Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 | // SPDX-License-Identifier: GPL-2.0-only /* * Intel Keem Bay OCS ECC Crypto Driver. * * Copyright (C) 2019-2021 Intel Corporation */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <crypto/ecc_curve.h> #include <crypto/ecdh.h> #include <crypto/engine.h> #include <crypto/internal/ecc.h> #include <crypto/internal/kpp.h> #include <crypto/kpp.h> #include <crypto/rng.h> #include <linux/clk.h> #include <linux/completion.h> #include <linux/err.h> #include <linux/fips.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/iopoll.h> #include <linux/irq.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/scatterlist.h> #include <linux/string.h> #define DRV_NAME "keembay-ocs-ecc" #define KMB_OCS_ECC_PRIORITY 350 #define HW_OFFS_OCS_ECC_COMMAND 0x00000000 #define HW_OFFS_OCS_ECC_STATUS 0x00000004 #define HW_OFFS_OCS_ECC_DATA_IN 0x00000080 #define HW_OFFS_OCS_ECC_CX_DATA_OUT 0x00000100 #define HW_OFFS_OCS_ECC_CY_DATA_OUT 0x00000180 #define HW_OFFS_OCS_ECC_ISR 0x00000400 #define HW_OFFS_OCS_ECC_IER 0x00000404 #define HW_OCS_ECC_ISR_INT_STATUS_DONE BIT(0) #define HW_OCS_ECC_COMMAND_INS_BP BIT(0) #define HW_OCS_ECC_COMMAND_START_VAL BIT(0) #define OCS_ECC_OP_SIZE_384 BIT(8) #define OCS_ECC_OP_SIZE_256 0 /* ECC Instruction : for ECC_COMMAND */ #define OCS_ECC_INST_WRITE_AX (0x1 << HW_OCS_ECC_COMMAND_INS_BP) #define OCS_ECC_INST_WRITE_AY (0x2 << HW_OCS_ECC_COMMAND_INS_BP) #define OCS_ECC_INST_WRITE_BX_D (0x3 << HW_OCS_ECC_COMMAND_INS_BP) #define OCS_ECC_INST_WRITE_BY_L (0x4 << HW_OCS_ECC_COMMAND_INS_BP) #define OCS_ECC_INST_WRITE_P (0x5 << HW_OCS_ECC_COMMAND_INS_BP) #define OCS_ECC_INST_WRITE_A (0x6 << HW_OCS_ECC_COMMAND_INS_BP) #define OCS_ECC_INST_CALC_D_IDX_A (0x8 << HW_OCS_ECC_COMMAND_INS_BP) #define OCS_ECC_INST_CALC_A_POW_B_MODP (0xB << HW_OCS_ECC_COMMAND_INS_BP) #define OCS_ECC_INST_CALC_A_MUL_B_MODP (0xC << HW_OCS_ECC_COMMAND_INS_BP) #define OCS_ECC_INST_CALC_A_ADD_B_MODP (0xD << HW_OCS_ECC_COMMAND_INS_BP) #define ECC_ENABLE_INTR 1 #define POLL_USEC 100 #define TIMEOUT_USEC 10000 #define KMB_ECC_VLI_MAX_DIGITS ECC_CURVE_NIST_P384_DIGITS #define KMB_ECC_VLI_MAX_BYTES (KMB_ECC_VLI_MAX_DIGITS \ << ECC_DIGITS_TO_BYTES_SHIFT) #define POW_CUBE 3 /** * struct ocs_ecc_dev - ECC device context * @list: List of device contexts * @dev: OCS ECC device * @base_reg: IO base address of OCS ECC * @engine: Crypto engine for the device * @irq_done: IRQ done completion. * @irq: IRQ number */ struct ocs_ecc_dev { struct list_head list; struct device *dev; void __iomem *base_reg; struct crypto_engine *engine; struct completion irq_done; int irq; }; /** * struct ocs_ecc_ctx - Transformation context. * @ecc_dev: The ECC driver associated with this context. * @curve: The elliptic curve used by this transformation. * @private_key: The private key. */ struct ocs_ecc_ctx { struct ocs_ecc_dev *ecc_dev; const struct ecc_curve *curve; u64 private_key[KMB_ECC_VLI_MAX_DIGITS]; }; /* Driver data. */ struct ocs_ecc_drv { struct list_head dev_list; spinlock_t lock; /* Protects dev_list. */ }; /* Global variable holding the list of OCS ECC devices (only one expected). */ static struct ocs_ecc_drv ocs_ecc = { .dev_list = LIST_HEAD_INIT(ocs_ecc.dev_list), .lock = __SPIN_LOCK_UNLOCKED(ocs_ecc.lock), }; /* Get OCS ECC tfm context from kpp_request. */ static inline struct ocs_ecc_ctx *kmb_ocs_ecc_tctx(struct kpp_request *req) { return kpp_tfm_ctx(crypto_kpp_reqtfm(req)); } /* Converts number of digits to number of bytes. */ static inline unsigned int digits_to_bytes(unsigned int n) { return n << ECC_DIGITS_TO_BYTES_SHIFT; } /* * Wait for ECC idle i.e when an operation (other than write operations) * is done. */ static inline int ocs_ecc_wait_idle(struct ocs_ecc_dev *dev) { u32 value; return readl_poll_timeout((dev->base_reg + HW_OFFS_OCS_ECC_STATUS), value, !(value & HW_OCS_ECC_ISR_INT_STATUS_DONE), POLL_USEC, TIMEOUT_USEC); } static void ocs_ecc_cmd_start(struct ocs_ecc_dev *ecc_dev, u32 op_size) { iowrite32(op_size | HW_OCS_ECC_COMMAND_START_VAL, ecc_dev->base_reg + HW_OFFS_OCS_ECC_COMMAND); } /* Direct write of u32 buffer to ECC engine with associated instruction. */ static void ocs_ecc_write_cmd_and_data(struct ocs_ecc_dev *dev, u32 op_size, u32 inst, const void *data_in, size_t data_size) { iowrite32(op_size | inst, dev->base_reg + HW_OFFS_OCS_ECC_COMMAND); /* MMIO Write src uint32 to dst. */ memcpy_toio(dev->base_reg + HW_OFFS_OCS_ECC_DATA_IN, data_in, data_size); } /* Start OCS ECC operation and wait for its completion. */ static int ocs_ecc_trigger_op(struct ocs_ecc_dev *ecc_dev, u32 op_size, u32 inst) { reinit_completion(&ecc_dev->irq_done); iowrite32(ECC_ENABLE_INTR, ecc_dev->base_reg + HW_OFFS_OCS_ECC_IER); iowrite32(op_size | inst, ecc_dev->base_reg + HW_OFFS_OCS_ECC_COMMAND); return wait_for_completion_interruptible(&ecc_dev->irq_done); } /** * ocs_ecc_read_cx_out() - Read the CX data output buffer. * @dev: The OCS ECC device to read from. * @cx_out: The buffer where to store the CX value. Must be at least * @byte_count byte long. * @byte_count: The amount of data to read. */ static inline void ocs_ecc_read_cx_out(struct ocs_ecc_dev *dev, void *cx_out, size_t byte_count) { memcpy_fromio(cx_out, dev->base_reg + HW_OFFS_OCS_ECC_CX_DATA_OUT, byte_count); } /** * ocs_ecc_read_cy_out() - Read the CX data output buffer. * @dev: The OCS ECC device to read from. * @cy_out: The buffer where to store the CY value. Must be at least * @byte_count byte long. * @byte_count: The amount of data to read. */ static inline void ocs_ecc_read_cy_out(struct ocs_ecc_dev *dev, void *cy_out, size_t byte_count) { memcpy_fromio(cy_out, dev->base_reg + HW_OFFS_OCS_ECC_CY_DATA_OUT, byte_count); } static struct ocs_ecc_dev *kmb_ocs_ecc_find_dev(struct ocs_ecc_ctx *tctx) { if (tctx->ecc_dev) return tctx->ecc_dev; spin_lock(&ocs_ecc.lock); /* Only a single OCS device available. */ tctx->ecc_dev = list_first_entry(&ocs_ecc.dev_list, struct ocs_ecc_dev, list); spin_unlock(&ocs_ecc.lock); return tctx->ecc_dev; } /* Do point multiplication using OCS ECC HW. */ static int kmb_ecc_point_mult(struct ocs_ecc_dev *ecc_dev, struct ecc_point *result, const struct ecc_point *point, u64 *scalar, const struct ecc_curve *curve) { u8 sca[KMB_ECC_VLI_MAX_BYTES]; /* Use the maximum data size. */ u32 op_size = (curve->g.ndigits > ECC_CURVE_NIST_P256_DIGITS) ? OCS_ECC_OP_SIZE_384 : OCS_ECC_OP_SIZE_256; size_t nbytes = digits_to_bytes(curve->g.ndigits); int rc = 0; /* Generate random nbytes for Simple and Differential SCA protection. */ rc = crypto_get_default_rng(); if (rc) return rc; rc = crypto_rng_get_bytes(crypto_default_rng, sca, nbytes); crypto_put_default_rng(); if (rc) return rc; /* Wait engine to be idle before starting new operation. */ rc = ocs_ecc_wait_idle(ecc_dev); if (rc) return rc; /* Send ecc_start pulse as well as indicating operation size. */ ocs_ecc_cmd_start(ecc_dev, op_size); /* Write ax param; Base point (Gx). */ ocs_ecc_write_cmd_and_data(ecc_dev, op_size, OCS_ECC_INST_WRITE_AX, point->x, nbytes); /* Write ay param; Base point (Gy). */ ocs_ecc_write_cmd_and_data(ecc_dev, op_size, OCS_ECC_INST_WRITE_AY, point->y, nbytes); /* * Write the private key into DATA_IN reg. * * Since DATA_IN register is used to write different values during the * computation private Key value is overwritten with * side-channel-resistance value. */ ocs_ecc_write_cmd_and_data(ecc_dev, op_size, OCS_ECC_INST_WRITE_BX_D, scalar, nbytes); /* Write operand by/l. */ ocs_ecc_write_cmd_and_data(ecc_dev, op_size, OCS_ECC_INST_WRITE_BY_L, sca, nbytes); memzero_explicit(sca, sizeof(sca)); /* Write p = curve prime(GF modulus). */ ocs_ecc_write_cmd_and_data(ecc_dev, op_size, OCS_ECC_INST_WRITE_P, curve->p, nbytes); /* Write a = curve coefficient. */ ocs_ecc_write_cmd_and_data(ecc_dev, op_size, OCS_ECC_INST_WRITE_A, curve->a, nbytes); /* Make hardware perform the multiplication. */ rc = ocs_ecc_trigger_op(ecc_dev, op_size, OCS_ECC_INST_CALC_D_IDX_A); if (rc) return rc; /* Read result. */ ocs_ecc_read_cx_out(ecc_dev, result->x, nbytes); ocs_ecc_read_cy_out(ecc_dev, result->y, nbytes); return 0; } /** * kmb_ecc_do_scalar_op() - Perform Scalar operation using OCS ECC HW. * @ecc_dev: The OCS ECC device to use. * @scalar_out: Where to store the output scalar. * @scalar_a: Input scalar operand 'a'. * @scalar_b: Input scalar operand 'b' * @curve: The curve on which the operation is performed. * @ndigits: The size of the operands (in digits). * @inst: The operation to perform (as an OCS ECC instruction). * * Return: 0 on success, negative error code otherwise. */ static int kmb_ecc_do_scalar_op(struct ocs_ecc_dev *ecc_dev, u64 *scalar_out, const u64 *scalar_a, const u64 *scalar_b, const struct ecc_curve *curve, unsigned int ndigits, const u32 inst) { u32 op_size = (ndigits > ECC_CURVE_NIST_P256_DIGITS) ? OCS_ECC_OP_SIZE_384 : OCS_ECC_OP_SIZE_256; size_t nbytes = digits_to_bytes(ndigits); int rc; /* Wait engine to be idle before starting new operation. */ rc = ocs_ecc_wait_idle(ecc_dev); if (rc) return rc; /* Send ecc_start pulse as well as indicating operation size. */ ocs_ecc_cmd_start(ecc_dev, op_size); /* Write ax param (Base point (Gx).*/ ocs_ecc_write_cmd_and_data(ecc_dev, op_size, OCS_ECC_INST_WRITE_AX, scalar_a, nbytes); /* Write ay param Base point (Gy).*/ ocs_ecc_write_cmd_and_data(ecc_dev, op_size, OCS_ECC_INST_WRITE_AY, scalar_b, nbytes); /* Write p = curve prime(GF modulus).*/ ocs_ecc_write_cmd_and_data(ecc_dev, op_size, OCS_ECC_INST_WRITE_P, curve->p, nbytes); /* Give instruction A.B or A+B to ECC engine. */ rc = ocs_ecc_trigger_op(ecc_dev, op_size, inst); if (rc) return rc; ocs_ecc_read_cx_out(ecc_dev, scalar_out, nbytes); if (vli_is_zero(scalar_out, ndigits)) return -EINVAL; return 0; } /* SP800-56A section 5.6.2.3.4 partial verification: ephemeral keys only */ static int kmb_ocs_ecc_is_pubkey_valid_partial(struct ocs_ecc_dev *ecc_dev, const struct ecc_curve *curve, struct ecc_point *pk) { u64 xxx[KMB_ECC_VLI_MAX_DIGITS] = { 0 }; u64 yy[KMB_ECC_VLI_MAX_DIGITS] = { 0 }; u64 w[KMB_ECC_VLI_MAX_DIGITS] = { 0 }; int rc; if (WARN_ON(pk->ndigits != curve->g.ndigits)) return -EINVAL; /* Check 1: Verify key is not the zero point. */ if (ecc_point_is_zero(pk)) return -EINVAL; /* Check 2: Verify key is in the range [0, p-1]. */ if (vli_cmp(curve->p, pk->x, pk->ndigits) != 1) return -EINVAL; if (vli_cmp(curve->p, pk->y, pk->ndigits) != 1) return -EINVAL; /* Check 3: Verify that y^2 == (x^3 + a·x + b) mod p */ /* y^2 */ /* Compute y^2 -> store in yy */ rc = kmb_ecc_do_scalar_op(ecc_dev, yy, pk->y, pk->y, curve, pk->ndigits, OCS_ECC_INST_CALC_A_MUL_B_MODP); if (rc) goto exit; /* x^3 */ /* Assigning w = 3, used for calculating x^3. */ w[0] = POW_CUBE; /* Load the next stage.*/ rc = kmb_ecc_do_scalar_op(ecc_dev, xxx, pk->x, w, curve, pk->ndigits, OCS_ECC_INST_CALC_A_POW_B_MODP); if (rc) goto exit; /* Do a*x -> store in w. */ rc = kmb_ecc_do_scalar_op(ecc_dev, w, curve->a, pk->x, curve, pk->ndigits, OCS_ECC_INST_CALC_A_MUL_B_MODP); if (rc) goto exit; /* Do ax + b == w + b; store in w. */ rc = kmb_ecc_do_scalar_op(ecc_dev, w, w, curve->b, curve, pk->ndigits, OCS_ECC_INST_CALC_A_ADD_B_MODP); if (rc) goto exit; /* x^3 + ax + b == x^3 + w -> store in w. */ rc = kmb_ecc_do_scalar_op(ecc_dev, w, xxx, w, curve, pk->ndigits, OCS_ECC_INST_CALC_A_ADD_B_MODP); if (rc) goto exit; /* Compare y^2 == x^3 + a·x + b. */ rc = vli_cmp(yy, w, pk->ndigits); if (rc) rc = -EINVAL; exit: memzero_explicit(xxx, sizeof(xxx)); memzero_explicit(yy, sizeof(yy)); memzero_explicit(w, sizeof(w)); return rc; } /* SP800-56A section 5.6.2.3.3 full verification */ static int kmb_ocs_ecc_is_pubkey_valid_full(struct ocs_ecc_dev *ecc_dev, const struct ecc_curve *curve, struct ecc_point *pk) { struct ecc_point *nQ; int rc; /* Checks 1 through 3 */ rc = kmb_ocs_ecc_is_pubkey_valid_partial(ecc_dev, curve, pk); if (rc) return rc; /* Check 4: Verify that nQ is the zero point. */ nQ = ecc_alloc_point(pk->ndigits); if (!nQ) return -ENOMEM; rc = kmb_ecc_point_mult(ecc_dev, nQ, pk, curve->n, curve); if (rc) goto exit; if (!ecc_point_is_zero(nQ)) rc = -EINVAL; exit: ecc_free_point(nQ); return rc; } static int kmb_ecc_is_key_valid(const struct ecc_curve *curve, const u64 *private_key, size_t private_key_len) { size_t ndigits = curve->g.ndigits; u64 one[KMB_ECC_VLI_MAX_DIGITS] = {1}; u64 res[KMB_ECC_VLI_MAX_DIGITS]; if (private_key_len != digits_to_bytes(ndigits)) return -EINVAL; if (!private_key) return -EINVAL; /* Make sure the private key is in the range [2, n-3]. */ if (vli_cmp(one, private_key, ndigits) != -1) return -EINVAL; vli_sub(res, curve->n, one, ndigits); vli_sub(res, res, one, ndigits); if (vli_cmp(res, private_key, ndigits) != 1) return -EINVAL; return 0; } /* * ECC private keys are generated using the method of extra random bits, * equivalent to that described in FIPS 186-4, Appendix B.4.1. * * d = (c mod(n–1)) + 1 where c is a string of random bits, 64 bits longer * than requested * 0 <= c mod(n-1) <= n-2 and implies that * 1 <= d <= n-1 * * This method generates a private key uniformly distributed in the range * [1, n-1]. */ static int kmb_ecc_gen_privkey(const struct ecc_curve *curve, u64 *privkey) { size_t nbytes = digits_to_bytes(curve->g.ndigits); u64 priv[KMB_ECC_VLI_MAX_DIGITS]; size_t nbits; int rc; nbits = vli_num_bits(curve->n, curve->g.ndigits); /* Check that N is included in Table 1 of FIPS 186-4, section 6.1.1 */ if (nbits < 160 || curve->g.ndigits > ARRAY_SIZE(priv)) return -EINVAL; /* * FIPS 186-4 recommends that the private key should be obtained from a * RBG with a security strength equal to or greater than the security * strength associated with N. * * The maximum security strength identified by NIST SP800-57pt1r4 for * ECC is 256 (N >= 512). * * This condition is met by the default RNG because it selects a favored * DRBG with a security strength of 256. */ if (crypto_get_default_rng()) return -EFAULT; rc = crypto_rng_get_bytes(crypto_default_rng, (u8 *)priv, nbytes); crypto_put_default_rng(); if (rc) goto cleanup; rc = kmb_ecc_is_key_valid(curve, priv, nbytes); if (rc) goto cleanup; ecc_swap_digits(priv, privkey, curve->g.ndigits); cleanup: memzero_explicit(&priv, sizeof(priv)); return rc; } static int kmb_ocs_ecdh_set_secret(struct crypto_kpp *tfm, const void *buf, unsigned int len) { struct ocs_ecc_ctx *tctx = kpp_tfm_ctx(tfm); struct ecdh params; int rc = 0; rc = crypto_ecdh_decode_key(buf, len, ¶ms); if (rc) goto cleanup; /* Ensure key size is not bigger then expected. */ if (params.key_size > digits_to_bytes(tctx->curve->g.ndigits)) { rc = -EINVAL; goto cleanup; } /* Auto-generate private key is not provided. */ if (!params.key || !params.key_size) { rc = kmb_ecc_gen_privkey(tctx->curve, tctx->private_key); goto cleanup; } rc = kmb_ecc_is_key_valid(tctx->curve, (const u64 *)params.key, params.key_size); if (rc) goto cleanup; ecc_swap_digits((const u64 *)params.key, tctx->private_key, tctx->curve->g.ndigits); cleanup: memzero_explicit(¶ms, sizeof(params)); if (rc) tctx->curve = NULL; return rc; } /* Compute shared secret. */ static int kmb_ecc_do_shared_secret(struct ocs_ecc_ctx *tctx, struct kpp_request *req) { struct ocs_ecc_dev *ecc_dev = tctx->ecc_dev; const struct ecc_curve *curve = tctx->curve; u64 shared_secret[KMB_ECC_VLI_MAX_DIGITS]; u64 pubk_buf[KMB_ECC_VLI_MAX_DIGITS * 2]; size_t copied, nbytes, pubk_len; struct ecc_point *pk, *result; int rc; nbytes = digits_to_bytes(curve->g.ndigits); /* Public key is a point, thus it has two coordinates */ pubk_len = 2 * nbytes; /* Copy public key from SG list to pubk_buf. */ copied = sg_copy_to_buffer(req->src, sg_nents_for_len(req->src, pubk_len), pubk_buf, pubk_len); if (copied != pubk_len) return -EINVAL; /* Allocate and initialize public key point. */ pk = ecc_alloc_point(curve->g.ndigits); if (!pk) return -ENOMEM; ecc_swap_digits(pubk_buf, pk->x, curve->g.ndigits); ecc_swap_digits(&pubk_buf[curve->g.ndigits], pk->y, curve->g.ndigits); /* * Check the public key for following * Check 1: Verify key is not the zero point. * Check 2: Verify key is in the range [1, p-1]. * Check 3: Verify that y^2 == (x^3 + a·x + b) mod p */ rc = kmb_ocs_ecc_is_pubkey_valid_partial(ecc_dev, curve, pk); if (rc) goto exit_free_pk; /* Allocate point for storing computed shared secret. */ result = ecc_alloc_point(pk->ndigits); if (!result) { rc = -ENOMEM; goto exit_free_pk; } /* Calculate the shared secret.*/ rc = kmb_ecc_point_mult(ecc_dev, result, pk, tctx->private_key, curve); if (rc) goto exit_free_result; if (ecc_point_is_zero(result)) { rc = -EFAULT; goto exit_free_result; } /* Copy shared secret from point to buffer. */ ecc_swap_digits(result->x, shared_secret, result->ndigits); /* Request might ask for less bytes than what we have. */ nbytes = min_t(size_t, nbytes, req->dst_len); copied = sg_copy_from_buffer(req->dst, sg_nents_for_len(req->dst, nbytes), shared_secret, nbytes); if (copied != nbytes) rc = -EINVAL; memzero_explicit(shared_secret, sizeof(shared_secret)); exit_free_result: ecc_free_point(result); exit_free_pk: ecc_free_point(pk); return rc; } /* Compute public key. */ static int kmb_ecc_do_public_key(struct ocs_ecc_ctx *tctx, struct kpp_request *req) { const struct ecc_curve *curve = tctx->curve; u64 pubk_buf[KMB_ECC_VLI_MAX_DIGITS * 2]; struct ecc_point *pk; size_t pubk_len; size_t copied; int rc; /* Public key is a point, so it has double the digits. */ pubk_len = 2 * digits_to_bytes(curve->g.ndigits); pk = ecc_alloc_point(curve->g.ndigits); if (!pk) return -ENOMEM; /* Public Key(pk) = priv * G. */ rc = kmb_ecc_point_mult(tctx->ecc_dev, pk, &curve->g, tctx->private_key, curve); if (rc) goto exit; /* SP800-56A rev 3 5.6.2.1.3 key check */ if (kmb_ocs_ecc_is_pubkey_valid_full(tctx->ecc_dev, curve, pk)) { rc = -EAGAIN; goto exit; } /* Copy public key from point to buffer. */ ecc_swap_digits(pk->x, pubk_buf, pk->ndigits); ecc_swap_digits(pk->y, &pubk_buf[pk->ndigits], pk->ndigits); /* Copy public key to req->dst. */ copied = sg_copy_from_buffer(req->dst, sg_nents_for_len(req->dst, pubk_len), pubk_buf, pubk_len); if (copied != pubk_len) rc = -EINVAL; exit: ecc_free_point(pk); return rc; } static int kmb_ocs_ecc_do_one_request(struct crypto_engine *engine, void *areq) { struct kpp_request *req = container_of(areq, struct kpp_request, base); struct ocs_ecc_ctx *tctx = kmb_ocs_ecc_tctx(req); struct ocs_ecc_dev *ecc_dev = tctx->ecc_dev; int rc; if (req->src) rc = kmb_ecc_do_shared_secret(tctx, req); else rc = kmb_ecc_do_public_key(tctx, req); crypto_finalize_kpp_request(ecc_dev->engine, req, rc); return 0; } static int kmb_ocs_ecdh_generate_public_key(struct kpp_request *req) { struct ocs_ecc_ctx *tctx = kmb_ocs_ecc_tctx(req); const struct ecc_curve *curve = tctx->curve; /* Ensure kmb_ocs_ecdh_set_secret() has been successfully called. */ if (!tctx->curve) return -EINVAL; /* Ensure dst is present. */ if (!req->dst) return -EINVAL; /* Check the request dst is big enough to hold the public key. */ if (req->dst_len < (2 * digits_to_bytes(curve->g.ndigits))) return -EINVAL; /* 'src' is not supposed to be present when generate pubk is called. */ if (req->src) return -EINVAL; return crypto_transfer_kpp_request_to_engine(tctx->ecc_dev->engine, req); } static int kmb_ocs_ecdh_compute_shared_secret(struct kpp_request *req) { struct ocs_ecc_ctx *tctx = kmb_ocs_ecc_tctx(req); const struct ecc_curve *curve = tctx->curve; /* Ensure kmb_ocs_ecdh_set_secret() has been successfully called. */ if (!tctx->curve) return -EINVAL; /* Ensure dst is present. */ if (!req->dst) return -EINVAL; /* Ensure src is present. */ if (!req->src) return -EINVAL; /* * req->src is expected to the (other-side) public key, so its length * must be 2 * coordinate size (in bytes). */ if (req->src_len != 2 * digits_to_bytes(curve->g.ndigits)) return -EINVAL; return crypto_transfer_kpp_request_to_engine(tctx->ecc_dev->engine, req); } static int kmb_ecc_tctx_init(struct ocs_ecc_ctx *tctx, unsigned int curve_id) { memset(tctx, 0, sizeof(*tctx)); tctx->ecc_dev = kmb_ocs_ecc_find_dev(tctx); if (IS_ERR(tctx->ecc_dev)) { pr_err("Failed to find the device : %ld\n", PTR_ERR(tctx->ecc_dev)); return PTR_ERR(tctx->ecc_dev); } tctx->curve = ecc_get_curve(curve_id); if (!tctx->curve) return -EOPNOTSUPP; return 0; } static int kmb_ocs_ecdh_nist_p256_init_tfm(struct crypto_kpp *tfm) { struct ocs_ecc_ctx *tctx = kpp_tfm_ctx(tfm); return kmb_ecc_tctx_init(tctx, ECC_CURVE_NIST_P256); } static int kmb_ocs_ecdh_nist_p384_init_tfm(struct crypto_kpp *tfm) { struct ocs_ecc_ctx *tctx = kpp_tfm_ctx(tfm); return kmb_ecc_tctx_init(tctx, ECC_CURVE_NIST_P384); } static void kmb_ocs_ecdh_exit_tfm(struct crypto_kpp *tfm) { struct ocs_ecc_ctx *tctx = kpp_tfm_ctx(tfm); memzero_explicit(tctx->private_key, sizeof(*tctx->private_key)); } static unsigned int kmb_ocs_ecdh_max_size(struct crypto_kpp *tfm) { struct ocs_ecc_ctx *tctx = kpp_tfm_ctx(tfm); /* Public key is made of two coordinates, so double the digits. */ return digits_to_bytes(tctx->curve->g.ndigits) * 2; } static struct kpp_engine_alg ocs_ecdh_p256 = { .base.set_secret = kmb_ocs_ecdh_set_secret, .base.generate_public_key = kmb_ocs_ecdh_generate_public_key, .base.compute_shared_secret = kmb_ocs_ecdh_compute_shared_secret, .base.init = kmb_ocs_ecdh_nist_p256_init_tfm, .base.exit = kmb_ocs_ecdh_exit_tfm, .base.max_size = kmb_ocs_ecdh_max_size, .base.base = { .cra_name = "ecdh-nist-p256", .cra_driver_name = "ecdh-nist-p256-keembay-ocs", .cra_priority = KMB_OCS_ECC_PRIORITY, .cra_module = THIS_MODULE, .cra_ctxsize = sizeof(struct ocs_ecc_ctx), }, .op.do_one_request = kmb_ocs_ecc_do_one_request, }; static struct kpp_engine_alg ocs_ecdh_p384 = { .base.set_secret = kmb_ocs_ecdh_set_secret, .base.generate_public_key = kmb_ocs_ecdh_generate_public_key, .base.compute_shared_secret = kmb_ocs_ecdh_compute_shared_secret, .base.init = kmb_ocs_ecdh_nist_p384_init_tfm, .base.exit = kmb_ocs_ecdh_exit_tfm, .base.max_size = kmb_ocs_ecdh_max_size, .base.base = { .cra_name = "ecdh-nist-p384", .cra_driver_name = "ecdh-nist-p384-keembay-ocs", .cra_priority = KMB_OCS_ECC_PRIORITY, .cra_module = THIS_MODULE, .cra_ctxsize = sizeof(struct ocs_ecc_ctx), }, .op.do_one_request = kmb_ocs_ecc_do_one_request, }; static irqreturn_t ocs_ecc_irq_handler(int irq, void *dev_id) { struct ocs_ecc_dev *ecc_dev = dev_id; u32 status; /* * Read the status register and write it back to clear the * DONE_INT_STATUS bit. */ status = ioread32(ecc_dev->base_reg + HW_OFFS_OCS_ECC_ISR); iowrite32(status, ecc_dev->base_reg + HW_OFFS_OCS_ECC_ISR); if (!(status & HW_OCS_ECC_ISR_INT_STATUS_DONE)) return IRQ_NONE; complete(&ecc_dev->irq_done); return IRQ_HANDLED; } static int kmb_ocs_ecc_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct ocs_ecc_dev *ecc_dev; int rc; ecc_dev = devm_kzalloc(dev, sizeof(*ecc_dev), GFP_KERNEL); if (!ecc_dev) return -ENOMEM; ecc_dev->dev = dev; platform_set_drvdata(pdev, ecc_dev); INIT_LIST_HEAD(&ecc_dev->list); init_completion(&ecc_dev->irq_done); /* Get base register address. */ ecc_dev->base_reg = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(ecc_dev->base_reg)) { dev_err(dev, "Failed to get base address\n"); rc = PTR_ERR(ecc_dev->base_reg); goto list_del; } /* Get and request IRQ */ ecc_dev->irq = platform_get_irq(pdev, 0); if (ecc_dev->irq < 0) { rc = ecc_dev->irq; goto list_del; } rc = devm_request_threaded_irq(dev, ecc_dev->irq, ocs_ecc_irq_handler, NULL, 0, "keembay-ocs-ecc", ecc_dev); if (rc < 0) { dev_err(dev, "Could not request IRQ\n"); goto list_del; } /* Add device to the list of OCS ECC devices. */ spin_lock(&ocs_ecc.lock); list_add_tail(&ecc_dev->list, &ocs_ecc.dev_list); spin_unlock(&ocs_ecc.lock); /* Initialize crypto engine. */ ecc_dev->engine = crypto_engine_alloc_init(dev, 1); if (!ecc_dev->engine) { dev_err(dev, "Could not allocate crypto engine\n"); rc = -ENOMEM; goto list_del; } rc = crypto_engine_start(ecc_dev->engine); if (rc) { dev_err(dev, "Could not start crypto engine\n"); goto cleanup; } /* Register the KPP algo. */ rc = crypto_engine_register_kpp(&ocs_ecdh_p256); if (rc) { dev_err(dev, "Could not register OCS algorithms with Crypto API\n"); goto cleanup; } rc = crypto_engine_register_kpp(&ocs_ecdh_p384); if (rc) { dev_err(dev, "Could not register OCS algorithms with Crypto API\n"); goto ocs_ecdh_p384_error; } return 0; ocs_ecdh_p384_error: crypto_engine_unregister_kpp(&ocs_ecdh_p256); cleanup: crypto_engine_exit(ecc_dev->engine); list_del: spin_lock(&ocs_ecc.lock); list_del(&ecc_dev->list); spin_unlock(&ocs_ecc.lock); return rc; } static void kmb_ocs_ecc_remove(struct platform_device *pdev) { struct ocs_ecc_dev *ecc_dev; ecc_dev = platform_get_drvdata(pdev); crypto_engine_unregister_kpp(&ocs_ecdh_p384); crypto_engine_unregister_kpp(&ocs_ecdh_p256); spin_lock(&ocs_ecc.lock); list_del(&ecc_dev->list); spin_unlock(&ocs_ecc.lock); crypto_engine_exit(ecc_dev->engine); } /* Device tree driver match. */ static const struct of_device_id kmb_ocs_ecc_of_match[] = { { .compatible = "intel,keembay-ocs-ecc", }, {} }; /* The OCS driver is a platform device. */ static struct platform_driver kmb_ocs_ecc_driver = { .probe = kmb_ocs_ecc_probe, .remove_new = kmb_ocs_ecc_remove, .driver = { .name = DRV_NAME, .of_match_table = kmb_ocs_ecc_of_match, }, }; module_platform_driver(kmb_ocs_ecc_driver); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("Intel Keem Bay OCS ECC Driver"); MODULE_ALIAS_CRYPTO("ecdh-nist-p256"); MODULE_ALIAS_CRYPTO("ecdh-nist-p384"); MODULE_ALIAS_CRYPTO("ecdh-nist-p256-keembay-ocs"); MODULE_ALIAS_CRYPTO("ecdh-nist-p384-keembay-ocs"); |