Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 | // SPDX-License-Identifier: GPL-2.0-only /* * Intel Keem Bay OCS HCU Crypto Driver. * * Copyright (C) 2018-2020 Intel Corporation */ #include <linux/delay.h> #include <linux/device.h> #include <linux/iopoll.h> #include <linux/irq.h> #include <linux/module.h> #include <crypto/sha2.h> #include "ocs-hcu.h" /* Registers. */ #define OCS_HCU_MODE 0x00 #define OCS_HCU_CHAIN 0x04 #define OCS_HCU_OPERATION 0x08 #define OCS_HCU_KEY_0 0x0C #define OCS_HCU_ISR 0x50 #define OCS_HCU_IER 0x54 #define OCS_HCU_STATUS 0x58 #define OCS_HCU_MSG_LEN_LO 0x60 #define OCS_HCU_MSG_LEN_HI 0x64 #define OCS_HCU_KEY_BYTE_ORDER_CFG 0x80 #define OCS_HCU_DMA_SRC_ADDR 0x400 #define OCS_HCU_DMA_SRC_SIZE 0x408 #define OCS_HCU_DMA_DST_SIZE 0x40C #define OCS_HCU_DMA_DMA_MODE 0x410 #define OCS_HCU_DMA_NEXT_SRC_DESCR 0x418 #define OCS_HCU_DMA_MSI_ISR 0x480 #define OCS_HCU_DMA_MSI_IER 0x484 #define OCS_HCU_DMA_MSI_MASK 0x488 /* Register bit definitions. */ #define HCU_MODE_ALGO_SHIFT 16 #define HCU_MODE_HMAC_SHIFT 22 #define HCU_STATUS_BUSY BIT(0) #define HCU_BYTE_ORDER_SWAP BIT(0) #define HCU_IRQ_HASH_DONE BIT(2) #define HCU_IRQ_HASH_ERR_MASK (BIT(3) | BIT(1) | BIT(0)) #define HCU_DMA_IRQ_SRC_DONE BIT(0) #define HCU_DMA_IRQ_SAI_ERR BIT(2) #define HCU_DMA_IRQ_BAD_COMP_ERR BIT(3) #define HCU_DMA_IRQ_INBUF_RD_ERR BIT(4) #define HCU_DMA_IRQ_INBUF_WD_ERR BIT(5) #define HCU_DMA_IRQ_OUTBUF_WR_ERR BIT(6) #define HCU_DMA_IRQ_OUTBUF_RD_ERR BIT(7) #define HCU_DMA_IRQ_CRD_ERR BIT(8) #define HCU_DMA_IRQ_ERR_MASK (HCU_DMA_IRQ_SAI_ERR | \ HCU_DMA_IRQ_BAD_COMP_ERR | \ HCU_DMA_IRQ_INBUF_RD_ERR | \ HCU_DMA_IRQ_INBUF_WD_ERR | \ HCU_DMA_IRQ_OUTBUF_WR_ERR | \ HCU_DMA_IRQ_OUTBUF_RD_ERR | \ HCU_DMA_IRQ_CRD_ERR) #define HCU_DMA_SNOOP_MASK (0x7 << 28) #define HCU_DMA_SRC_LL_EN BIT(25) #define HCU_DMA_EN BIT(31) #define OCS_HCU_ENDIANNESS_VALUE 0x2A #define HCU_DMA_MSI_UNMASK BIT(0) #define HCU_DMA_MSI_DISABLE 0 #define HCU_IRQ_DISABLE 0 #define OCS_HCU_START BIT(0) #define OCS_HCU_TERMINATE BIT(1) #define OCS_LL_DMA_FLAG_TERMINATE BIT(31) #define OCS_HCU_HW_KEY_LEN_U32 (OCS_HCU_HW_KEY_LEN / sizeof(u32)) #define HCU_DATA_WRITE_ENDIANNESS_OFFSET 26 #define OCS_HCU_NUM_CHAINS_SHA256_224_SM3 (SHA256_DIGEST_SIZE / sizeof(u32)) #define OCS_HCU_NUM_CHAINS_SHA384_512 (SHA512_DIGEST_SIZE / sizeof(u32)) /* * While polling on a busy HCU, wait maximum 200us between one check and the * other. */ #define OCS_HCU_WAIT_BUSY_RETRY_DELAY_US 200 /* Wait on a busy HCU for maximum 1 second. */ #define OCS_HCU_WAIT_BUSY_TIMEOUT_US 1000000 /** * struct ocs_hcu_dma_entry - An entry in an OCS DMA linked list. * @src_addr: Source address of the data. * @src_len: Length of data to be fetched. * @nxt_desc: Next descriptor to fetch. * @ll_flags: Flags (Freeze @ terminate) for the DMA engine. */ struct ocs_hcu_dma_entry { u32 src_addr; u32 src_len; u32 nxt_desc; u32 ll_flags; }; /** * struct ocs_hcu_dma_list - OCS-specific DMA linked list. * @head: The head of the list (points to the array backing the list). * @tail: The current tail of the list; NULL if the list is empty. * @dma_addr: The DMA address of @head (i.e., the DMA address of the backing * array). * @max_nents: Maximum number of entries in the list (i.e., number of elements * in the backing array). * * The OCS DMA list is an array-backed list of OCS DMA descriptors. The array * backing the list is allocated with dma_alloc_coherent() and pointed by * @head. */ struct ocs_hcu_dma_list { struct ocs_hcu_dma_entry *head; struct ocs_hcu_dma_entry *tail; dma_addr_t dma_addr; size_t max_nents; }; static inline u32 ocs_hcu_num_chains(enum ocs_hcu_algo algo) { switch (algo) { case OCS_HCU_ALGO_SHA224: case OCS_HCU_ALGO_SHA256: case OCS_HCU_ALGO_SM3: return OCS_HCU_NUM_CHAINS_SHA256_224_SM3; case OCS_HCU_ALGO_SHA384: case OCS_HCU_ALGO_SHA512: return OCS_HCU_NUM_CHAINS_SHA384_512; default: return 0; }; } static inline u32 ocs_hcu_digest_size(enum ocs_hcu_algo algo) { switch (algo) { case OCS_HCU_ALGO_SHA224: return SHA224_DIGEST_SIZE; case OCS_HCU_ALGO_SHA256: case OCS_HCU_ALGO_SM3: /* SM3 shares the same block size. */ return SHA256_DIGEST_SIZE; case OCS_HCU_ALGO_SHA384: return SHA384_DIGEST_SIZE; case OCS_HCU_ALGO_SHA512: return SHA512_DIGEST_SIZE; default: return 0; } } /** * ocs_hcu_wait_busy() - Wait for HCU OCS hardware to became usable. * @hcu_dev: OCS HCU device to wait for. * * Return: 0 if device free, -ETIMEOUT if device busy and internal timeout has * expired. */ static int ocs_hcu_wait_busy(struct ocs_hcu_dev *hcu_dev) { long val; return readl_poll_timeout(hcu_dev->io_base + OCS_HCU_STATUS, val, !(val & HCU_STATUS_BUSY), OCS_HCU_WAIT_BUSY_RETRY_DELAY_US, OCS_HCU_WAIT_BUSY_TIMEOUT_US); } static void ocs_hcu_done_irq_en(struct ocs_hcu_dev *hcu_dev) { /* Clear any pending interrupts. */ writel(0xFFFFFFFF, hcu_dev->io_base + OCS_HCU_ISR); hcu_dev->irq_err = false; /* Enable error and HCU done interrupts. */ writel(HCU_IRQ_HASH_DONE | HCU_IRQ_HASH_ERR_MASK, hcu_dev->io_base + OCS_HCU_IER); } static void ocs_hcu_dma_irq_en(struct ocs_hcu_dev *hcu_dev) { /* Clear any pending interrupts. */ writel(0xFFFFFFFF, hcu_dev->io_base + OCS_HCU_DMA_MSI_ISR); hcu_dev->irq_err = false; /* Only operating on DMA source completion and error interrupts. */ writel(HCU_DMA_IRQ_ERR_MASK | HCU_DMA_IRQ_SRC_DONE, hcu_dev->io_base + OCS_HCU_DMA_MSI_IER); /* Unmask */ writel(HCU_DMA_MSI_UNMASK, hcu_dev->io_base + OCS_HCU_DMA_MSI_MASK); } static void ocs_hcu_irq_dis(struct ocs_hcu_dev *hcu_dev) { writel(HCU_IRQ_DISABLE, hcu_dev->io_base + OCS_HCU_IER); writel(HCU_DMA_MSI_DISABLE, hcu_dev->io_base + OCS_HCU_DMA_MSI_IER); } static int ocs_hcu_wait_and_disable_irq(struct ocs_hcu_dev *hcu_dev) { int rc; rc = wait_for_completion_interruptible(&hcu_dev->irq_done); if (rc) goto exit; if (hcu_dev->irq_err) { /* Unset flag and return error. */ hcu_dev->irq_err = false; rc = -EIO; goto exit; } exit: ocs_hcu_irq_dis(hcu_dev); return rc; } /** * ocs_hcu_get_intermediate_data() - Get intermediate data. * @hcu_dev: The target HCU device. * @data: Where to store the intermediate. * @algo: The algorithm being used. * * This function is used to save the current hashing process state in order to * continue it in the future. * * Note: once all data has been processed, the intermediate data actually * contains the hashing result. So this function is also used to retrieve the * final result of a hashing process. * * Return: 0 on success, negative error code otherwise. */ static int ocs_hcu_get_intermediate_data(struct ocs_hcu_dev *hcu_dev, struct ocs_hcu_idata *data, enum ocs_hcu_algo algo) { const int n = ocs_hcu_num_chains(algo); u32 *chain; int rc; int i; /* Data not requested. */ if (!data) return -EINVAL; chain = (u32 *)data->digest; /* Ensure that the OCS is no longer busy before reading the chains. */ rc = ocs_hcu_wait_busy(hcu_dev); if (rc) return rc; /* * This loops is safe because data->digest is an array of * SHA512_DIGEST_SIZE bytes and the maximum value returned by * ocs_hcu_num_chains() is OCS_HCU_NUM_CHAINS_SHA384_512 which is equal * to SHA512_DIGEST_SIZE / sizeof(u32). */ for (i = 0; i < n; i++) chain[i] = readl(hcu_dev->io_base + OCS_HCU_CHAIN); data->msg_len_lo = readl(hcu_dev->io_base + OCS_HCU_MSG_LEN_LO); data->msg_len_hi = readl(hcu_dev->io_base + OCS_HCU_MSG_LEN_HI); return 0; } /** * ocs_hcu_set_intermediate_data() - Set intermediate data. * @hcu_dev: The target HCU device. * @data: The intermediate data to be set. * @algo: The algorithm being used. * * This function is used to continue a previous hashing process. */ static void ocs_hcu_set_intermediate_data(struct ocs_hcu_dev *hcu_dev, const struct ocs_hcu_idata *data, enum ocs_hcu_algo algo) { const int n = ocs_hcu_num_chains(algo); u32 *chain = (u32 *)data->digest; int i; /* * This loops is safe because data->digest is an array of * SHA512_DIGEST_SIZE bytes and the maximum value returned by * ocs_hcu_num_chains() is OCS_HCU_NUM_CHAINS_SHA384_512 which is equal * to SHA512_DIGEST_SIZE / sizeof(u32). */ for (i = 0; i < n; i++) writel(chain[i], hcu_dev->io_base + OCS_HCU_CHAIN); writel(data->msg_len_lo, hcu_dev->io_base + OCS_HCU_MSG_LEN_LO); writel(data->msg_len_hi, hcu_dev->io_base + OCS_HCU_MSG_LEN_HI); } static int ocs_hcu_get_digest(struct ocs_hcu_dev *hcu_dev, enum ocs_hcu_algo algo, u8 *dgst, size_t dgst_len) { u32 *chain; int rc; int i; if (!dgst) return -EINVAL; /* Length of the output buffer must match the algo digest size. */ if (dgst_len != ocs_hcu_digest_size(algo)) return -EINVAL; /* Ensure that the OCS is no longer busy before reading the chains. */ rc = ocs_hcu_wait_busy(hcu_dev); if (rc) return rc; chain = (u32 *)dgst; for (i = 0; i < dgst_len / sizeof(u32); i++) chain[i] = readl(hcu_dev->io_base + OCS_HCU_CHAIN); return 0; } /** * ocs_hcu_hw_cfg() - Configure the HCU hardware. * @hcu_dev: The HCU device to configure. * @algo: The algorithm to be used by the HCU device. * @use_hmac: Whether or not HW HMAC should be used. * * Return: 0 on success, negative error code otherwise. */ static int ocs_hcu_hw_cfg(struct ocs_hcu_dev *hcu_dev, enum ocs_hcu_algo algo, bool use_hmac) { u32 cfg; int rc; if (algo != OCS_HCU_ALGO_SHA256 && algo != OCS_HCU_ALGO_SHA224 && algo != OCS_HCU_ALGO_SHA384 && algo != OCS_HCU_ALGO_SHA512 && algo != OCS_HCU_ALGO_SM3) return -EINVAL; rc = ocs_hcu_wait_busy(hcu_dev); if (rc) return rc; /* Ensure interrupts are disabled. */ ocs_hcu_irq_dis(hcu_dev); /* Configure endianness, hashing algorithm and HW HMAC (if needed) */ cfg = OCS_HCU_ENDIANNESS_VALUE << HCU_DATA_WRITE_ENDIANNESS_OFFSET; cfg |= algo << HCU_MODE_ALGO_SHIFT; if (use_hmac) cfg |= BIT(HCU_MODE_HMAC_SHIFT); writel(cfg, hcu_dev->io_base + OCS_HCU_MODE); return 0; } /** * ocs_hcu_clear_key() - Clear key stored in OCS HMAC KEY registers. * @hcu_dev: The OCS HCU device whose key registers should be cleared. */ static void ocs_hcu_clear_key(struct ocs_hcu_dev *hcu_dev) { int reg_off; /* Clear OCS_HCU_KEY_[0..15] */ for (reg_off = 0; reg_off < OCS_HCU_HW_KEY_LEN; reg_off += sizeof(u32)) writel(0, hcu_dev->io_base + OCS_HCU_KEY_0 + reg_off); } /** * ocs_hcu_write_key() - Write key to OCS HMAC KEY registers. * @hcu_dev: The OCS HCU device the key should be written to. * @key: The key to be written. * @len: The size of the key to write. It must be OCS_HCU_HW_KEY_LEN. * * Return: 0 on success, negative error code otherwise. */ static int ocs_hcu_write_key(struct ocs_hcu_dev *hcu_dev, const u8 *key, size_t len) { u32 key_u32[OCS_HCU_HW_KEY_LEN_U32]; int i; if (len > OCS_HCU_HW_KEY_LEN) return -EINVAL; /* Copy key into temporary u32 array. */ memcpy(key_u32, key, len); /* * Hardware requires all the bytes of the HW Key vector to be * written. So pad with zero until we reach OCS_HCU_HW_KEY_LEN. */ memzero_explicit((u8 *)key_u32 + len, OCS_HCU_HW_KEY_LEN - len); /* * OCS hardware expects the MSB of the key to be written at the highest * address of the HCU Key vector; in other word, the key must be * written in reverse order. * * Therefore, we first enable byte swapping for the HCU key vector; * so that bytes of 32-bit word written to OCS_HCU_KEY_[0..15] will be * swapped: * 3 <---> 0, 2 <---> 1. */ writel(HCU_BYTE_ORDER_SWAP, hcu_dev->io_base + OCS_HCU_KEY_BYTE_ORDER_CFG); /* * And then we write the 32-bit words composing the key starting from * the end of the key. */ for (i = 0; i < OCS_HCU_HW_KEY_LEN_U32; i++) writel(key_u32[OCS_HCU_HW_KEY_LEN_U32 - 1 - i], hcu_dev->io_base + OCS_HCU_KEY_0 + (sizeof(u32) * i)); memzero_explicit(key_u32, OCS_HCU_HW_KEY_LEN); return 0; } /** * ocs_hcu_ll_dma_start() - Start OCS HCU hashing via DMA * @hcu_dev: The OCS HCU device to use. * @dma_list: The OCS DMA list mapping the data to hash. * @finalize: Whether or not this is the last hashing operation and therefore * the final hash should be compute even if data is not * block-aligned. * * Return: 0 on success, negative error code otherwise. */ static int ocs_hcu_ll_dma_start(struct ocs_hcu_dev *hcu_dev, const struct ocs_hcu_dma_list *dma_list, bool finalize) { u32 cfg = HCU_DMA_SNOOP_MASK | HCU_DMA_SRC_LL_EN | HCU_DMA_EN; int rc; if (!dma_list) return -EINVAL; /* * For final requests we use HCU_DONE IRQ to be notified when all input * data has been processed by the HCU; however, we cannot do so for * non-final requests, because we don't get a HCU_DONE IRQ when we * don't terminate the operation. * * Therefore, for non-final requests, we use the DMA IRQ, which * triggers when DMA has finishing feeding all the input data to the * HCU, but the HCU may still be processing it. This is fine, since we * will wait for the HCU processing to be completed when we try to read * intermediate results, in ocs_hcu_get_intermediate_data(). */ if (finalize) ocs_hcu_done_irq_en(hcu_dev); else ocs_hcu_dma_irq_en(hcu_dev); reinit_completion(&hcu_dev->irq_done); writel(dma_list->dma_addr, hcu_dev->io_base + OCS_HCU_DMA_NEXT_SRC_DESCR); writel(0, hcu_dev->io_base + OCS_HCU_DMA_SRC_SIZE); writel(0, hcu_dev->io_base + OCS_HCU_DMA_DST_SIZE); writel(OCS_HCU_START, hcu_dev->io_base + OCS_HCU_OPERATION); writel(cfg, hcu_dev->io_base + OCS_HCU_DMA_DMA_MODE); if (finalize) writel(OCS_HCU_TERMINATE, hcu_dev->io_base + OCS_HCU_OPERATION); rc = ocs_hcu_wait_and_disable_irq(hcu_dev); if (rc) return rc; return 0; } struct ocs_hcu_dma_list *ocs_hcu_dma_list_alloc(struct ocs_hcu_dev *hcu_dev, int max_nents) { struct ocs_hcu_dma_list *dma_list; dma_list = kmalloc(sizeof(*dma_list), GFP_KERNEL); if (!dma_list) return NULL; /* Total size of the DMA list to allocate. */ dma_list->head = dma_alloc_coherent(hcu_dev->dev, sizeof(*dma_list->head) * max_nents, &dma_list->dma_addr, GFP_KERNEL); if (!dma_list->head) { kfree(dma_list); return NULL; } dma_list->max_nents = max_nents; dma_list->tail = NULL; return dma_list; } void ocs_hcu_dma_list_free(struct ocs_hcu_dev *hcu_dev, struct ocs_hcu_dma_list *dma_list) { if (!dma_list) return; dma_free_coherent(hcu_dev->dev, sizeof(*dma_list->head) * dma_list->max_nents, dma_list->head, dma_list->dma_addr); kfree(dma_list); } /* Add a new DMA entry at the end of the OCS DMA list. */ int ocs_hcu_dma_list_add_tail(struct ocs_hcu_dev *hcu_dev, struct ocs_hcu_dma_list *dma_list, dma_addr_t addr, u32 len) { struct device *dev = hcu_dev->dev; struct ocs_hcu_dma_entry *old_tail; struct ocs_hcu_dma_entry *new_tail; if (!len) return 0; if (!dma_list) return -EINVAL; if (addr & ~OCS_HCU_DMA_BIT_MASK) { dev_err(dev, "Unexpected error: Invalid DMA address for OCS HCU\n"); return -EINVAL; } old_tail = dma_list->tail; new_tail = old_tail ? old_tail + 1 : dma_list->head; /* Check if list is full. */ if (new_tail - dma_list->head >= dma_list->max_nents) return -ENOMEM; /* * If there was an old tail (i.e., this is not the first element we are * adding), un-terminate the old tail and make it point to the new one. */ if (old_tail) { old_tail->ll_flags &= ~OCS_LL_DMA_FLAG_TERMINATE; /* * The old tail 'nxt_desc' must point to the DMA address of the * new tail. */ old_tail->nxt_desc = dma_list->dma_addr + sizeof(*dma_list->tail) * (new_tail - dma_list->head); } new_tail->src_addr = (u32)addr; new_tail->src_len = (u32)len; new_tail->ll_flags = OCS_LL_DMA_FLAG_TERMINATE; new_tail->nxt_desc = 0; /* Update list tail with new tail. */ dma_list->tail = new_tail; return 0; } /** * ocs_hcu_hash_init() - Initialize hash operation context. * @ctx: The context to initialize. * @algo: The hashing algorithm to use. * * Return: 0 on success, negative error code otherwise. */ int ocs_hcu_hash_init(struct ocs_hcu_hash_ctx *ctx, enum ocs_hcu_algo algo) { if (!ctx) return -EINVAL; ctx->algo = algo; ctx->idata.msg_len_lo = 0; ctx->idata.msg_len_hi = 0; /* No need to set idata.digest to 0. */ return 0; } /** * ocs_hcu_hash_update() - Perform a hashing iteration. * @hcu_dev: The OCS HCU device to use. * @ctx: The OCS HCU hashing context. * @dma_list: The OCS DMA list mapping the input data to process. * * Return: 0 on success; negative error code otherwise. */ int ocs_hcu_hash_update(struct ocs_hcu_dev *hcu_dev, struct ocs_hcu_hash_ctx *ctx, const struct ocs_hcu_dma_list *dma_list) { int rc; if (!hcu_dev || !ctx) return -EINVAL; /* Configure the hardware for the current request. */ rc = ocs_hcu_hw_cfg(hcu_dev, ctx->algo, false); if (rc) return rc; /* If we already processed some data, idata needs to be set. */ if (ctx->idata.msg_len_lo || ctx->idata.msg_len_hi) ocs_hcu_set_intermediate_data(hcu_dev, &ctx->idata, ctx->algo); /* Start linked-list DMA hashing. */ rc = ocs_hcu_ll_dma_start(hcu_dev, dma_list, false); if (rc) return rc; /* Update idata and return. */ return ocs_hcu_get_intermediate_data(hcu_dev, &ctx->idata, ctx->algo); } /** * ocs_hcu_hash_finup() - Update and finalize hash computation. * @hcu_dev: The OCS HCU device to use. * @ctx: The OCS HCU hashing context. * @dma_list: The OCS DMA list mapping the input data to process. * @dgst: The buffer where to save the computed digest. * @dgst_len: The length of @dgst. * * Return: 0 on success; negative error code otherwise. */ int ocs_hcu_hash_finup(struct ocs_hcu_dev *hcu_dev, const struct ocs_hcu_hash_ctx *ctx, const struct ocs_hcu_dma_list *dma_list, u8 *dgst, size_t dgst_len) { int rc; if (!hcu_dev || !ctx) return -EINVAL; /* Configure the hardware for the current request. */ rc = ocs_hcu_hw_cfg(hcu_dev, ctx->algo, false); if (rc) return rc; /* If we already processed some data, idata needs to be set. */ if (ctx->idata.msg_len_lo || ctx->idata.msg_len_hi) ocs_hcu_set_intermediate_data(hcu_dev, &ctx->idata, ctx->algo); /* Start linked-list DMA hashing. */ rc = ocs_hcu_ll_dma_start(hcu_dev, dma_list, true); if (rc) return rc; /* Get digest and return. */ return ocs_hcu_get_digest(hcu_dev, ctx->algo, dgst, dgst_len); } /** * ocs_hcu_hash_final() - Finalize hash computation. * @hcu_dev: The OCS HCU device to use. * @ctx: The OCS HCU hashing context. * @dgst: The buffer where to save the computed digest. * @dgst_len: The length of @dgst. * * Return: 0 on success; negative error code otherwise. */ int ocs_hcu_hash_final(struct ocs_hcu_dev *hcu_dev, const struct ocs_hcu_hash_ctx *ctx, u8 *dgst, size_t dgst_len) { int rc; if (!hcu_dev || !ctx) return -EINVAL; /* Configure the hardware for the current request. */ rc = ocs_hcu_hw_cfg(hcu_dev, ctx->algo, false); if (rc) return rc; /* If we already processed some data, idata needs to be set. */ if (ctx->idata.msg_len_lo || ctx->idata.msg_len_hi) ocs_hcu_set_intermediate_data(hcu_dev, &ctx->idata, ctx->algo); /* * Enable HCU interrupts, so that HCU_DONE will be triggered once the * final hash is computed. */ ocs_hcu_done_irq_en(hcu_dev); reinit_completion(&hcu_dev->irq_done); writel(OCS_HCU_TERMINATE, hcu_dev->io_base + OCS_HCU_OPERATION); rc = ocs_hcu_wait_and_disable_irq(hcu_dev); if (rc) return rc; /* Get digest and return. */ return ocs_hcu_get_digest(hcu_dev, ctx->algo, dgst, dgst_len); } /** * ocs_hcu_digest() - Compute hash digest. * @hcu_dev: The OCS HCU device to use. * @algo: The hash algorithm to use. * @data: The input data to process. * @data_len: The length of @data. * @dgst: The buffer where to save the computed digest. * @dgst_len: The length of @dgst. * * Return: 0 on success; negative error code otherwise. */ int ocs_hcu_digest(struct ocs_hcu_dev *hcu_dev, enum ocs_hcu_algo algo, void *data, size_t data_len, u8 *dgst, size_t dgst_len) { struct device *dev = hcu_dev->dev; dma_addr_t dma_handle; u32 reg; int rc; /* Configure the hardware for the current request. */ rc = ocs_hcu_hw_cfg(hcu_dev, algo, false); if (rc) return rc; dma_handle = dma_map_single(dev, data, data_len, DMA_TO_DEVICE); if (dma_mapping_error(dev, dma_handle)) return -EIO; reg = HCU_DMA_SNOOP_MASK | HCU_DMA_EN; ocs_hcu_done_irq_en(hcu_dev); reinit_completion(&hcu_dev->irq_done); writel(dma_handle, hcu_dev->io_base + OCS_HCU_DMA_SRC_ADDR); writel(data_len, hcu_dev->io_base + OCS_HCU_DMA_SRC_SIZE); writel(OCS_HCU_START, hcu_dev->io_base + OCS_HCU_OPERATION); writel(reg, hcu_dev->io_base + OCS_HCU_DMA_DMA_MODE); writel(OCS_HCU_TERMINATE, hcu_dev->io_base + OCS_HCU_OPERATION); rc = ocs_hcu_wait_and_disable_irq(hcu_dev); if (rc) return rc; dma_unmap_single(dev, dma_handle, data_len, DMA_TO_DEVICE); return ocs_hcu_get_digest(hcu_dev, algo, dgst, dgst_len); } /** * ocs_hcu_hmac() - Compute HMAC. * @hcu_dev: The OCS HCU device to use. * @algo: The hash algorithm to use with HMAC. * @key: The key to use. * @dma_list: The OCS DMA list mapping the input data to process. * @key_len: The length of @key. * @dgst: The buffer where to save the computed HMAC. * @dgst_len: The length of @dgst. * * Return: 0 on success; negative error code otherwise. */ int ocs_hcu_hmac(struct ocs_hcu_dev *hcu_dev, enum ocs_hcu_algo algo, const u8 *key, size_t key_len, const struct ocs_hcu_dma_list *dma_list, u8 *dgst, size_t dgst_len) { int rc; /* Ensure 'key' is not NULL. */ if (!key || key_len == 0) return -EINVAL; /* Configure the hardware for the current request. */ rc = ocs_hcu_hw_cfg(hcu_dev, algo, true); if (rc) return rc; rc = ocs_hcu_write_key(hcu_dev, key, key_len); if (rc) return rc; rc = ocs_hcu_ll_dma_start(hcu_dev, dma_list, true); /* Clear HW key before processing return code. */ ocs_hcu_clear_key(hcu_dev); if (rc) return rc; return ocs_hcu_get_digest(hcu_dev, algo, dgst, dgst_len); } irqreturn_t ocs_hcu_irq_handler(int irq, void *dev_id) { struct ocs_hcu_dev *hcu_dev = dev_id; u32 hcu_irq; u32 dma_irq; /* Read and clear the HCU interrupt. */ hcu_irq = readl(hcu_dev->io_base + OCS_HCU_ISR); writel(hcu_irq, hcu_dev->io_base + OCS_HCU_ISR); /* Read and clear the HCU DMA interrupt. */ dma_irq = readl(hcu_dev->io_base + OCS_HCU_DMA_MSI_ISR); writel(dma_irq, hcu_dev->io_base + OCS_HCU_DMA_MSI_ISR); /* Check for errors. */ if (hcu_irq & HCU_IRQ_HASH_ERR_MASK || dma_irq & HCU_DMA_IRQ_ERR_MASK) { hcu_dev->irq_err = true; goto complete; } /* Check for DONE IRQs. */ if (hcu_irq & HCU_IRQ_HASH_DONE || dma_irq & HCU_DMA_IRQ_SRC_DONE) goto complete; return IRQ_NONE; complete: complete(&hcu_dev->irq_done); return IRQ_HANDLED; } MODULE_LICENSE("GPL"); |