Linux Audio

Check our new training course

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
// SPDX-License-Identifier: GPL-2.0-only
/*
 * Intel Keem Bay OCS ECC Crypto Driver.
 *
 * Copyright (C) 2019-2021 Intel Corporation
 */

#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

#include <crypto/ecc_curve.h>
#include <crypto/ecdh.h>
#include <crypto/engine.h>
#include <crypto/internal/ecc.h>
#include <crypto/internal/kpp.h>
#include <crypto/kpp.h>
#include <crypto/rng.h>
#include <linux/clk.h>
#include <linux/completion.h>
#include <linux/err.h>
#include <linux/fips.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/irq.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/scatterlist.h>
#include <linux/string.h>

#define DRV_NAME			"keembay-ocs-ecc"

#define KMB_OCS_ECC_PRIORITY		350

#define HW_OFFS_OCS_ECC_COMMAND		0x00000000
#define HW_OFFS_OCS_ECC_STATUS		0x00000004
#define HW_OFFS_OCS_ECC_DATA_IN		0x00000080
#define HW_OFFS_OCS_ECC_CX_DATA_OUT	0x00000100
#define HW_OFFS_OCS_ECC_CY_DATA_OUT	0x00000180
#define HW_OFFS_OCS_ECC_ISR		0x00000400
#define HW_OFFS_OCS_ECC_IER		0x00000404

#define HW_OCS_ECC_ISR_INT_STATUS_DONE	BIT(0)
#define HW_OCS_ECC_COMMAND_INS_BP	BIT(0)

#define HW_OCS_ECC_COMMAND_START_VAL	BIT(0)

#define OCS_ECC_OP_SIZE_384		BIT(8)
#define OCS_ECC_OP_SIZE_256		0

/* ECC Instruction : for ECC_COMMAND */
#define OCS_ECC_INST_WRITE_AX		(0x1 << HW_OCS_ECC_COMMAND_INS_BP)
#define OCS_ECC_INST_WRITE_AY		(0x2 << HW_OCS_ECC_COMMAND_INS_BP)
#define OCS_ECC_INST_WRITE_BX_D		(0x3 << HW_OCS_ECC_COMMAND_INS_BP)
#define OCS_ECC_INST_WRITE_BY_L		(0x4 << HW_OCS_ECC_COMMAND_INS_BP)
#define OCS_ECC_INST_WRITE_P		(0x5 << HW_OCS_ECC_COMMAND_INS_BP)
#define OCS_ECC_INST_WRITE_A		(0x6 << HW_OCS_ECC_COMMAND_INS_BP)
#define OCS_ECC_INST_CALC_D_IDX_A	(0x8 << HW_OCS_ECC_COMMAND_INS_BP)
#define OCS_ECC_INST_CALC_A_POW_B_MODP	(0xB << HW_OCS_ECC_COMMAND_INS_BP)
#define OCS_ECC_INST_CALC_A_MUL_B_MODP	(0xC  << HW_OCS_ECC_COMMAND_INS_BP)
#define OCS_ECC_INST_CALC_A_ADD_B_MODP	(0xD << HW_OCS_ECC_COMMAND_INS_BP)

#define ECC_ENABLE_INTR			1

#define POLL_USEC			100
#define TIMEOUT_USEC			10000

#define KMB_ECC_VLI_MAX_DIGITS		ECC_CURVE_NIST_P384_DIGITS
#define KMB_ECC_VLI_MAX_BYTES		(KMB_ECC_VLI_MAX_DIGITS \
					 << ECC_DIGITS_TO_BYTES_SHIFT)

#define POW_CUBE			3

/**
 * struct ocs_ecc_dev - ECC device context
 * @list: List of device contexts
 * @dev: OCS ECC device
 * @base_reg: IO base address of OCS ECC
 * @engine: Crypto engine for the device
 * @irq_done: IRQ done completion.
 * @irq: IRQ number
 */
struct ocs_ecc_dev {
	struct list_head list;
	struct device *dev;
	void __iomem *base_reg;
	struct crypto_engine *engine;
	struct completion irq_done;
	int irq;
};

/**
 * struct ocs_ecc_ctx - Transformation context.
 * @ecc_dev:	 The ECC driver associated with this context.
 * @curve:	 The elliptic curve used by this transformation.
 * @private_key: The private key.
 */
struct ocs_ecc_ctx {
	struct ocs_ecc_dev *ecc_dev;
	const struct ecc_curve *curve;
	u64 private_key[KMB_ECC_VLI_MAX_DIGITS];
};

/* Driver data. */
struct ocs_ecc_drv {
	struct list_head dev_list;
	spinlock_t lock;	/* Protects dev_list. */
};

/* Global variable holding the list of OCS ECC devices (only one expected). */
static struct ocs_ecc_drv ocs_ecc = {
	.dev_list = LIST_HEAD_INIT(ocs_ecc.dev_list),
	.lock = __SPIN_LOCK_UNLOCKED(ocs_ecc.lock),
};

/* Get OCS ECC tfm context from kpp_request. */
static inline struct ocs_ecc_ctx *kmb_ocs_ecc_tctx(struct kpp_request *req)
{
	return kpp_tfm_ctx(crypto_kpp_reqtfm(req));
}

/* Converts number of digits to number of bytes. */
static inline unsigned int digits_to_bytes(unsigned int n)
{
	return n << ECC_DIGITS_TO_BYTES_SHIFT;
}

/*
 * Wait for ECC idle i.e when an operation (other than write operations)
 * is done.
 */
static inline int ocs_ecc_wait_idle(struct ocs_ecc_dev *dev)
{
	u32 value;

	return readl_poll_timeout((dev->base_reg + HW_OFFS_OCS_ECC_STATUS),
				  value,
				  !(value & HW_OCS_ECC_ISR_INT_STATUS_DONE),
				  POLL_USEC, TIMEOUT_USEC);
}

static void ocs_ecc_cmd_start(struct ocs_ecc_dev *ecc_dev, u32 op_size)
{
	iowrite32(op_size | HW_OCS_ECC_COMMAND_START_VAL,
		  ecc_dev->base_reg + HW_OFFS_OCS_ECC_COMMAND);
}

/* Direct write of u32 buffer to ECC engine with associated instruction. */
static void ocs_ecc_write_cmd_and_data(struct ocs_ecc_dev *dev,
				       u32 op_size,
				       u32 inst,
				       const void *data_in,
				       size_t data_size)
{
	iowrite32(op_size | inst, dev->base_reg + HW_OFFS_OCS_ECC_COMMAND);

	/* MMIO Write src uint32 to dst. */
	memcpy_toio(dev->base_reg + HW_OFFS_OCS_ECC_DATA_IN, data_in,
		    data_size);
}

/* Start OCS ECC operation and wait for its completion. */
static int ocs_ecc_trigger_op(struct ocs_ecc_dev *ecc_dev, u32 op_size,
			      u32 inst)
{
	reinit_completion(&ecc_dev->irq_done);

	iowrite32(ECC_ENABLE_INTR, ecc_dev->base_reg + HW_OFFS_OCS_ECC_IER);
	iowrite32(op_size | inst, ecc_dev->base_reg + HW_OFFS_OCS_ECC_COMMAND);

	return wait_for_completion_interruptible(&ecc_dev->irq_done);
}

/**
 * ocs_ecc_read_cx_out() - Read the CX data output buffer.
 * @dev:	The OCS ECC device to read from.
 * @cx_out:	The buffer where to store the CX value. Must be at least
 *		@byte_count byte long.
 * @byte_count:	The amount of data to read.
 */
static inline void ocs_ecc_read_cx_out(struct ocs_ecc_dev *dev, void *cx_out,
				       size_t byte_count)
{
	memcpy_fromio(cx_out, dev->base_reg + HW_OFFS_OCS_ECC_CX_DATA_OUT,
		      byte_count);
}

/**
 * ocs_ecc_read_cy_out() - Read the CX data output buffer.
 * @dev:	The OCS ECC device to read from.
 * @cy_out:	The buffer where to store the CY value. Must be at least
 *		@byte_count byte long.
 * @byte_count:	The amount of data to read.
 */
static inline void ocs_ecc_read_cy_out(struct ocs_ecc_dev *dev, void *cy_out,
				       size_t byte_count)
{
	memcpy_fromio(cy_out, dev->base_reg + HW_OFFS_OCS_ECC_CY_DATA_OUT,
		      byte_count);
}

static struct ocs_ecc_dev *kmb_ocs_ecc_find_dev(struct ocs_ecc_ctx *tctx)
{
	if (tctx->ecc_dev)
		return tctx->ecc_dev;

	spin_lock(&ocs_ecc.lock);

	/* Only a single OCS device available. */
	tctx->ecc_dev = list_first_entry(&ocs_ecc.dev_list, struct ocs_ecc_dev,
					 list);

	spin_unlock(&ocs_ecc.lock);

	return tctx->ecc_dev;
}

/* Do point multiplication using OCS ECC HW. */
static int kmb_ecc_point_mult(struct ocs_ecc_dev *ecc_dev,
			      struct ecc_point *result,
			      const struct ecc_point *point,
			      u64 *scalar,
			      const struct ecc_curve *curve)
{
	u8 sca[KMB_ECC_VLI_MAX_BYTES]; /* Use the maximum data size. */
	u32 op_size = (curve->g.ndigits > ECC_CURVE_NIST_P256_DIGITS) ?
		      OCS_ECC_OP_SIZE_384 : OCS_ECC_OP_SIZE_256;
	size_t nbytes = digits_to_bytes(curve->g.ndigits);
	int rc = 0;

	/* Generate random nbytes for Simple and Differential SCA protection. */
	rc = crypto_get_default_rng();
	if (rc)
		return rc;

	rc = crypto_rng_get_bytes(crypto_default_rng, sca, nbytes);
	crypto_put_default_rng();
	if (rc)
		return rc;

	/* Wait engine to be idle before starting new operation. */
	rc = ocs_ecc_wait_idle(ecc_dev);
	if (rc)
		return rc;

	/* Send ecc_start pulse as well as indicating operation size. */
	ocs_ecc_cmd_start(ecc_dev, op_size);

	/* Write ax param; Base point (Gx). */
	ocs_ecc_write_cmd_and_data(ecc_dev, op_size, OCS_ECC_INST_WRITE_AX,
				   point->x, nbytes);

	/* Write ay param; Base point (Gy). */
	ocs_ecc_write_cmd_and_data(ecc_dev, op_size, OCS_ECC_INST_WRITE_AY,
				   point->y, nbytes);

	/*
	 * Write the private key into DATA_IN reg.
	 *
	 * Since DATA_IN register is used to write different values during the
	 * computation private Key value is overwritten with
	 * side-channel-resistance value.
	 */
	ocs_ecc_write_cmd_and_data(ecc_dev, op_size, OCS_ECC_INST_WRITE_BX_D,
				   scalar, nbytes);

	/* Write operand by/l. */
	ocs_ecc_write_cmd_and_data(ecc_dev, op_size, OCS_ECC_INST_WRITE_BY_L,
				   sca, nbytes);
	memzero_explicit(sca, sizeof(sca));

	/* Write p = curve prime(GF modulus). */
	ocs_ecc_write_cmd_and_data(ecc_dev, op_size, OCS_ECC_INST_WRITE_P,
				   curve->p, nbytes);

	/* Write a = curve coefficient. */
	ocs_ecc_write_cmd_and_data(ecc_dev, op_size, OCS_ECC_INST_WRITE_A,
				   curve->a, nbytes);

	/* Make hardware perform the multiplication. */
	rc = ocs_ecc_trigger_op(ecc_dev, op_size, OCS_ECC_INST_CALC_D_IDX_A);
	if (rc)
		return rc;

	/* Read result. */
	ocs_ecc_read_cx_out(ecc_dev, result->x, nbytes);
	ocs_ecc_read_cy_out(ecc_dev, result->y, nbytes);

	return 0;
}

/**
 * kmb_ecc_do_scalar_op() - Perform Scalar operation using OCS ECC HW.
 * @ecc_dev:	The OCS ECC device to use.
 * @scalar_out:	Where to store the output scalar.
 * @scalar_a:	Input scalar operand 'a'.
 * @scalar_b:	Input scalar operand 'b'
 * @curve:	The curve on which the operation is performed.
 * @ndigits:	The size of the operands (in digits).
 * @inst:	The operation to perform (as an OCS ECC instruction).
 *
 * Return:	0 on success, negative error code otherwise.
 */
static int kmb_ecc_do_scalar_op(struct ocs_ecc_dev *ecc_dev, u64 *scalar_out,
				const u64 *scalar_a, const u64 *scalar_b,
				const struct ecc_curve *curve,
				unsigned int ndigits, const u32 inst)
{
	u32 op_size = (ndigits > ECC_CURVE_NIST_P256_DIGITS) ?
		      OCS_ECC_OP_SIZE_384 : OCS_ECC_OP_SIZE_256;
	size_t nbytes = digits_to_bytes(ndigits);
	int rc;

	/* Wait engine to be idle before starting new operation. */
	rc = ocs_ecc_wait_idle(ecc_dev);
	if (rc)
		return rc;

	/* Send ecc_start pulse as well as indicating operation size. */
	ocs_ecc_cmd_start(ecc_dev, op_size);

	/* Write ax param (Base point (Gx).*/
	ocs_ecc_write_cmd_and_data(ecc_dev, op_size, OCS_ECC_INST_WRITE_AX,
				   scalar_a, nbytes);

	/* Write ay param Base point (Gy).*/
	ocs_ecc_write_cmd_and_data(ecc_dev, op_size, OCS_ECC_INST_WRITE_AY,
				   scalar_b, nbytes);

	/* Write p = curve prime(GF modulus).*/
	ocs_ecc_write_cmd_and_data(ecc_dev, op_size, OCS_ECC_INST_WRITE_P,
				   curve->p, nbytes);

	/* Give instruction A.B or A+B to ECC engine. */
	rc = ocs_ecc_trigger_op(ecc_dev, op_size, inst);
	if (rc)
		return rc;

	ocs_ecc_read_cx_out(ecc_dev, scalar_out, nbytes);

	if (vli_is_zero(scalar_out, ndigits))
		return -EINVAL;

	return 0;
}

/* SP800-56A section 5.6.2.3.4 partial verification: ephemeral keys only */
static int kmb_ocs_ecc_is_pubkey_valid_partial(struct ocs_ecc_dev *ecc_dev,
					       const struct ecc_curve *curve,
					       struct ecc_point *pk)
{
	u64 xxx[KMB_ECC_VLI_MAX_DIGITS] = { 0 };
	u64 yy[KMB_ECC_VLI_MAX_DIGITS] = { 0 };
	u64 w[KMB_ECC_VLI_MAX_DIGITS] = { 0 };
	int rc;

	if (WARN_ON(pk->ndigits != curve->g.ndigits))
		return -EINVAL;

	/* Check 1: Verify key is not the zero point. */
	if (ecc_point_is_zero(pk))
		return -EINVAL;

	/* Check 2: Verify key is in the range [0, p-1]. */
	if (vli_cmp(curve->p, pk->x, pk->ndigits) != 1)
		return -EINVAL;

	if (vli_cmp(curve->p, pk->y, pk->ndigits) != 1)
		return -EINVAL;

	/* Check 3: Verify that y^2 == (x^3 + a·x + b) mod p */

	 /* y^2 */
	/* Compute y^2 -> store in yy */
	rc = kmb_ecc_do_scalar_op(ecc_dev, yy, pk->y, pk->y, curve, pk->ndigits,
				  OCS_ECC_INST_CALC_A_MUL_B_MODP);
	if (rc)
		goto exit;

	/* x^3 */
	/* Assigning w = 3, used for calculating x^3. */
	w[0] = POW_CUBE;
	/* Load the next stage.*/
	rc = kmb_ecc_do_scalar_op(ecc_dev, xxx, pk->x, w, curve, pk->ndigits,
				  OCS_ECC_INST_CALC_A_POW_B_MODP);
	if (rc)
		goto exit;

	/* Do a*x -> store in w. */
	rc = kmb_ecc_do_scalar_op(ecc_dev, w, curve->a, pk->x, curve,
				  pk->ndigits,
				  OCS_ECC_INST_CALC_A_MUL_B_MODP);
	if (rc)
		goto exit;

	/* Do ax + b == w + b; store in w. */
	rc = kmb_ecc_do_scalar_op(ecc_dev, w, w, curve->b, curve,
				  pk->ndigits,
				  OCS_ECC_INST_CALC_A_ADD_B_MODP);
	if (rc)
		goto exit;

	/* x^3 + ax + b == x^3 + w -> store in w. */
	rc = kmb_ecc_do_scalar_op(ecc_dev, w, xxx, w, curve, pk->ndigits,
				  OCS_ECC_INST_CALC_A_ADD_B_MODP);
	if (rc)
		goto exit;

	/* Compare y^2 == x^3 + a·x + b. */
	rc = vli_cmp(yy, w, pk->ndigits);
	if (rc)
		rc = -EINVAL;

exit:
	memzero_explicit(xxx, sizeof(xxx));
	memzero_explicit(yy, sizeof(yy));
	memzero_explicit(w, sizeof(w));

	return rc;
}

/* SP800-56A section 5.6.2.3.3 full verification */
static int kmb_ocs_ecc_is_pubkey_valid_full(struct ocs_ecc_dev *ecc_dev,
					    const struct ecc_curve *curve,
					    struct ecc_point *pk)
{
	struct ecc_point *nQ;
	int rc;

	/* Checks 1 through 3 */
	rc = kmb_ocs_ecc_is_pubkey_valid_partial(ecc_dev, curve, pk);
	if (rc)
		return rc;

	/* Check 4: Verify that nQ is the zero point. */
	nQ = ecc_alloc_point(pk->ndigits);
	if (!nQ)
		return -ENOMEM;

	rc = kmb_ecc_point_mult(ecc_dev, nQ, pk, curve->n, curve);
	if (rc)
		goto exit;

	if (!ecc_point_is_zero(nQ))
		rc = -EINVAL;

exit:
	ecc_free_point(nQ);

	return rc;
}

static int kmb_ecc_is_key_valid(const struct ecc_curve *curve,
				const u64 *private_key, size_t private_key_len)
{
	size_t ndigits = curve->g.ndigits;
	u64 one[KMB_ECC_VLI_MAX_DIGITS] = {1};
	u64 res[KMB_ECC_VLI_MAX_DIGITS];

	if (private_key_len != digits_to_bytes(ndigits))
		return -EINVAL;

	if (!private_key)
		return -EINVAL;

	/* Make sure the private key is in the range [2, n-3]. */
	if (vli_cmp(one, private_key, ndigits) != -1)
		return -EINVAL;

	vli_sub(res, curve->n, one, ndigits);
	vli_sub(res, res, one, ndigits);
	if (vli_cmp(res, private_key, ndigits) != 1)
		return -EINVAL;

	return 0;
}

/*
 * ECC private keys are generated using the method of extra random bits,
 * equivalent to that described in FIPS 186-4, Appendix B.4.1.
 *
 * d = (c mod(n–1)) + 1    where c is a string of random bits, 64 bits longer
 *                         than requested
 * 0 <= c mod(n-1) <= n-2  and implies that
 * 1 <= d <= n-1
 *
 * This method generates a private key uniformly distributed in the range
 * [1, n-1].
 */
static int kmb_ecc_gen_privkey(const struct ecc_curve *curve, u64 *privkey)
{
	size_t nbytes = digits_to_bytes(curve->g.ndigits);
	u64 priv[KMB_ECC_VLI_MAX_DIGITS];
	size_t nbits;
	int rc;

	nbits = vli_num_bits(curve->n, curve->g.ndigits);

	/* Check that N is included in Table 1 of FIPS 186-4, section 6.1.1 */
	if (nbits < 160 || curve->g.ndigits > ARRAY_SIZE(priv))
		return -EINVAL;

	/*
	 * FIPS 186-4 recommends that the private key should be obtained from a
	 * RBG with a security strength equal to or greater than the security
	 * strength associated with N.
	 *
	 * The maximum security strength identified by NIST SP800-57pt1r4 for
	 * ECC is 256 (N >= 512).
	 *
	 * This condition is met by the default RNG because it selects a favored
	 * DRBG with a security strength of 256.
	 */
	if (crypto_get_default_rng())
		return -EFAULT;

	rc = crypto_rng_get_bytes(crypto_default_rng, (u8 *)priv, nbytes);
	crypto_put_default_rng();
	if (rc)
		goto cleanup;

	rc = kmb_ecc_is_key_valid(curve, priv, nbytes);
	if (rc)
		goto cleanup;

	ecc_swap_digits(priv, privkey, curve->g.ndigits);

cleanup:
	memzero_explicit(&priv, sizeof(priv));

	return rc;
}

static int kmb_ocs_ecdh_set_secret(struct crypto_kpp *tfm, const void *buf,
				   unsigned int len)
{
	struct ocs_ecc_ctx *tctx = kpp_tfm_ctx(tfm);
	struct ecdh params;
	int rc = 0;

	rc = crypto_ecdh_decode_key(buf, len, &params);
	if (rc)
		goto cleanup;

	/* Ensure key size is not bigger then expected. */
	if (params.key_size > digits_to_bytes(tctx->curve->g.ndigits)) {
		rc = -EINVAL;
		goto cleanup;
	}

	/* Auto-generate private key is not provided. */
	if (!params.key || !params.key_size) {
		rc = kmb_ecc_gen_privkey(tctx->curve, tctx->private_key);
		goto cleanup;
	}

	rc = kmb_ecc_is_key_valid(tctx->curve, (const u64 *)params.key,
				  params.key_size);
	if (rc)
		goto cleanup;

	ecc_swap_digits((const u64 *)params.key, tctx->private_key,
			tctx->curve->g.ndigits);
cleanup:
	memzero_explicit(&params, sizeof(params));

	if (rc)
		tctx->curve = NULL;

	return rc;
}

/* Compute shared secret. */
static int kmb_ecc_do_shared_secret(struct ocs_ecc_ctx *tctx,
				    struct kpp_request *req)
{
	struct ocs_ecc_dev *ecc_dev = tctx->ecc_dev;
	const struct ecc_curve *curve = tctx->curve;
	u64 shared_secret[KMB_ECC_VLI_MAX_DIGITS];
	u64 pubk_buf[KMB_ECC_VLI_MAX_DIGITS * 2];
	size_t copied, nbytes, pubk_len;
	struct ecc_point *pk, *result;
	int rc;

	nbytes = digits_to_bytes(curve->g.ndigits);

	/* Public key is a point, thus it has two coordinates */
	pubk_len = 2 * nbytes;

	/* Copy public key from SG list to pubk_buf. */
	copied = sg_copy_to_buffer(req->src,
				   sg_nents_for_len(req->src, pubk_len),
				   pubk_buf, pubk_len);
	if (copied != pubk_len)
		return -EINVAL;

	/* Allocate and initialize public key point. */
	pk = ecc_alloc_point(curve->g.ndigits);
	if (!pk)
		return -ENOMEM;

	ecc_swap_digits(pubk_buf, pk->x, curve->g.ndigits);
	ecc_swap_digits(&pubk_buf[curve->g.ndigits], pk->y, curve->g.ndigits);

	/*
	 * Check the public key for following
	 * Check 1: Verify key is not the zero point.
	 * Check 2: Verify key is in the range [1, p-1].
	 * Check 3: Verify that y^2 == (x^3 + a·x + b) mod p
	 */
	rc = kmb_ocs_ecc_is_pubkey_valid_partial(ecc_dev, curve, pk);
	if (rc)
		goto exit_free_pk;

	/* Allocate point for storing computed shared secret. */
	result = ecc_alloc_point(pk->ndigits);
	if (!result) {
		rc = -ENOMEM;
		goto exit_free_pk;
	}

	/* Calculate the shared secret.*/
	rc = kmb_ecc_point_mult(ecc_dev, result, pk, tctx->private_key, curve);
	if (rc)
		goto exit_free_result;

	if (ecc_point_is_zero(result)) {
		rc = -EFAULT;
		goto exit_free_result;
	}

	/* Copy shared secret from point to buffer. */
	ecc_swap_digits(result->x, shared_secret, result->ndigits);

	/* Request might ask for less bytes than what we have. */
	nbytes = min_t(size_t, nbytes, req->dst_len);

	copied = sg_copy_from_buffer(req->dst,
				     sg_nents_for_len(req->dst, nbytes),
				     shared_secret, nbytes);

	if (copied != nbytes)
		rc = -EINVAL;

	memzero_explicit(shared_secret, sizeof(shared_secret));

exit_free_result:
	ecc_free_point(result);

exit_free_pk:
	ecc_free_point(pk);

	return rc;
}

/* Compute public key. */
static int kmb_ecc_do_public_key(struct ocs_ecc_ctx *tctx,
				 struct kpp_request *req)
{
	const struct ecc_curve *curve = tctx->curve;
	u64 pubk_buf[KMB_ECC_VLI_MAX_DIGITS * 2];
	struct ecc_point *pk;
	size_t pubk_len;
	size_t copied;
	int rc;

	/* Public key is a point, so it has double the digits. */
	pubk_len = 2 * digits_to_bytes(curve->g.ndigits);

	pk = ecc_alloc_point(curve->g.ndigits);
	if (!pk)
		return -ENOMEM;

	/* Public Key(pk) = priv * G. */
	rc = kmb_ecc_point_mult(tctx->ecc_dev, pk, &curve->g, tctx->private_key,
				curve);
	if (rc)
		goto exit;

	/* SP800-56A rev 3 5.6.2.1.3 key check */
	if (kmb_ocs_ecc_is_pubkey_valid_full(tctx->ecc_dev, curve, pk)) {
		rc = -EAGAIN;
		goto exit;
	}

	/* Copy public key from point to buffer. */
	ecc_swap_digits(pk->x, pubk_buf, pk->ndigits);
	ecc_swap_digits(pk->y, &pubk_buf[pk->ndigits], pk->ndigits);

	/* Copy public key to req->dst. */
	copied = sg_copy_from_buffer(req->dst,
				     sg_nents_for_len(req->dst, pubk_len),
				     pubk_buf, pubk_len);

	if (copied != pubk_len)
		rc = -EINVAL;

exit:
	ecc_free_point(pk);

	return rc;
}

static int kmb_ocs_ecc_do_one_request(struct crypto_engine *engine,
				      void *areq)
{
	struct kpp_request *req = container_of(areq, struct kpp_request, base);
	struct ocs_ecc_ctx *tctx = kmb_ocs_ecc_tctx(req);
	struct ocs_ecc_dev *ecc_dev = tctx->ecc_dev;
	int rc;

	if (req->src)
		rc = kmb_ecc_do_shared_secret(tctx, req);
	else
		rc = kmb_ecc_do_public_key(tctx, req);

	crypto_finalize_kpp_request(ecc_dev->engine, req, rc);

	return 0;
}

static int kmb_ocs_ecdh_generate_public_key(struct kpp_request *req)
{
	struct ocs_ecc_ctx *tctx = kmb_ocs_ecc_tctx(req);
	const struct ecc_curve *curve = tctx->curve;

	/* Ensure kmb_ocs_ecdh_set_secret() has been successfully called. */
	if (!tctx->curve)
		return -EINVAL;

	/* Ensure dst is present. */
	if (!req->dst)
		return -EINVAL;

	/* Check the request dst is big enough to hold the public key. */
	if (req->dst_len < (2 * digits_to_bytes(curve->g.ndigits)))
		return -EINVAL;

	/* 'src' is not supposed to be present when generate pubk is called. */
	if (req->src)
		return -EINVAL;

	return crypto_transfer_kpp_request_to_engine(tctx->ecc_dev->engine,
						     req);
}

static int kmb_ocs_ecdh_compute_shared_secret(struct kpp_request *req)
{
	struct ocs_ecc_ctx *tctx = kmb_ocs_ecc_tctx(req);
	const struct ecc_curve *curve = tctx->curve;

	/* Ensure kmb_ocs_ecdh_set_secret() has been successfully called. */
	if (!tctx->curve)
		return -EINVAL;

	/* Ensure dst is present. */
	if (!req->dst)
		return -EINVAL;

	/* Ensure src is present. */
	if (!req->src)
		return -EINVAL;

	/*
	 * req->src is expected to the (other-side) public key, so its length
	 * must be 2 * coordinate size (in bytes).
	 */
	if (req->src_len != 2 * digits_to_bytes(curve->g.ndigits))
		return -EINVAL;

	return crypto_transfer_kpp_request_to_engine(tctx->ecc_dev->engine,
						     req);
}

static int kmb_ecc_tctx_init(struct ocs_ecc_ctx *tctx, unsigned int curve_id)
{
	memset(tctx, 0, sizeof(*tctx));

	tctx->ecc_dev = kmb_ocs_ecc_find_dev(tctx);

	if (IS_ERR(tctx->ecc_dev)) {
		pr_err("Failed to find the device : %ld\n",
		       PTR_ERR(tctx->ecc_dev));
		return PTR_ERR(tctx->ecc_dev);
	}

	tctx->curve = ecc_get_curve(curve_id);
	if (!tctx->curve)
		return -EOPNOTSUPP;

	return 0;
}

static int kmb_ocs_ecdh_nist_p256_init_tfm(struct crypto_kpp *tfm)
{
	struct ocs_ecc_ctx *tctx = kpp_tfm_ctx(tfm);

	return kmb_ecc_tctx_init(tctx, ECC_CURVE_NIST_P256);
}

static int kmb_ocs_ecdh_nist_p384_init_tfm(struct crypto_kpp *tfm)
{
	struct ocs_ecc_ctx *tctx = kpp_tfm_ctx(tfm);

	return kmb_ecc_tctx_init(tctx, ECC_CURVE_NIST_P384);
}

static void kmb_ocs_ecdh_exit_tfm(struct crypto_kpp *tfm)
{
	struct ocs_ecc_ctx *tctx = kpp_tfm_ctx(tfm);

	memzero_explicit(tctx->private_key, sizeof(*tctx->private_key));
}

static unsigned int kmb_ocs_ecdh_max_size(struct crypto_kpp *tfm)
{
	struct ocs_ecc_ctx *tctx = kpp_tfm_ctx(tfm);

	/* Public key is made of two coordinates, so double the digits. */
	return digits_to_bytes(tctx->curve->g.ndigits) * 2;
}

static struct kpp_engine_alg ocs_ecdh_p256 = {
	.base.set_secret = kmb_ocs_ecdh_set_secret,
	.base.generate_public_key = kmb_ocs_ecdh_generate_public_key,
	.base.compute_shared_secret = kmb_ocs_ecdh_compute_shared_secret,
	.base.init = kmb_ocs_ecdh_nist_p256_init_tfm,
	.base.exit = kmb_ocs_ecdh_exit_tfm,
	.base.max_size = kmb_ocs_ecdh_max_size,
	.base.base = {
		.cra_name = "ecdh-nist-p256",
		.cra_driver_name = "ecdh-nist-p256-keembay-ocs",
		.cra_priority = KMB_OCS_ECC_PRIORITY,
		.cra_module = THIS_MODULE,
		.cra_ctxsize = sizeof(struct ocs_ecc_ctx),
	},
	.op.do_one_request = kmb_ocs_ecc_do_one_request,
};

static struct kpp_engine_alg ocs_ecdh_p384 = {
	.base.set_secret = kmb_ocs_ecdh_set_secret,
	.base.generate_public_key = kmb_ocs_ecdh_generate_public_key,
	.base.compute_shared_secret = kmb_ocs_ecdh_compute_shared_secret,
	.base.init = kmb_ocs_ecdh_nist_p384_init_tfm,
	.base.exit = kmb_ocs_ecdh_exit_tfm,
	.base.max_size = kmb_ocs_ecdh_max_size,
	.base.base = {
		.cra_name = "ecdh-nist-p384",
		.cra_driver_name = "ecdh-nist-p384-keembay-ocs",
		.cra_priority = KMB_OCS_ECC_PRIORITY,
		.cra_module = THIS_MODULE,
		.cra_ctxsize = sizeof(struct ocs_ecc_ctx),
	},
	.op.do_one_request = kmb_ocs_ecc_do_one_request,
};

static irqreturn_t ocs_ecc_irq_handler(int irq, void *dev_id)
{
	struct ocs_ecc_dev *ecc_dev = dev_id;
	u32 status;

	/*
	 * Read the status register and write it back to clear the
	 * DONE_INT_STATUS bit.
	 */
	status = ioread32(ecc_dev->base_reg + HW_OFFS_OCS_ECC_ISR);
	iowrite32(status, ecc_dev->base_reg + HW_OFFS_OCS_ECC_ISR);

	if (!(status & HW_OCS_ECC_ISR_INT_STATUS_DONE))
		return IRQ_NONE;

	complete(&ecc_dev->irq_done);

	return IRQ_HANDLED;
}

static int kmb_ocs_ecc_probe(struct platform_device *pdev)
{
	struct device *dev = &pdev->dev;
	struct ocs_ecc_dev *ecc_dev;
	int rc;

	ecc_dev = devm_kzalloc(dev, sizeof(*ecc_dev), GFP_KERNEL);
	if (!ecc_dev)
		return -ENOMEM;

	ecc_dev->dev = dev;

	platform_set_drvdata(pdev, ecc_dev);

	INIT_LIST_HEAD(&ecc_dev->list);
	init_completion(&ecc_dev->irq_done);

	/* Get base register address. */
	ecc_dev->base_reg = devm_platform_ioremap_resource(pdev, 0);
	if (IS_ERR(ecc_dev->base_reg)) {
		dev_err(dev, "Failed to get base address\n");
		rc = PTR_ERR(ecc_dev->base_reg);
		goto list_del;
	}

	/* Get and request IRQ */
	ecc_dev->irq = platform_get_irq(pdev, 0);
	if (ecc_dev->irq < 0) {
		rc = ecc_dev->irq;
		goto list_del;
	}

	rc = devm_request_threaded_irq(dev, ecc_dev->irq, ocs_ecc_irq_handler,
				       NULL, 0, "keembay-ocs-ecc", ecc_dev);
	if (rc < 0) {
		dev_err(dev, "Could not request IRQ\n");
		goto list_del;
	}

	/* Add device to the list of OCS ECC devices. */
	spin_lock(&ocs_ecc.lock);
	list_add_tail(&ecc_dev->list, &ocs_ecc.dev_list);
	spin_unlock(&ocs_ecc.lock);

	/* Initialize crypto engine. */
	ecc_dev->engine = crypto_engine_alloc_init(dev, 1);
	if (!ecc_dev->engine) {
		dev_err(dev, "Could not allocate crypto engine\n");
		rc = -ENOMEM;
		goto list_del;
	}

	rc = crypto_engine_start(ecc_dev->engine);
	if (rc) {
		dev_err(dev, "Could not start crypto engine\n");
		goto cleanup;
	}

	/* Register the KPP algo. */
	rc = crypto_engine_register_kpp(&ocs_ecdh_p256);
	if (rc) {
		dev_err(dev,
			"Could not register OCS algorithms with Crypto API\n");
		goto cleanup;
	}

	rc = crypto_engine_register_kpp(&ocs_ecdh_p384);
	if (rc) {
		dev_err(dev,
			"Could not register OCS algorithms with Crypto API\n");
		goto ocs_ecdh_p384_error;
	}

	return 0;

ocs_ecdh_p384_error:
	crypto_engine_unregister_kpp(&ocs_ecdh_p256);

cleanup:
	crypto_engine_exit(ecc_dev->engine);

list_del:
	spin_lock(&ocs_ecc.lock);
	list_del(&ecc_dev->list);
	spin_unlock(&ocs_ecc.lock);

	return rc;
}

static void kmb_ocs_ecc_remove(struct platform_device *pdev)
{
	struct ocs_ecc_dev *ecc_dev;

	ecc_dev = platform_get_drvdata(pdev);

	crypto_engine_unregister_kpp(&ocs_ecdh_p384);
	crypto_engine_unregister_kpp(&ocs_ecdh_p256);

	spin_lock(&ocs_ecc.lock);
	list_del(&ecc_dev->list);
	spin_unlock(&ocs_ecc.lock);

	crypto_engine_exit(ecc_dev->engine);
}

/* Device tree driver match. */
static const struct of_device_id kmb_ocs_ecc_of_match[] = {
	{
		.compatible = "intel,keembay-ocs-ecc",
	},
	{}
};

/* The OCS driver is a platform device. */
static struct platform_driver kmb_ocs_ecc_driver = {
	.probe = kmb_ocs_ecc_probe,
	.remove_new = kmb_ocs_ecc_remove,
	.driver = {
			.name = DRV_NAME,
			.of_match_table = kmb_ocs_ecc_of_match,
		},
};
module_platform_driver(kmb_ocs_ecc_driver);

MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Intel Keem Bay OCS ECC Driver");
MODULE_ALIAS_CRYPTO("ecdh-nist-p256");
MODULE_ALIAS_CRYPTO("ecdh-nist-p384");
MODULE_ALIAS_CRYPTO("ecdh-nist-p256-keembay-ocs");
MODULE_ALIAS_CRYPTO("ecdh-nist-p384-keembay-ocs");