Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 | /* SPDX-License-Identifier: GPL-2.0-only * Copyright (C) 2020 Marvell. */ #ifndef __OTX2_CPT_REQMGR_H #define __OTX2_CPT_REQMGR_H #include "otx2_cpt_common.h" /* Completion code size and initial value */ #define OTX2_CPT_COMPLETION_CODE_SIZE 8 #define OTX2_CPT_COMPLETION_CODE_INIT OTX2_CPT_COMP_E_NOTDONE /* * Maximum total number of SG buffers is 100, we divide it equally * between input and output */ #define OTX2_CPT_MAX_SG_IN_CNT 50 #define OTX2_CPT_MAX_SG_OUT_CNT 50 /* DMA mode direct or SG */ #define OTX2_CPT_DMA_MODE_DIRECT 0 #define OTX2_CPT_DMA_MODE_SG 1 /* Context source CPTR or DPTR */ #define OTX2_CPT_FROM_CPTR 0 #define OTX2_CPT_FROM_DPTR 1 #define OTX2_CPT_MAX_REQ_SIZE 65535 #define SG_COMPS_MAX 4 #define SGV2_COMPS_MAX 3 #define SG_COMP_3 3 #define SG_COMP_2 2 #define SG_COMP_1 1 union otx2_cpt_opcode { u16 flags; struct { u8 major; u8 minor; } s; }; struct otx2_cptvf_request { u32 param1; u32 param2; u16 dlen; union otx2_cpt_opcode opcode; dma_addr_t cptr_dma; void *cptr; }; /* * CPT_INST_S software command definitions * Words EI (0-3) */ union otx2_cpt_iq_cmd_word0 { u64 u; struct { __be16 opcode; __be16 param1; __be16 param2; __be16 dlen; } s; }; union otx2_cpt_iq_cmd_word3 { u64 u; struct { u64 cptr:61; u64 grp:3; } s; }; struct otx2_cpt_iq_command { union otx2_cpt_iq_cmd_word0 cmd; u64 dptr; u64 rptr; union otx2_cpt_iq_cmd_word3 cptr; }; struct otx2_cpt_pending_entry { void *completion_addr; /* Completion address */ void *info; /* Kernel async request callback */ void (*callback)(int status, void *arg1, void *arg2); struct crypto_async_request *areq; /* Async request callback arg */ u8 resume_sender; /* Notify sender to resume sending requests */ u8 busy; /* Entry status (free/busy) */ }; struct otx2_cpt_pending_queue { struct otx2_cpt_pending_entry *head; /* Head of the queue */ u32 front; /* Process work from here */ u32 rear; /* Append new work here */ u32 pending_count; /* Pending requests count */ u32 qlen; /* Queue length */ spinlock_t lock; /* Queue lock */ }; struct otx2_cpt_buf_ptr { u8 *vptr; dma_addr_t dma_addr; u16 size; }; union otx2_cpt_ctrl_info { u32 flags; struct { #if defined(__BIG_ENDIAN_BITFIELD) u32 reserved_6_31:26; u32 grp:3; /* Group bits */ u32 dma_mode:2; /* DMA mode */ u32 se_req:1; /* To SE core */ #else u32 se_req:1; /* To SE core */ u32 dma_mode:2; /* DMA mode */ u32 grp:3; /* Group bits */ u32 reserved_6_31:26; #endif } s; }; struct otx2_cpt_req_info { /* Kernel async request callback */ void (*callback)(int status, void *arg1, void *arg2); struct crypto_async_request *areq; /* Async request callback arg */ struct otx2_cptvf_request req;/* Request information (core specific) */ union otx2_cpt_ctrl_info ctrl;/* User control information */ struct otx2_cpt_buf_ptr in[OTX2_CPT_MAX_SG_IN_CNT]; struct otx2_cpt_buf_ptr out[OTX2_CPT_MAX_SG_OUT_CNT]; u8 *iv_out; /* IV to send back */ u16 rlen; /* Output length */ u8 in_cnt; /* Number of input buffers */ u8 out_cnt; /* Number of output buffers */ u8 req_type; /* Type of request */ u8 is_enc; /* Is a request an encryption request */ u8 is_trunc_hmac;/* Is truncated hmac used */ }; struct otx2_cpt_inst_info { struct otx2_cpt_pending_entry *pentry; struct otx2_cpt_req_info *req; struct pci_dev *pdev; void *completion_addr; u8 *out_buffer; u8 *in_buffer; dma_addr_t dptr_baddr; dma_addr_t rptr_baddr; dma_addr_t comp_baddr; unsigned long time_in; u32 dlen; u32 dma_len; u64 gthr_sz; u64 sctr_sz; u8 extra_time; }; struct otx2_cpt_sglist_component { __be16 len0; __be16 len1; __be16 len2; __be16 len3; __be64 ptr0; __be64 ptr1; __be64 ptr2; __be64 ptr3; }; struct cn10kb_cpt_sglist_component { u16 len0; u16 len1; u16 len2; u16 valid_segs; u64 ptr0; u64 ptr1; u64 ptr2; }; static inline void otx2_cpt_info_destroy(struct pci_dev *pdev, struct otx2_cpt_inst_info *info) { struct otx2_cpt_req_info *req; int i; if (info->dptr_baddr) dma_unmap_single(&pdev->dev, info->dptr_baddr, info->dma_len, DMA_BIDIRECTIONAL); if (info->req) { req = info->req; for (i = 0; i < req->out_cnt; i++) { if (req->out[i].dma_addr) dma_unmap_single(&pdev->dev, req->out[i].dma_addr, req->out[i].size, DMA_BIDIRECTIONAL); } for (i = 0; i < req->in_cnt; i++) { if (req->in[i].dma_addr) dma_unmap_single(&pdev->dev, req->in[i].dma_addr, req->in[i].size, DMA_BIDIRECTIONAL); } } kfree(info); } static inline int setup_sgio_components(struct pci_dev *pdev, struct otx2_cpt_buf_ptr *list, int buf_count, u8 *buffer) { struct otx2_cpt_sglist_component *sg_ptr; int components; int i, j; if (unlikely(!list)) { dev_err(&pdev->dev, "Input list pointer is NULL\n"); return -EINVAL; } for (i = 0; i < buf_count; i++) { if (unlikely(!list[i].vptr)) continue; list[i].dma_addr = dma_map_single(&pdev->dev, list[i].vptr, list[i].size, DMA_BIDIRECTIONAL); if (unlikely(dma_mapping_error(&pdev->dev, list[i].dma_addr))) { dev_err(&pdev->dev, "Dma mapping failed\n"); goto sg_cleanup; } } components = buf_count / SG_COMPS_MAX; sg_ptr = (struct otx2_cpt_sglist_component *)buffer; for (i = 0; i < components; i++) { sg_ptr->len0 = cpu_to_be16(list[i * SG_COMPS_MAX + 0].size); sg_ptr->len1 = cpu_to_be16(list[i * SG_COMPS_MAX + 1].size); sg_ptr->len2 = cpu_to_be16(list[i * SG_COMPS_MAX + 2].size); sg_ptr->len3 = cpu_to_be16(list[i * SG_COMPS_MAX + 3].size); sg_ptr->ptr0 = cpu_to_be64(list[i * SG_COMPS_MAX + 0].dma_addr); sg_ptr->ptr1 = cpu_to_be64(list[i * SG_COMPS_MAX + 1].dma_addr); sg_ptr->ptr2 = cpu_to_be64(list[i * SG_COMPS_MAX + 2].dma_addr); sg_ptr->ptr3 = cpu_to_be64(list[i * SG_COMPS_MAX + 3].dma_addr); sg_ptr++; } components = buf_count % SG_COMPS_MAX; switch (components) { case SG_COMP_3: sg_ptr->len2 = cpu_to_be16(list[i * SG_COMPS_MAX + 2].size); sg_ptr->ptr2 = cpu_to_be64(list[i * SG_COMPS_MAX + 2].dma_addr); fallthrough; case SG_COMP_2: sg_ptr->len1 = cpu_to_be16(list[i * SG_COMPS_MAX + 1].size); sg_ptr->ptr1 = cpu_to_be64(list[i * SG_COMPS_MAX + 1].dma_addr); fallthrough; case SG_COMP_1: sg_ptr->len0 = cpu_to_be16(list[i * SG_COMPS_MAX + 0].size); sg_ptr->ptr0 = cpu_to_be64(list[i * SG_COMPS_MAX + 0].dma_addr); break; default: break; } return 0; sg_cleanup: for (j = 0; j < i; j++) { if (list[j].dma_addr) { dma_unmap_single(&pdev->dev, list[j].dma_addr, list[j].size, DMA_BIDIRECTIONAL); } list[j].dma_addr = 0; } return -EIO; } static inline int sgv2io_components_setup(struct pci_dev *pdev, struct otx2_cpt_buf_ptr *list, int buf_count, u8 *buffer) { struct cn10kb_cpt_sglist_component *sg_ptr; int components; int i, j; if (unlikely(!list)) { dev_err(&pdev->dev, "Input list pointer is NULL\n"); return -EFAULT; } for (i = 0; i < buf_count; i++) { if (unlikely(!list[i].vptr)) continue; list[i].dma_addr = dma_map_single(&pdev->dev, list[i].vptr, list[i].size, DMA_BIDIRECTIONAL); if (unlikely(dma_mapping_error(&pdev->dev, list[i].dma_addr))) { dev_err(&pdev->dev, "Dma mapping failed\n"); goto sg_cleanup; } } components = buf_count / SGV2_COMPS_MAX; sg_ptr = (struct cn10kb_cpt_sglist_component *)buffer; for (i = 0; i < components; i++) { sg_ptr->len0 = list[i * SGV2_COMPS_MAX + 0].size; sg_ptr->len1 = list[i * SGV2_COMPS_MAX + 1].size; sg_ptr->len2 = list[i * SGV2_COMPS_MAX + 2].size; sg_ptr->ptr0 = list[i * SGV2_COMPS_MAX + 0].dma_addr; sg_ptr->ptr1 = list[i * SGV2_COMPS_MAX + 1].dma_addr; sg_ptr->ptr2 = list[i * SGV2_COMPS_MAX + 2].dma_addr; sg_ptr->valid_segs = SGV2_COMPS_MAX; sg_ptr++; } components = buf_count % SGV2_COMPS_MAX; sg_ptr->valid_segs = components; switch (components) { case SG_COMP_2: sg_ptr->len1 = list[i * SGV2_COMPS_MAX + 1].size; sg_ptr->ptr1 = list[i * SGV2_COMPS_MAX + 1].dma_addr; fallthrough; case SG_COMP_1: sg_ptr->len0 = list[i * SGV2_COMPS_MAX + 0].size; sg_ptr->ptr0 = list[i * SGV2_COMPS_MAX + 0].dma_addr; break; default: break; } return 0; sg_cleanup: for (j = 0; j < i; j++) { if (list[j].dma_addr) { dma_unmap_single(&pdev->dev, list[j].dma_addr, list[j].size, DMA_BIDIRECTIONAL); } list[j].dma_addr = 0; } return -EIO; } static inline struct otx2_cpt_inst_info * cn10k_sgv2_info_create(struct pci_dev *pdev, struct otx2_cpt_req_info *req, gfp_t gfp) { u32 dlen = 0, g_len, sg_len, info_len; int align = OTX2_CPT_DMA_MINALIGN; struct otx2_cpt_inst_info *info; u16 g_sz_bytes, s_sz_bytes; u32 total_mem_len; int i; g_sz_bytes = ((req->in_cnt + 2) / 3) * sizeof(struct cn10kb_cpt_sglist_component); s_sz_bytes = ((req->out_cnt + 2) / 3) * sizeof(struct cn10kb_cpt_sglist_component); g_len = ALIGN(g_sz_bytes, align); sg_len = ALIGN(g_len + s_sz_bytes, align); info_len = ALIGN(sizeof(*info), align); total_mem_len = sg_len + info_len + sizeof(union otx2_cpt_res_s); info = kzalloc(total_mem_len, gfp); if (unlikely(!info)) return NULL; for (i = 0; i < req->in_cnt; i++) dlen += req->in[i].size; info->dlen = dlen; info->in_buffer = (u8 *)info + info_len; info->gthr_sz = req->in_cnt; info->sctr_sz = req->out_cnt; /* Setup gather (input) components */ if (sgv2io_components_setup(pdev, req->in, req->in_cnt, info->in_buffer)) { dev_err(&pdev->dev, "Failed to setup gather list\n"); goto destroy_info; } if (sgv2io_components_setup(pdev, req->out, req->out_cnt, &info->in_buffer[g_len])) { dev_err(&pdev->dev, "Failed to setup scatter list\n"); goto destroy_info; } info->dma_len = total_mem_len - info_len; info->dptr_baddr = dma_map_single(&pdev->dev, info->in_buffer, info->dma_len, DMA_BIDIRECTIONAL); if (unlikely(dma_mapping_error(&pdev->dev, info->dptr_baddr))) { dev_err(&pdev->dev, "DMA Mapping failed for cpt req\n"); goto destroy_info; } info->rptr_baddr = info->dptr_baddr + g_len; /* * Get buffer for union otx2_cpt_res_s response * structure and its physical address */ info->completion_addr = info->in_buffer + sg_len; info->comp_baddr = info->dptr_baddr + sg_len; return info; destroy_info: otx2_cpt_info_destroy(pdev, info); return NULL; } /* SG list header size in bytes */ #define SG_LIST_HDR_SIZE 8 static inline struct otx2_cpt_inst_info * otx2_sg_info_create(struct pci_dev *pdev, struct otx2_cpt_req_info *req, gfp_t gfp) { int align = OTX2_CPT_DMA_MINALIGN; struct otx2_cpt_inst_info *info; u32 dlen, align_dlen, info_len; u16 g_sz_bytes, s_sz_bytes; u32 total_mem_len; if (unlikely(req->in_cnt > OTX2_CPT_MAX_SG_IN_CNT || req->out_cnt > OTX2_CPT_MAX_SG_OUT_CNT)) { dev_err(&pdev->dev, "Error too many sg components\n"); return NULL; } g_sz_bytes = ((req->in_cnt + 3) / 4) * sizeof(struct otx2_cpt_sglist_component); s_sz_bytes = ((req->out_cnt + 3) / 4) * sizeof(struct otx2_cpt_sglist_component); dlen = g_sz_bytes + s_sz_bytes + SG_LIST_HDR_SIZE; align_dlen = ALIGN(dlen, align); info_len = ALIGN(sizeof(*info), align); total_mem_len = align_dlen + info_len + sizeof(union otx2_cpt_res_s); info = kzalloc(total_mem_len, gfp); if (unlikely(!info)) return NULL; info->dlen = dlen; info->in_buffer = (u8 *)info + info_len; ((u16 *)info->in_buffer)[0] = req->out_cnt; ((u16 *)info->in_buffer)[1] = req->in_cnt; ((u16 *)info->in_buffer)[2] = 0; ((u16 *)info->in_buffer)[3] = 0; cpu_to_be64s((u64 *)info->in_buffer); /* Setup gather (input) components */ if (setup_sgio_components(pdev, req->in, req->in_cnt, &info->in_buffer[8])) { dev_err(&pdev->dev, "Failed to setup gather list\n"); goto destroy_info; } if (setup_sgio_components(pdev, req->out, req->out_cnt, &info->in_buffer[8 + g_sz_bytes])) { dev_err(&pdev->dev, "Failed to setup scatter list\n"); goto destroy_info; } info->dma_len = total_mem_len - info_len; info->dptr_baddr = dma_map_single(&pdev->dev, info->in_buffer, info->dma_len, DMA_BIDIRECTIONAL); if (unlikely(dma_mapping_error(&pdev->dev, info->dptr_baddr))) { dev_err(&pdev->dev, "DMA Mapping failed for cpt req\n"); goto destroy_info; } /* * Get buffer for union otx2_cpt_res_s response * structure and its physical address */ info->completion_addr = info->in_buffer + align_dlen; info->comp_baddr = info->dptr_baddr + align_dlen; return info; destroy_info: otx2_cpt_info_destroy(pdev, info); return NULL; } struct otx2_cptlf_wqe; int otx2_cpt_do_request(struct pci_dev *pdev, struct otx2_cpt_req_info *req, int cpu_num); void otx2_cpt_post_process(struct otx2_cptlf_wqe *wqe); int otx2_cpt_get_kcrypto_eng_grp_num(struct pci_dev *pdev); #endif /* __OTX2_CPT_REQMGR_H */ |