Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 | // SPDX-License-Identifier: GPL-2.0-only OR MIT /* * Driver for an SoC block (Numerically Controlled Oscillator) * found on t8103 (M1) and other Apple chips * * Copyright (C) The Asahi Linux Contributors */ #include <linux/bits.h> #include <linux/bitfield.h> #include <linux/clk-provider.h> #include <linux/io.h> #include <linux/kernel.h> #include <linux/math64.h> #include <linux/module.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/spinlock.h> #define NCO_CHANNEL_STRIDE 0x4000 #define NCO_CHANNEL_REGSIZE 20 #define REG_CTRL 0 #define CTRL_ENABLE BIT(31) #define REG_DIV 4 #define DIV_FINE GENMASK(1, 0) #define DIV_COARSE GENMASK(12, 2) #define REG_INC1 8 #define REG_INC2 12 #define REG_ACCINIT 16 /* * Theory of operation (postulated) * * The REG_DIV register indirectly expresses a base integer divisor, roughly * corresponding to twice the desired ratio of input to output clock. This * base divisor is adjusted on a cycle-by-cycle basis based on the state of a * 32-bit phase accumulator to achieve a desired precise clock ratio over the * long term. * * Specifically an output clock cycle is produced after (REG_DIV divisor)/2 * or (REG_DIV divisor + 1)/2 input cycles, the latter taking effect when top * bit of the 32-bit accumulator is set. The accumulator is incremented each * produced output cycle, by the value from either REG_INC1 or REG_INC2, which * of the two is selected depending again on the accumulator's current top bit. * * Because the NCO hardware implements counting of input clock cycles in part * in a Galois linear-feedback shift register, the higher bits of divisor * are programmed into REG_DIV by picking an appropriate LFSR state. See * applnco_compute_tables/applnco_div_translate for details on this. */ #define LFSR_POLY 0xa01 #define LFSR_INIT 0x7ff #define LFSR_LEN 11 #define LFSR_PERIOD ((1 << LFSR_LEN) - 1) #define LFSR_TBLSIZE (1 << LFSR_LEN) /* The minimal attainable coarse divisor (first value in table) */ #define COARSE_DIV_OFFSET 2 struct applnco_tables { u16 fwd[LFSR_TBLSIZE]; u16 inv[LFSR_TBLSIZE]; }; struct applnco_channel { void __iomem *base; struct applnco_tables *tbl; struct clk_hw hw; spinlock_t lock; }; #define to_applnco_channel(_hw) container_of(_hw, struct applnco_channel, hw) static void applnco_enable_nolock(struct clk_hw *hw) { struct applnco_channel *chan = to_applnco_channel(hw); u32 val; val = readl_relaxed(chan->base + REG_CTRL); writel_relaxed(val | CTRL_ENABLE, chan->base + REG_CTRL); } static void applnco_disable_nolock(struct clk_hw *hw) { struct applnco_channel *chan = to_applnco_channel(hw); u32 val; val = readl_relaxed(chan->base + REG_CTRL); writel_relaxed(val & ~CTRL_ENABLE, chan->base + REG_CTRL); } static int applnco_is_enabled(struct clk_hw *hw) { struct applnco_channel *chan = to_applnco_channel(hw); return (readl_relaxed(chan->base + REG_CTRL) & CTRL_ENABLE) != 0; } static void applnco_compute_tables(struct applnco_tables *tbl) { int i; u32 state = LFSR_INIT; /* * Go through the states of a Galois LFSR and build * a coarse divisor translation table. */ for (i = LFSR_PERIOD; i > 0; i--) { if (state & 1) state = (state >> 1) ^ (LFSR_POLY >> 1); else state = (state >> 1); tbl->fwd[i] = state; tbl->inv[state] = i; } /* Zero value is special-cased */ tbl->fwd[0] = 0; tbl->inv[0] = 0; } static bool applnco_div_out_of_range(unsigned int div) { unsigned int coarse = div / 4; return coarse < COARSE_DIV_OFFSET || coarse >= COARSE_DIV_OFFSET + LFSR_TBLSIZE; } static u32 applnco_div_translate(struct applnco_tables *tbl, unsigned int div) { unsigned int coarse = div / 4; if (WARN_ON(applnco_div_out_of_range(div))) return 0; return FIELD_PREP(DIV_COARSE, tbl->fwd[coarse - COARSE_DIV_OFFSET]) | FIELD_PREP(DIV_FINE, div % 4); } static unsigned int applnco_div_translate_inv(struct applnco_tables *tbl, u32 regval) { unsigned int coarse, fine; coarse = tbl->inv[FIELD_GET(DIV_COARSE, regval)] + COARSE_DIV_OFFSET; fine = FIELD_GET(DIV_FINE, regval); return coarse * 4 + fine; } static int applnco_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct applnco_channel *chan = to_applnco_channel(hw); unsigned long flags; u32 div, inc1, inc2; bool was_enabled; div = 2 * parent_rate / rate; inc1 = 2 * parent_rate - div * rate; inc2 = inc1 - rate; if (applnco_div_out_of_range(div)) return -EINVAL; div = applnco_div_translate(chan->tbl, div); spin_lock_irqsave(&chan->lock, flags); was_enabled = applnco_is_enabled(hw); applnco_disable_nolock(hw); writel_relaxed(div, chan->base + REG_DIV); writel_relaxed(inc1, chan->base + REG_INC1); writel_relaxed(inc2, chan->base + REG_INC2); /* Presumably a neutral initial value for accumulator */ writel_relaxed(1 << 31, chan->base + REG_ACCINIT); if (was_enabled) applnco_enable_nolock(hw); spin_unlock_irqrestore(&chan->lock, flags); return 0; } static unsigned long applnco_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct applnco_channel *chan = to_applnco_channel(hw); u32 div, inc1, inc2, incbase; div = applnco_div_translate_inv(chan->tbl, readl_relaxed(chan->base + REG_DIV)); inc1 = readl_relaxed(chan->base + REG_INC1); inc2 = readl_relaxed(chan->base + REG_INC2); /* * We don't support wraparound of accumulator * nor the edge case of both increments being zero */ if (inc1 >= (1 << 31) || inc2 < (1 << 31) || (inc1 == 0 && inc2 == 0)) return 0; /* Scale both sides of division by incbase to maintain precision */ incbase = inc1 - inc2; return div64_u64(((u64) parent_rate) * 2 * incbase, ((u64) div) * incbase + inc1); } static long applnco_round_rate(struct clk_hw *hw, unsigned long rate, unsigned long *parent_rate) { unsigned long lo = *parent_rate / (COARSE_DIV_OFFSET + LFSR_TBLSIZE) + 1; unsigned long hi = *parent_rate / COARSE_DIV_OFFSET; return clamp(rate, lo, hi); } static int applnco_enable(struct clk_hw *hw) { struct applnco_channel *chan = to_applnco_channel(hw); unsigned long flags; spin_lock_irqsave(&chan->lock, flags); applnco_enable_nolock(hw); spin_unlock_irqrestore(&chan->lock, flags); return 0; } static void applnco_disable(struct clk_hw *hw) { struct applnco_channel *chan = to_applnco_channel(hw); unsigned long flags; spin_lock_irqsave(&chan->lock, flags); applnco_disable_nolock(hw); spin_unlock_irqrestore(&chan->lock, flags); } static const struct clk_ops applnco_ops = { .set_rate = applnco_set_rate, .recalc_rate = applnco_recalc_rate, .round_rate = applnco_round_rate, .enable = applnco_enable, .disable = applnco_disable, .is_enabled = applnco_is_enabled, }; static int applnco_probe(struct platform_device *pdev) { struct device_node *np = pdev->dev.of_node; struct clk_parent_data pdata = { .index = 0 }; struct clk_init_data init; struct clk_hw_onecell_data *onecell_data; void __iomem *base; struct resource *res; struct applnco_tables *tbl; unsigned int nchannels; int ret, i; base = devm_platform_get_and_ioremap_resource(pdev, 0, &res); if (IS_ERR(base)) return PTR_ERR(base); if (resource_size(res) < NCO_CHANNEL_REGSIZE) return -EINVAL; nchannels = (resource_size(res) - NCO_CHANNEL_REGSIZE) / NCO_CHANNEL_STRIDE + 1; onecell_data = devm_kzalloc(&pdev->dev, struct_size(onecell_data, hws, nchannels), GFP_KERNEL); if (!onecell_data) return -ENOMEM; onecell_data->num = nchannels; tbl = devm_kzalloc(&pdev->dev, sizeof(*tbl), GFP_KERNEL); if (!tbl) return -ENOMEM; applnco_compute_tables(tbl); for (i = 0; i < nchannels; i++) { struct applnco_channel *chan; chan = devm_kzalloc(&pdev->dev, sizeof(*chan), GFP_KERNEL); if (!chan) return -ENOMEM; chan->base = base + NCO_CHANNEL_STRIDE * i; chan->tbl = tbl; spin_lock_init(&chan->lock); memset(&init, 0, sizeof(init)); init.name = devm_kasprintf(&pdev->dev, GFP_KERNEL, "%s-%d", np->name, i); init.ops = &applnco_ops; init.parent_data = &pdata; init.num_parents = 1; init.flags = 0; chan->hw.init = &init; ret = devm_clk_hw_register(&pdev->dev, &chan->hw); if (ret) return ret; onecell_data->hws[i] = &chan->hw; } return devm_of_clk_add_hw_provider(&pdev->dev, of_clk_hw_onecell_get, onecell_data); } static const struct of_device_id applnco_ids[] = { { .compatible = "apple,nco" }, { } }; MODULE_DEVICE_TABLE(of, applnco_ids); static struct platform_driver applnco_driver = { .driver = { .name = "apple-nco", .of_match_table = applnco_ids, }, .probe = applnco_probe, }; module_platform_driver(applnco_driver); MODULE_AUTHOR("Martin PoviĊĦer <povik+lin@cutebit.org>"); MODULE_DESCRIPTION("Clock driver for NCO blocks on Apple SoCs"); MODULE_LICENSE("GPL"); |