbg(2, "mc%d mmio base 0x%llx size 0x%lx (reg 0x%x)\n", i, base + off, size, reg); mbase = ioremap(base + off, size); if (!mbase) { i10nm_printk(KERN_ERR, "Failed to ioremap 0x%llx\n", base + off); return -ENODEV; } d->imc[lmc].mbase = mbase; if (i10nm_imc_absent(&d->imc[lmc])) { pci_dev_put(mdev); iounmap(mbase); d->imc[lmc].mbase = NULL; edac_dbg(2, "Skip absent mc%d\n", i); continue; } else { d->imc[lmc].mdev = mdev; lmc++; } } } return 0; } static bool i10nm_check_hbm_imc(struct skx_dev *d) { u32 reg; if (I10NM_GET_CAPID3_CFG(d, reg)) { i10nm_printk(KERN_ERR, "Failed to get capid3_cfg\n"); return false; } return I10NM_IS_HBM_PRESENT(reg) != 0; } static int i10nm_get_hbm_munits(void) { struct pci_dev *mdev; void __iomem *mbase; u32 reg, off, mcmtr; struct skx_dev *d; int i, lmc; u64 base; list_for_each_entry(d, i10nm_edac_list, list) { if (!d->pcu_cr3) return -ENODEV; if (!i10nm_check_hbm_imc(d)) { i10nm_printk(KERN_DEBUG, "No hbm memory\n"); return -ENODEV; } if (I10NM_GET_SCK_BAR(d, reg)) { i10nm_printk(KERN_ERR, "Failed to get socket bar\n"); return -ENODEV; } base = I10NM_GET_SCK_MMIO_BASE(reg); if (I10NM_GET_HBM_IMC_BAR(d, reg)) { i10nm_printk(KERN_ERR, "Failed to get hbm mc bar\n"); return -ENODEV; } base += I10NM_GET_HBM_IMC_MMIO_OFFSET(reg); lmc = res_cfg->ddr_imc_num; for (i = 0; i < res_cfg->hbm_imc_num; i++) { mdev = pci_get_dev_wrapper(d->seg, d->bus[res_cfg->hbm_mdev_bdf.bus], res_cfg->hbm_mdev_bdf.dev + i / 4, res_cfg->hbm_mdev_bdf.fun + i % 4); if (i == 0 && !mdev) { i10nm_printk(KERN_ERR, "No hbm mc found\n"); return -ENODEV; } if (!mdev) continue; d->imc[lmc].mdev = mdev; off = i * I10NM_HBM_IMC_MMIO_SIZE; edac_dbg(2, "hbm mc%d mmio base 0x%llx size 0x%x\n", lmc, base + off, I10NM_HBM_IMC_MMIO_SIZE); mbase = ioremap(base + off, I10NM_HBM_IMC_MMIO_SIZE); if (!mbase) { pci_dev_put(d->imc[lmc].mdev); d->imc[lmc].mdev = NULL; i10nm_printk(KERN_ERR, "Failed to ioremap for hbm mc 0x%llx\n", base + off); return -ENOMEM; } d->imc[lmc].mbase = mbase; d->imc[lmc].hbm_mc = true; mcmtr = I10NM_GET_MCMTR(&d->imc[lmc], 0); if (!I10NM_IS_HBM_IMC(mcmtr)) { iounmap(d->imc[lmc].mbase); d->imc[lmc].mbase = NULL; d->imc[lmc].hbm_mc = false; pci_dev_put(d->imc[lmc].mdev); d->imc[lmc].mdev = NULL; i10nm_printk(KERN_ERR, "This isn't an hbm mc!\n"); return -ENODEV; } lmc++; } } return 0; } static struct res_config i10nm_cfg0 = { .type = I10NM, .decs_did = 0x3452, .busno_cfg_offset = 0xcc, .ddr_imc_num = 4, .ddr_chan_num = 2, .ddr_dimm_num = 2, .ddr_chan_mmio_sz = 0x4000, .sad_all_bdf = {1, 29, 0}, .pcu_cr3_bdf = {1, 30, 3}, .util_all_bdf = {1, 29, 1}, .uracu_bdf = {0, 0, 1}, .ddr_mdev_bdf = {0, 12, 0}, .hbm_mdev_bdf = {0, 12, 1}, .sad_all_offset = 0x108, .offsets_scrub = offsets_scrub_icx, .offsets_demand = offsets_demand_icx, }; static struct res_config i10nm_cfg1 = { .type = I10NM, .decs_did = 0x3452, .busno_cfg_offset = 0xd0, .ddr_imc_num = 4, .ddr_chan_num = 2, .ddr_dimm_num = 2, .ddr_chan_mmio_sz = 0x4000, .sad_all_bdf = {1, 29, 0}, .pcu_cr3_bdf = {1, 30, 3}, .util_all_bdf = {1, 29, 1}, .uracu_bdf = {0, 0, 1}, .ddr_mdev_bdf = {0, 12, 0}, .hbm_mdev_bdf = {0, 12, 1}, .sad_all_offset = 0x108, .offsets_scrub = offsets_scrub_icx, .offsets_demand = offsets_demand_icx, }; static struct res_config spr_cfg = { .type = SPR, .decs_did = 0x3252, .busno_cfg_offset = 0xd0, .ddr_imc_num = 4, .ddr_chan_num = 2, .ddr_dimm_num = 2, .hbm_imc_num = 16, .hbm_chan_num = 2, .hbm_dimm_num = 1, .ddr_chan_mmio_sz = 0x8000, .hbm_chan_mmio_sz = 0x4000, .support_ddr5 = true, .sad_all_bdf = {1, 10, 0}, .pcu_cr3_bdf = {1, 30, 3}, .util_all_bdf = {1, 29, 1}, .uracu_bdf = {0, 0, 1}, .ddr_mdev_bdf = {0, 12, 0}, .hbm_mdev_bdf = {0, 12, 1}, .sad_all_offset = 0x300, .offsets_scrub = offsets_scrub_spr, .offsets_scrub_hbm0 = offsets_scrub_spr_hbm0, .offsets_scrub_hbm1 = offsets_scrub_spr_hbm1, .offsets_demand = offsets_demand_spr, .offsets_demand2 = offsets_demand2_spr, .offsets_demand_hbm0 = offsets_demand_spr_hbm0, .offsets_demand_hbm1 = offsets_demand_spr_hbm1, }; static struct res_config gnr_cfg = { .type = GNR, .decs_did = 0x3252, .busno_cfg_offset = 0xd0, .ddr_imc_num = 12, .ddr_chan_num = 1, .ddr_dimm_num = 2, .ddr_chan_mmio_sz = 0x4000, .support_ddr5 = true, .sad_all_bdf = {0, 13, 0}, .pcu_cr3_bdf = {0, 5, 0}, .util_all_bdf = {0, 13, 1}, .uracu_bdf = {0, 0, 1}, .ddr_mdev_bdf = {0, 5, 1}, .sad_all_offset = 0x300, }; static const struct x86_cpu_id i10nm_cpuids[] = { X86_MATCH_INTEL_FAM6_MODEL_STEPPINGS(ATOM_TREMONT_D, X86_STEPPINGS(0x0, 0x3), &i10nm_cfg0), X86_MATCH_INTEL_FAM6_MODEL_STEPPINGS(ATOM_TREMONT_D, X86_STEPPINGS(0x4, 0xf), &i10nm_cfg1), X86_MATCH_INTEL_FAM6_MODEL_STEPPINGS(ICELAKE_X, X86_STEPPINGS(0x0, 0x3), &i10nm_cfg0), X86_MATCH_INTEL_FAM6_MODEL_STEPPINGS(ICELAKE_X, X86_STEPPINGS(0x4, 0xf), &i10nm_cfg1), X86_MATCH_INTEL_FAM6_MODEL_STEPPINGS(ICELAKE_D, X86_STEPPINGS(0x0, 0xf), &i10nm_cfg1), X86_MATCH_INTEL_FAM6_MODEL_STEPPINGS(SAPPHIRERAPIDS_X, X86_STEPPINGS(0x0, 0xf), &spr_cfg), X86_MATCH_INTEL_FAM6_MODEL_STEPPINGS(EMERALDRAPIDS_X, X86_STEPPINGS(0x0, 0xf), &spr_cfg), X86_MATCH_INTEL_FAM6_MODEL_STEPPINGS(GRANITERAPIDS_X, X86_STEPPINGS(0x0, 0xf), &gnr_cfg), X86_MATCH_INTEL_FAM6_MODEL_STEPPINGS(ATOM_CRESTMONT_X, X86_STEPPINGS(0x0, 0xf), &gnr_cfg), X86_MATCH_INTEL_FAM6_MODEL_STEPPINGS(ATOM_CRESTMONT, X86_STEPPINGS(0x0, 0xf), &gnr_cfg), {} }; MODULE_DEVICE_TABLE(x86cpu, i10nm_cpuids); static bool i10nm_check_ecc(struct skx_imc *imc, int chan) { u32 mcmtr; mcmtr = I10NM_GET_MCMTR(imc, chan); edac_dbg(1, "ch%d mcmtr reg %x\n", chan, mcmtr); return !!GET_BITFIELD(mcmtr, 2, 2); } static int i10nm_get_dimm_config(struct mem_ctl_info *mci, struct res_config *cfg) { struct skx_pvt *pvt = mci->pvt_info; struct skx_imc *imc = pvt->imc; u32 mtr, amap, mcddrtcfg = 0; struct dimm_info *dimm; int i, j, ndimms; for (i = 0; i < imc->num_channels; i++) { if (!imc->mbase) continue; ndimms = 0; amap = I10NM_GET_AMAP(imc, i); if (res_cfg->type != GNR) mcddrtcfg = I10NM_GET_MCDDRTCFG(imc, i); for (j = 0; j < imc->num_dimms; j++) { dimm = edac_get_dimm(mci, i, j, 0); mtr = I10NM_GET_DIMMMTR(imc, i, j); edac_dbg(1, "dimmmtr 0x%x mcddrtcfg 0x%x (mc%d ch%d dimm%d)\n", mtr, mcddrtcfg, imc->mc, i, j); if (IS_DIMM_PRESENT(mtr)) ndimms += skx_get_dimm_info(mtr, 0, amap, dimm, imc, i, j, cfg); else if (IS_NVDIMM_PRESENT(mcddrtcfg, j)) ndimms += skx_get_nvdimm_info(dimm, imc, i, j, EDAC_MOD_STR); } if (ndimms && !i10nm_check_ecc(imc, i)) { i10nm_printk(KERN_ERR, "ECC is disabled on imc %d channel %d\n", imc->mc, i); return -ENODEV; } } return 0; } static struct notifier_block i10nm_mce_dec = { .notifier_call = skx_mce_check_error, .priority = MCE_PRIO_EDAC, }; #ifdef CONFIG_EDAC_DEBUG /* * Debug feature. * Exercise the address decode logic by writing an address to * /sys/kernel/debug/edac/i10nm_test/addr. */ static struct dentry *i10nm_test; static int debugfs_u64_set(void *data, u64 val) { struct mce m; pr_warn_once("Fake error to 0x%llx injected via debugfs\n", val); memset(&m, 0, sizeof(m)); /* ADDRV + MemRd + Unknown channel */ m.status = MCI_STATUS_ADDRV + 0x90; /* One corrected error */ m.status |= BIT_ULL(MCI_STATUS_CEC_SHIFT); m.addr = val; skx_mce_check_error(NULL, 0, &m); return 0; } DEFINE_SIMPLE_ATTRIBUTE(fops_u64_wo, NULL, debugfs_u64_set, "%llu\n"); static void setup_i10nm_debug(void) { i10nm_test = edac_debugfs_create_dir("i10nm_test"); if (!i10nm_test) return; if (!edac_debugfs_create_file("addr", 0200, i10nm_test, NULL, &fops_u64_wo)) { debugfs_remove(i10nm_test); i10nm_test = NULL; } } static void teardown_i10nm_debug(void) { debugfs_remove_recursive(i10nm_test); } #else static inline void setup_i10nm_debug(void) {} static inline void teardown_i10nm_debug(void) {} #endif /*CONFIG_EDAC_DEBUG*/ static int __init i10nm_init(void) { u8 mc = 0, src_id = 0, node_id = 0; const struct x86_cpu_id *id; struct res_config *cfg; const char *owner; struct skx_dev *d; int rc, i, off[3] = {0xd0, 0xc8, 0xcc}; u64 tolm, tohm; int imc_num; edac_dbg(2, "\n"); if (ghes_get_devices()) return -EBUSY; owner = edac_get_owner(); if (owner && strncmp(owner, EDAC_MOD_STR, sizeof(EDAC_MOD_STR))) return -EBUSY; if (cpu_feature_enabled(X86_FEATURE_HYPERVISOR)) return -ENODEV; id = x86_match_cpu(i10nm_cpuids); if (!id) return -ENODEV; cfg = (struct res_config *)id->driver_data; res_cfg = cfg; rc = skx_get_hi_lo(0x09a2, off, &tolm, &tohm); if (rc) return rc; rc = skx_get_all_bus_mappings(cfg, &i10nm_edac_list); if (rc < 0) goto fail; if (rc == 0) { i10nm_printk(KERN_ERR, "No memory controllers found\n"); return -ENODEV; } rc = i10nm_get_imc_num(cfg); if (rc < 0) goto fail; mem_cfg_2lm = i10nm_check_2lm(cfg); skx_set_mem_cfg(mem_cfg_2lm); rc = i10nm_get_ddr_munits(); if (i10nm_get_hbm_munits() && rc) goto fail; imc_num = res_cfg->ddr_imc_num + res_cfg->hbm_imc_num; list_for_each_entry(d, i10nm_edac_list, list) { rc = skx_get_src_id(d, 0xf8, &src_id); if (rc < 0) goto fail; rc = skx_get_node_id(d, &node_id); if (rc < 0) goto fail; edac_dbg(2, "src_id = %d node_id = %d\n", src_id, node_id); for (i = 0; i < imc_num; i++) { if (!d->imc[i].mdev) continue; d->imc[i].mc = mc++; d->imc[i].lmc = i; d->imc[i].src_id = src_id; d->imc[i].node_id = node_id; if (d->imc[i].hbm_mc) { d->imc[i].chan_mmio_sz = cfg->hbm_chan_mmio_sz; d->imc[i].num_channels = cfg->hbm_chan_num; d->imc[i].num_dimms = cfg->hbm_dimm_num; } else { d->imc[i].chan_mmio_sz = cfg->ddr_chan_mmio_sz; d->imc[i].num_channels = cfg->ddr_chan_num; d->imc[i].num_dimms = cfg->ddr_dimm_num; } rc = skx_register_mci(&d->imc[i], d->imc[i].mdev, "Intel_10nm Socket", EDAC_MOD_STR, i10nm_get_dimm_config, cfg); if (rc < 0) goto fail; } } rc = skx_adxl_get(); if (rc) goto fail; opstate_init(); mce_register_decode_chain(&i10nm_mce_dec); setup_i10nm_debug(); if (retry_rd_err_log && res_cfg->offsets_scrub && res_cfg->offsets_demand) { skx_set_decode(i10nm_mc_decode, show_retry_rd_err_log); if (retry_rd_err_log == 2) enable_retry_rd_err_log(true); } else { skx_set_decode(i10nm_mc_decode, NULL); } i10nm_printk(KERN_INFO, "%s\n", I10NM_REVISION); return 0; fail: skx_remove(); return rc; } static void __exit i10nm_exit(void) { edac_dbg(2, "\n"); if (retry_rd_err_log && res_cfg->offsets_scrub && res_cfg->offsets_demand) { skx_set_decode(NULL, NULL); if (retry_rd_err_log == 2) enable_retry_rd_err_log(false); } teardown_i10nm_debug(); mce_unregister_decode_chain(&i10nm_mce_dec); skx_adxl_put(); skx_remove(); } module_init(i10nm_init); module_exit(i10nm_exit); static int set_decoding_via_mca(const char *buf, const struct kernel_param *kp) { unsigned long val; int ret; ret = kstrtoul(buf, 0, &val); if (ret || val > 1) return -EINVAL; if (val && mem_cfg_2lm) { i10nm_printk(KERN_NOTICE, "Decoding errors via MCA banks for 2LM isn't supported yet\n"); return -EIO; } ret = param_set_int(buf, kp); return ret; } static const struct kernel_param_ops decoding_via_mca_param_ops = { .set = set_decoding_via_mca, .get = param_get_int, }; module_param_cb(decoding_via_mca, &decoding_via_mca_param_ops, &decoding_via_mca, 0644); MODULE_PARM_DESC(decoding_via_mca, "decoding_via_mca: 0=off(default), 1=enable"); module_param(retry_rd_err_log, int, 0444); MODULE_PARM_DESC(retry_rd_err_log, "retry_rd_err_log: 0=off(default), 1=bios(Linux doesn't reset any control bits, but just reports values.), 2=linux(Linux tries to take control and resets mode bits, clear valid/UC bits after reading.)"); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("MC Driver for Intel 10nm server processors"); |