Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 | // SPDX-License-Identifier: GPL-2.0-only /* * CPU frequency scaling for OMAP using OPP information * * Copyright (C) 2005 Nokia Corporation * Written by Tony Lindgren <tony@atomide.com> * * Based on cpu-sa1110.c, Copyright (C) 2001 Russell King * * Copyright (C) 2007-2011 Texas Instruments, Inc. * - OMAP3/4 support by Rajendra Nayak, Santosh Shilimkar */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/types.h> #include <linux/kernel.h> #include <linux/sched.h> #include <linux/cpufreq.h> #include <linux/delay.h> #include <linux/init.h> #include <linux/err.h> #include <linux/clk.h> #include <linux/io.h> #include <linux/pm_opp.h> #include <linux/cpu.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/regulator/consumer.h> #include <asm/smp_plat.h> #include <asm/cpu.h> /* OPP tolerance in percentage */ #define OPP_TOLERANCE 4 static struct cpufreq_frequency_table *freq_table; static atomic_t freq_table_users = ATOMIC_INIT(0); static struct device *mpu_dev; static struct regulator *mpu_reg; static int omap_target(struct cpufreq_policy *policy, unsigned int index) { int r, ret; struct dev_pm_opp *opp; unsigned long freq, volt = 0, volt_old = 0, tol = 0; unsigned int old_freq, new_freq; old_freq = policy->cur; new_freq = freq_table[index].frequency; freq = new_freq * 1000; ret = clk_round_rate(policy->clk, freq); if (ret < 0) { dev_warn(mpu_dev, "CPUfreq: Cannot find matching frequency for %lu\n", freq); return ret; } freq = ret; if (mpu_reg) { opp = dev_pm_opp_find_freq_ceil(mpu_dev, &freq); if (IS_ERR(opp)) { dev_err(mpu_dev, "%s: unable to find MPU OPP for %d\n", __func__, new_freq); return -EINVAL; } volt = dev_pm_opp_get_voltage(opp); dev_pm_opp_put(opp); tol = volt * OPP_TOLERANCE / 100; volt_old = regulator_get_voltage(mpu_reg); } dev_dbg(mpu_dev, "cpufreq-omap: %u MHz, %ld mV --> %u MHz, %ld mV\n", old_freq / 1000, volt_old ? volt_old / 1000 : -1, new_freq / 1000, volt ? volt / 1000 : -1); /* scaling up? scale voltage before frequency */ if (mpu_reg && (new_freq > old_freq)) { r = regulator_set_voltage(mpu_reg, volt - tol, volt + tol); if (r < 0) { dev_warn(mpu_dev, "%s: unable to scale voltage up.\n", __func__); return r; } } ret = clk_set_rate(policy->clk, new_freq * 1000); /* scaling down? scale voltage after frequency */ if (mpu_reg && (new_freq < old_freq)) { r = regulator_set_voltage(mpu_reg, volt - tol, volt + tol); if (r < 0) { dev_warn(mpu_dev, "%s: unable to scale voltage down.\n", __func__); clk_set_rate(policy->clk, old_freq * 1000); return r; } } return ret; } static inline void freq_table_free(void) { if (atomic_dec_and_test(&freq_table_users)) dev_pm_opp_free_cpufreq_table(mpu_dev, &freq_table); } static int omap_cpu_init(struct cpufreq_policy *policy) { int result; policy->clk = clk_get(NULL, "cpufreq_ck"); if (IS_ERR(policy->clk)) return PTR_ERR(policy->clk); if (!freq_table) { result = dev_pm_opp_init_cpufreq_table(mpu_dev, &freq_table); if (result) { dev_err(mpu_dev, "%s: cpu%d: failed creating freq table[%d]\n", __func__, policy->cpu, result); clk_put(policy->clk); return result; } } atomic_inc_return(&freq_table_users); /* FIXME: what's the actual transition time? */ cpufreq_generic_init(policy, freq_table, 300 * 1000); return 0; } static int omap_cpu_exit(struct cpufreq_policy *policy) { freq_table_free(); clk_put(policy->clk); return 0; } static struct cpufreq_driver omap_driver = { .flags = CPUFREQ_NEED_INITIAL_FREQ_CHECK, .verify = cpufreq_generic_frequency_table_verify, .target_index = omap_target, .get = cpufreq_generic_get, .init = omap_cpu_init, .exit = omap_cpu_exit, .register_em = cpufreq_register_em_with_opp, .name = "omap", .attr = cpufreq_generic_attr, }; static int omap_cpufreq_probe(struct platform_device *pdev) { mpu_dev = get_cpu_device(0); if (!mpu_dev) { pr_warn("%s: unable to get the MPU device\n", __func__); return -EINVAL; } mpu_reg = regulator_get(mpu_dev, "vcc"); if (IS_ERR(mpu_reg)) { pr_warn("%s: unable to get MPU regulator\n", __func__); mpu_reg = NULL; } else { /* * Ensure physical regulator is present. * (e.g. could be dummy regulator.) */ if (regulator_get_voltage(mpu_reg) < 0) { pr_warn("%s: physical regulator not present for MPU\n", __func__); regulator_put(mpu_reg); mpu_reg = NULL; } } return cpufreq_register_driver(&omap_driver); } static void omap_cpufreq_remove(struct platform_device *pdev) { cpufreq_unregister_driver(&omap_driver); } static struct platform_driver omap_cpufreq_platdrv = { .driver = { .name = "omap-cpufreq", }, .probe = omap_cpufreq_probe, .remove_new = omap_cpufreq_remove, }; module_platform_driver(omap_cpufreq_platdrv); MODULE_DESCRIPTION("cpufreq driver for OMAP SoCs"); MODULE_LICENSE("GPL"); |