Linux Audio

Check our new training course

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
// SPDX-License-Identifier: GPL-2.0
/*
 * Copyright (c) 2019, Intel Corporation.
 *
 * Heterogeneous Memory Attributes Table (HMAT) representation
 *
 * This program parses and reports the platform's HMAT tables, and registers
 * the applicable attributes with the node's interfaces.
 */

#define pr_fmt(fmt) "acpi/hmat: " fmt

#include <linux/acpi.h>
#include <linux/bitops.h>
#include <linux/device.h>
#include <linux/init.h>
#include <linux/list.h>
#include <linux/mm.h>
#include <linux/platform_device.h>
#include <linux/list_sort.h>
#include <linux/memregion.h>
#include <linux/memory.h>
#include <linux/mutex.h>
#include <linux/node.h>
#include <linux/sysfs.h>
#include <linux/dax.h>
#include <linux/memory-tiers.h>

static u8 hmat_revision;
static int hmat_disable __initdata;

void __init disable_hmat(void)
{
	hmat_disable = 1;
}

static LIST_HEAD(targets);
static LIST_HEAD(initiators);
static LIST_HEAD(localities);

static DEFINE_MUTEX(target_lock);

/*
 * The defined enum order is used to prioritize attributes to break ties when
 * selecting the best performing node.
 */
enum locality_types {
	WRITE_LATENCY,
	READ_LATENCY,
	WRITE_BANDWIDTH,
	READ_BANDWIDTH,
};

static struct memory_locality *localities_types[4];

struct target_cache {
	struct list_head node;
	struct node_cache_attrs cache_attrs;
};

enum {
	NODE_ACCESS_CLASS_GENPORT_SINK_LOCAL = ACCESS_COORDINATE_MAX,
	NODE_ACCESS_CLASS_GENPORT_SINK_CPU,
	NODE_ACCESS_CLASS_MAX,
};

struct memory_target {
	struct list_head node;
	unsigned int memory_pxm;
	unsigned int processor_pxm;
	struct resource memregions;
	struct access_coordinate coord[NODE_ACCESS_CLASS_MAX];
	struct list_head caches;
	struct node_cache_attrs cache_attrs;
	u8 gen_port_device_handle[ACPI_SRAT_DEVICE_HANDLE_SIZE];
	bool registered;
	bool ext_updated;	/* externally updated */
};

struct memory_initiator {
	struct list_head node;
	unsigned int processor_pxm;
	bool has_cpu;
};

struct memory_locality {
	struct list_head node;
	struct acpi_hmat_locality *hmat_loc;
};

static struct memory_initiator *find_mem_initiator(unsigned int cpu_pxm)
{
	struct memory_initiator *initiator;

	list_for_each_entry(initiator, &initiators, node)
		if (initiator->processor_pxm == cpu_pxm)
			return initiator;
	return NULL;
}

static struct memory_target *find_mem_target(unsigned int mem_pxm)
{
	struct memory_target *target;

	list_for_each_entry(target, &targets, node)
		if (target->memory_pxm == mem_pxm)
			return target;
	return NULL;
}

static struct memory_target *acpi_find_genport_target(u32 uid)
{
	struct memory_target *target;
	u32 target_uid;
	u8 *uid_ptr;

	list_for_each_entry(target, &targets, node) {
		uid_ptr = target->gen_port_device_handle + 8;
		target_uid = *(u32 *)uid_ptr;
		if (uid == target_uid)
			return target;
	}

	return NULL;
}

/**
 * acpi_get_genport_coordinates - Retrieve the access coordinates for a generic port
 * @uid: ACPI unique id
 * @coord: The access coordinates written back out for the generic port.
 *	   Expect 2 levels array.
 *
 * Return: 0 on success. Errno on failure.
 *
 * Only supports device handles that are ACPI. Assume ACPI0016 HID for CXL.
 */
int acpi_get_genport_coordinates(u32 uid,
				 struct access_coordinate *coord)
{
	struct memory_target *target;

	guard(mutex)(&target_lock);
	target = acpi_find_genport_target(uid);
	if (!target)
		return -ENOENT;

	coord[ACCESS_COORDINATE_LOCAL] =
		target->coord[NODE_ACCESS_CLASS_GENPORT_SINK_LOCAL];
	coord[ACCESS_COORDINATE_CPU] =
		target->coord[NODE_ACCESS_CLASS_GENPORT_SINK_CPU];

	return 0;
}
EXPORT_SYMBOL_NS_GPL(acpi_get_genport_coordinates, CXL);

static __init void alloc_memory_initiator(unsigned int cpu_pxm)
{
	struct memory_initiator *initiator;

	if (pxm_to_node(cpu_pxm) == NUMA_NO_NODE)
		return;

	initiator = find_mem_initiator(cpu_pxm);
	if (initiator)
		return;

	initiator = kzalloc(sizeof(*initiator), GFP_KERNEL);
	if (!initiator)
		return;

	initiator->processor_pxm = cpu_pxm;
	initiator->has_cpu = node_state(pxm_to_node(cpu_pxm), N_CPU);
	list_add_tail(&initiator->node, &initiators);
}

static __init struct memory_target *alloc_target(unsigned int mem_pxm)
{
	struct memory_target *target;

	target = find_mem_target(mem_pxm);
	if (!target) {
		target = kzalloc(sizeof(*target), GFP_KERNEL);
		if (!target)
			return NULL;
		target->memory_pxm = mem_pxm;
		target->processor_pxm = PXM_INVAL;
		target->memregions = (struct resource) {
			.name	= "ACPI mem",
			.start	= 0,
			.end	= -1,
			.flags	= IORESOURCE_MEM,
		};
		list_add_tail(&target->node, &targets);
		INIT_LIST_HEAD(&target->caches);
	}

	return target;
}

static __init void alloc_memory_target(unsigned int mem_pxm,
				       resource_size_t start,
				       resource_size_t len)
{
	struct memory_target *target;

	target = alloc_target(mem_pxm);
	if (!target)
		return;

	/*
	 * There are potentially multiple ranges per PXM, so record each
	 * in the per-target memregions resource tree.
	 */
	if (!__request_region(&target->memregions, start, len, "memory target",
				IORESOURCE_MEM))
		pr_warn("failed to reserve %#llx - %#llx in pxm: %d\n",
				start, start + len, mem_pxm);
}

static __init void alloc_genport_target(unsigned int mem_pxm, u8 *handle)
{
	struct memory_target *target;

	target = alloc_target(mem_pxm);
	if (!target)
		return;

	memcpy(target->gen_port_device_handle, handle,
	       ACPI_SRAT_DEVICE_HANDLE_SIZE);
}

static __init const char *hmat_data_type(u8 type)
{
	switch (type) {
	case ACPI_HMAT_ACCESS_LATENCY:
		return "Access Latency";
	case ACPI_HMAT_READ_LATENCY:
		return "Read Latency";
	case ACPI_HMAT_WRITE_LATENCY:
		return "Write Latency";
	case ACPI_HMAT_ACCESS_BANDWIDTH:
		return "Access Bandwidth";
	case ACPI_HMAT_READ_BANDWIDTH:
		return "Read Bandwidth";
	case ACPI_HMAT_WRITE_BANDWIDTH:
		return "Write Bandwidth";
	default:
		return "Reserved";
	}
}

static __init const char *hmat_data_type_suffix(u8 type)
{
	switch (type) {
	case ACPI_HMAT_ACCESS_LATENCY:
	case ACPI_HMAT_READ_LATENCY:
	case ACPI_HMAT_WRITE_LATENCY:
		return " nsec";
	case ACPI_HMAT_ACCESS_BANDWIDTH:
	case ACPI_HMAT_READ_BANDWIDTH:
	case ACPI_HMAT_WRITE_BANDWIDTH:
		return " MB/s";
	default:
		return "";
	}
}

static u32 hmat_normalize(u16 entry, u64 base, u8 type)
{
	u32 value;

	/*
	 * Check for invalid and overflow values
	 */
	if (entry == 0xffff || !entry)
		return 0;
	else if (base > (UINT_MAX / (entry)))
		return 0;

	/*
	 * Divide by the base unit for version 1, convert latency from
	 * picosenonds to nanoseconds if revision 2.
	 */
	value = entry * base;
	if (hmat_revision == 1) {
		if (value < 10)
			return 0;
		value = DIV_ROUND_UP(value, 10);
	} else if (hmat_revision == 2) {
		switch (type) {
		case ACPI_HMAT_ACCESS_LATENCY:
		case ACPI_HMAT_READ_LATENCY:
		case ACPI_HMAT_WRITE_LATENCY:
			value = DIV_ROUND_UP(value, 1000);
			break;
		default:
			break;
		}
	}
	return value;
}

static void hmat_update_target_access(struct memory_target *target,
				      u8 type, u32 value, int access)
{
	switch (type) {
	case ACPI_HMAT_ACCESS_LATENCY:
		target->coord[access].read_latency = value;
		target->coord[access].write_latency = value;
		break;
	case ACPI_HMAT_READ_LATENCY:
		target->coord[access].read_latency = value;
		break;
	case ACPI_HMAT_WRITE_LATENCY:
		target->coord[access].write_latency = value;
		break;
	case ACPI_HMAT_ACCESS_BANDWIDTH:
		target->coord[access].read_bandwidth = value;
		target->coord[access].write_bandwidth = value;
		break;
	case ACPI_HMAT_READ_BANDWIDTH:
		target->coord[access].read_bandwidth = value;
		break;
	case ACPI_HMAT_WRITE_BANDWIDTH:
		target->coord[access].write_bandwidth = value;
		break;
	default:
		break;
	}
}

int hmat_update_target_coordinates(int nid, struct access_coordinate *coord,
				   enum access_coordinate_class access)
{
	struct memory_target *target;
	int pxm;

	if (nid == NUMA_NO_NODE)
		return -EINVAL;

	pxm = node_to_pxm(nid);
	guard(mutex)(&target_lock);
	target = find_mem_target(pxm);
	if (!target)
		return -ENODEV;

	hmat_update_target_access(target, ACPI_HMAT_READ_LATENCY,
				  coord->read_latency, access);
	hmat_update_target_access(target, ACPI_HMAT_WRITE_LATENCY,
				  coord->write_latency, access);
	hmat_update_target_access(target, ACPI_HMAT_READ_BANDWIDTH,
				  coord->read_bandwidth, access);
	hmat_update_target_access(target, ACPI_HMAT_WRITE_BANDWIDTH,
				  coord->write_bandwidth, access);
	target->ext_updated = true;

	return 0;
}
EXPORT_SYMBOL_GPL(hmat_update_target_coordinates);

static __init void hmat_add_locality(struct acpi_hmat_locality *hmat_loc)
{
	struct memory_locality *loc;

	loc = kzalloc(sizeof(*loc), GFP_KERNEL);
	if (!loc) {
		pr_notice_once("Failed to allocate HMAT locality\n");
		return;
	}

	loc->hmat_loc = hmat_loc;
	list_add_tail(&loc->node, &localities);

	switch (hmat_loc->data_type) {
	case ACPI_HMAT_ACCESS_LATENCY:
		localities_types[READ_LATENCY] = loc;
		localities_types[WRITE_LATENCY] = loc;
		break;
	case ACPI_HMAT_READ_LATENCY:
		localities_types[READ_LATENCY] = loc;
		break;
	case ACPI_HMAT_WRITE_LATENCY:
		localities_types[WRITE_LATENCY] = loc;
		break;
	case ACPI_HMAT_ACCESS_BANDWIDTH:
		localities_types[READ_BANDWIDTH] = loc;
		localities_types[WRITE_BANDWIDTH] = loc;
		break;
	case ACPI_HMAT_READ_BANDWIDTH:
		localities_types[READ_BANDWIDTH] = loc;
		break;
	case ACPI_HMAT_WRITE_BANDWIDTH:
		localities_types[WRITE_BANDWIDTH] = loc;
		break;
	default:
		break;
	}
}

static __init void hmat_update_target(unsigned int tgt_pxm, unsigned int init_pxm,
				      u8 mem_hier, u8 type, u32 value)
{
	struct memory_target *target = find_mem_target(tgt_pxm);

	if (mem_hier != ACPI_HMAT_MEMORY)
		return;

	if (target && target->processor_pxm == init_pxm) {
		hmat_update_target_access(target, type, value,
					  ACCESS_COORDINATE_LOCAL);
		/* If the node has a CPU, update access 1 */
		if (node_state(pxm_to_node(init_pxm), N_CPU))
			hmat_update_target_access(target, type, value,
						  ACCESS_COORDINATE_CPU);
	}
}

static __init int hmat_parse_locality(union acpi_subtable_headers *header,
				      const unsigned long end)
{
	struct acpi_hmat_locality *hmat_loc = (void *)header;
	unsigned int init, targ, total_size, ipds, tpds;
	u32 *inits, *targs, value;
	u16 *entries;
	u8 type, mem_hier;

	if (hmat_loc->header.length < sizeof(*hmat_loc)) {
		pr_notice("Unexpected locality header length: %u\n",
			 hmat_loc->header.length);
		return -EINVAL;
	}

	type = hmat_loc->data_type;
	mem_hier = hmat_loc->flags & ACPI_HMAT_MEMORY_HIERARCHY;
	ipds = hmat_loc->number_of_initiator_Pds;
	tpds = hmat_loc->number_of_target_Pds;
	total_size = sizeof(*hmat_loc) + sizeof(*entries) * ipds * tpds +
		     sizeof(*inits) * ipds + sizeof(*targs) * tpds;
	if (hmat_loc->header.length < total_size) {
		pr_notice("Unexpected locality header length:%u, minimum required:%u\n",
			 hmat_loc->header.length, total_size);
		return -EINVAL;
	}

	pr_info("Locality: Flags:%02x Type:%s Initiator Domains:%u Target Domains:%u Base:%lld\n",
		hmat_loc->flags, hmat_data_type(type), ipds, tpds,
		hmat_loc->entry_base_unit);

	inits = (u32 *)(hmat_loc + 1);
	targs = inits + ipds;
	entries = (u16 *)(targs + tpds);
	for (init = 0; init < ipds; init++) {
		alloc_memory_initiator(inits[init]);
		for (targ = 0; targ < tpds; targ++) {
			value = hmat_normalize(entries[init * tpds + targ],
					       hmat_loc->entry_base_unit,
					       type);
			pr_info("  Initiator-Target[%u-%u]:%u%s\n",
				inits[init], targs[targ], value,
				hmat_data_type_suffix(type));

			hmat_update_target(targs[targ], inits[init],
					   mem_hier, type, value);
		}
	}

	if (mem_hier == ACPI_HMAT_MEMORY)
		hmat_add_locality(hmat_loc);

	return 0;
}

static __init int hmat_parse_cache(union acpi_subtable_headers *header,
				   const unsigned long end)
{
	struct acpi_hmat_cache *cache = (void *)header;
	struct memory_target *target;
	struct target_cache *tcache;
	u32 attrs;

	if (cache->header.length < sizeof(*cache)) {
		pr_notice("Unexpected cache header length: %u\n",
			 cache->header.length);
		return -EINVAL;
	}

	attrs = cache->cache_attributes;
	pr_info("Cache: Domain:%u Size:%llu Attrs:%08x SMBIOS Handles:%d\n",
		cache->memory_PD, cache->cache_size, attrs,
		cache->number_of_SMBIOShandles);

	target = find_mem_target(cache->memory_PD);
	if (!target)
		return 0;

	tcache = kzalloc(sizeof(*tcache), GFP_KERNEL);
	if (!tcache) {
		pr_notice_once("Failed to allocate HMAT cache info\n");
		return 0;
	}

	tcache->cache_attrs.size = cache->cache_size;
	tcache->cache_attrs.level = (attrs & ACPI_HMAT_CACHE_LEVEL) >> 4;
	tcache->cache_attrs.line_size = (attrs & ACPI_HMAT_CACHE_LINE_SIZE) >> 16;

	switch ((attrs & ACPI_HMAT_CACHE_ASSOCIATIVITY) >> 8) {
	case ACPI_HMAT_CA_DIRECT_MAPPED:
		tcache->cache_attrs.indexing = NODE_CACHE_DIRECT_MAP;
		break;
	case ACPI_HMAT_CA_COMPLEX_CACHE_INDEXING:
		tcache->cache_attrs.indexing = NODE_CACHE_INDEXED;
		break;
	case ACPI_HMAT_CA_NONE:
	default:
		tcache->cache_attrs.indexing = NODE_CACHE_OTHER;
		break;
	}

	switch ((attrs & ACPI_HMAT_WRITE_POLICY) >> 12) {
	case ACPI_HMAT_CP_WB:
		tcache->cache_attrs.write_policy = NODE_CACHE_WRITE_BACK;
		break;
	case ACPI_HMAT_CP_WT:
		tcache->cache_attrs.write_policy = NODE_CACHE_WRITE_THROUGH;
		break;
	case ACPI_HMAT_CP_NONE:
	default:
		tcache->cache_attrs.write_policy = NODE_CACHE_WRITE_OTHER;
		break;
	}
	list_add_tail(&tcache->node, &target->caches);

	return 0;
}

static int __init hmat_parse_proximity_domain(union acpi_subtable_headers *header,
					      const unsigned long end)
{
	struct acpi_hmat_proximity_domain *p = (void *)header;
	struct memory_target *target = NULL;

	if (p->header.length != sizeof(*p)) {
		pr_notice("Unexpected address range header length: %u\n",
			 p->header.length);
		return -EINVAL;
	}

	if (hmat_revision == 1)
		pr_info("Memory (%#llx length %#llx) Flags:%04x Processor Domain:%u Memory Domain:%u\n",
			p->reserved3, p->reserved4, p->flags, p->processor_PD,
			p->memory_PD);
	else
		pr_info("Memory Flags:%04x Processor Domain:%u Memory Domain:%u\n",
			p->flags, p->processor_PD, p->memory_PD);

	if ((hmat_revision == 1 && p->flags & ACPI_HMAT_MEMORY_PD_VALID) ||
	    hmat_revision > 1) {
		target = find_mem_target(p->memory_PD);
		if (!target) {
			pr_debug("Memory Domain missing from SRAT\n");
			return -EINVAL;
		}
	}
	if (target && p->flags & ACPI_HMAT_PROCESSOR_PD_VALID) {
		int p_node = pxm_to_node(p->processor_PD);

		if (p_node == NUMA_NO_NODE) {
			pr_debug("Invalid Processor Domain\n");
			return -EINVAL;
		}
		target->processor_pxm = p->processor_PD;
	}

	return 0;
}

static int __init hmat_parse_subtable(union acpi_subtable_headers *header,
				      const unsigned long end)
{
	struct acpi_hmat_structure *hdr = (void *)header;

	if (!hdr)
		return -EINVAL;

	switch (hdr->type) {
	case ACPI_HMAT_TYPE_PROXIMITY:
		return hmat_parse_proximity_domain(header, end);
	case ACPI_HMAT_TYPE_LOCALITY:
		return hmat_parse_locality(header, end);
	case ACPI_HMAT_TYPE_CACHE:
		return hmat_parse_cache(header, end);
	default:
		return -EINVAL;
	}
}

static __init int srat_parse_mem_affinity(union acpi_subtable_headers *header,
					  const unsigned long end)
{
	struct acpi_srat_mem_affinity *ma = (void *)header;

	if (!ma)
		return -EINVAL;
	if (!(ma->flags & ACPI_SRAT_MEM_ENABLED))
		return 0;
	alloc_memory_target(ma->proximity_domain, ma->base_address, ma->length);
	return 0;
}

static __init int srat_parse_genport_affinity(union acpi_subtable_headers *header,
					      const unsigned long end)
{
	struct acpi_srat_generic_affinity *ga = (void *)header;

	if (!ga)
		return -EINVAL;

	if (!(ga->flags & ACPI_SRAT_GENERIC_AFFINITY_ENABLED))
		return 0;

	/* Skip PCI device_handle for now */
	if (ga->device_handle_type != 0)
		return 0;

	alloc_genport_target(ga->proximity_domain,
			     (u8 *)ga->device_handle);

	return 0;
}

static u32 hmat_initiator_perf(struct memory_target *target,
			       struct memory_initiator *initiator,
			       struct acpi_hmat_locality *hmat_loc)
{
	unsigned int ipds, tpds, i, idx = 0, tdx = 0;
	u32 *inits, *targs;
	u16 *entries;

	ipds = hmat_loc->number_of_initiator_Pds;
	tpds = hmat_loc->number_of_target_Pds;
	inits = (u32 *)(hmat_loc + 1);
	targs = inits + ipds;
	entries = (u16 *)(targs + tpds);

	for (i = 0; i < ipds; i++) {
		if (inits[i] == initiator->processor_pxm) {
			idx = i;
			break;
		}
	}

	if (i == ipds)
		return 0;

	for (i = 0; i < tpds; i++) {
		if (targs[i] == target->memory_pxm) {
			tdx = i;
			break;
		}
	}
	if (i == tpds)
		return 0;

	return hmat_normalize(entries[idx * tpds + tdx],
			      hmat_loc->entry_base_unit,
			      hmat_loc->data_type);
}

static bool hmat_update_best(u8 type, u32 value, u32 *best)
{
	bool updated = false;

	if (!value)
		return false;

	switch (type) {
	case ACPI_HMAT_ACCESS_LATENCY:
	case ACPI_HMAT_READ_LATENCY:
	case ACPI_HMAT_WRITE_LATENCY:
		if (!*best || *best > value) {
			*best = value;
			updated = true;
		}
		break;
	case ACPI_HMAT_ACCESS_BANDWIDTH:
	case ACPI_HMAT_READ_BANDWIDTH:
	case ACPI_HMAT_WRITE_BANDWIDTH:
		if (!*best || *best < value) {
			*best = value;
			updated = true;
		}
		break;
	}

	return updated;
}

static int initiator_cmp(void *priv, const struct list_head *a,
			 const struct list_head *b)
{
	struct memory_initiator *ia;
	struct memory_initiator *ib;

	ia = list_entry(a, struct memory_initiator, node);
	ib = list_entry(b, struct memory_initiator, node);

	return ia->processor_pxm - ib->processor_pxm;
}

static int initiators_to_nodemask(unsigned long *p_nodes)
{
	struct memory_initiator *initiator;

	if (list_empty(&initiators))
		return -ENXIO;

	list_for_each_entry(initiator, &initiators, node)
		set_bit(initiator->processor_pxm, p_nodes);

	return 0;
}

static void hmat_update_target_attrs(struct memory_target *target,
				     unsigned long *p_nodes, int access)
{
	struct memory_initiator *initiator;
	unsigned int cpu_nid;
	struct memory_locality *loc = NULL;
	u32 best = 0;
	int i;

	/* Don't update if an external agent has changed the data.  */
	if (target->ext_updated)
		return;

	/* Don't update for generic port if there's no device handle */
	if ((access == NODE_ACCESS_CLASS_GENPORT_SINK_LOCAL ||
	     access == NODE_ACCESS_CLASS_GENPORT_SINK_CPU) &&
	    !(*(u16 *)target->gen_port_device_handle))
		return;

	bitmap_zero(p_nodes, MAX_NUMNODES);
	/*
	 * If the Address Range Structure provides a local processor pxm, set
	 * only that one. Otherwise, find the best performance attributes and
	 * collect all initiators that match.
	 */
	if (target->processor_pxm != PXM_INVAL) {
		cpu_nid = pxm_to_node(target->processor_pxm);
		if (access == ACCESS_COORDINATE_LOCAL ||
		    node_state(cpu_nid, N_CPU)) {
			set_bit(target->processor_pxm, p_nodes);
			return;
		}
	}

	if (list_empty(&localities))
		return;

	/*
	 * We need the initiator list sorted so we can use bitmap_clear for
	 * previously set initiators when we find a better memory accessor.
	 * We'll also use the sorting to prime the candidate nodes with known
	 * initiators.
	 */
	list_sort(NULL, &initiators, initiator_cmp);
	if (initiators_to_nodemask(p_nodes) < 0)
		return;

	for (i = WRITE_LATENCY; i <= READ_BANDWIDTH; i++) {
		loc = localities_types[i];
		if (!loc)
			continue;

		best = 0;
		list_for_each_entry(initiator, &initiators, node) {
			u32 value;

			if ((access == ACCESS_COORDINATE_CPU ||
			     access == NODE_ACCESS_CLASS_GENPORT_SINK_CPU) &&
			    !initiator->has_cpu) {
				clear_bit(initiator->processor_pxm, p_nodes);
				continue;
			}
			if (!test_bit(initiator->processor_pxm, p_nodes))
				continue;

			value = hmat_initiator_perf(target, initiator, loc->hmat_loc);
			if (hmat_update_best(loc->hmat_loc->data_type, value, &best))
				bitmap_clear(p_nodes, 0, initiator->processor_pxm);
			if (value != best)
				clear_bit(initiator->processor_pxm, p_nodes);
		}
		if (best)
			hmat_update_target_access(target, loc->hmat_loc->data_type, best, access);
	}
}

static void __hmat_register_target_initiators(struct memory_target *target,
					      unsigned long *p_nodes,
					      int access)
{
	unsigned int mem_nid, cpu_nid;
	int i;

	mem_nid = pxm_to_node(target->memory_pxm);
	hmat_update_target_attrs(target, p_nodes, access);
	for_each_set_bit(i, p_nodes, MAX_NUMNODES) {
		cpu_nid = pxm_to_node(i);
		register_memory_node_under_compute_node(mem_nid, cpu_nid, access);
	}
}

static void hmat_update_generic_target(struct memory_target *target)
{
	static DECLARE_BITMAP(p_nodes, MAX_NUMNODES);

	hmat_update_target_attrs(target, p_nodes,
				 NODE_ACCESS_CLASS_GENPORT_SINK_LOCAL);
	hmat_update_target_attrs(target, p_nodes,
				 NODE_ACCESS_CLASS_GENPORT_SINK_CPU);
}

static void hmat_register_target_initiators(struct memory_target *target)
{
	static DECLARE_BITMAP(p_nodes, MAX_NUMNODES);

	__hmat_register_target_initiators(target, p_nodes,
					  ACCESS_COORDINATE_LOCAL);
	__hmat_register_target_initiators(target, p_nodes,
					  ACCESS_COORDINATE_CPU);
}

static void hmat_register_target_cache(struct memory_target *target)
{
	unsigned mem_nid = pxm_to_node(target->memory_pxm);
	struct target_cache *tcache;

	list_for_each_entry(tcache, &target->caches, node)
		node_add_cache(mem_nid, &tcache->cache_attrs);
}

static void hmat_register_target_perf(struct memory_target *target, int access)
{
	unsigned mem_nid = pxm_to_node(target->memory_pxm);
	node_set_perf_attrs(mem_nid, &target->coord[access], access);
}

static void hmat_register_target_devices(struct memory_target *target)
{
	struct resource *res;

	/*
	 * Do not bother creating devices if no driver is available to
	 * consume them.
	 */
	if (!IS_ENABLED(CONFIG_DEV_DAX_HMEM))
		return;

	for (res = target->memregions.child; res; res = res->sibling) {
		int target_nid = pxm_to_node(target->memory_pxm);

		hmem_register_resource(target_nid, res);
	}
}

static void hmat_register_target(struct memory_target *target)
{
	int nid = pxm_to_node(target->memory_pxm);

	/*
	 * Devices may belong to either an offline or online
	 * node, so unconditionally add them.
	 */
	hmat_register_target_devices(target);

	/*
	 * Register generic port perf numbers. The nid may not be
	 * initialized and is still NUMA_NO_NODE.
	 */
	mutex_lock(&target_lock);
	if (*(u16 *)target->gen_port_device_handle) {
		hmat_update_generic_target(target);
		target->registered = true;
	}
	mutex_unlock(&target_lock);

	/*
	 * Skip offline nodes. This can happen when memory
	 * marked EFI_MEMORY_SP, "specific purpose", is applied
	 * to all the memory in a proximity domain leading to
	 * the node being marked offline / unplugged, or if
	 * memory-only "hotplug" node is offline.
	 */
	if (nid == NUMA_NO_NODE || !node_online(nid))
		return;

	mutex_lock(&target_lock);
	if (!target->registered) {
		hmat_register_target_initiators(target);
		hmat_register_target_cache(target);
		hmat_register_target_perf(target, ACCESS_COORDINATE_LOCAL);
		hmat_register_target_perf(target, ACCESS_COORDINATE_CPU);
		target->registered = true;
	}
	mutex_unlock(&target_lock);
}

static void hmat_register_targets(void)
{
	struct memory_target *target;

	list_for_each_entry(target, &targets, node)
		hmat_register_target(target);
}

static int hmat_callback(struct notifier_block *self,
			 unsigned long action, void *arg)
{
	struct memory_target *target;
	struct memory_notify *mnb = arg;
	int pxm, nid = mnb->status_change_nid;

	if (nid == NUMA_NO_NODE || action != MEM_ONLINE)
		return NOTIFY_OK;

	pxm = node_to_pxm(nid);
	target = find_mem_target(pxm);
	if (!target)
		return NOTIFY_OK;

	hmat_register_target(target);
	return NOTIFY_OK;
}

static int hmat_set_default_dram_perf(void)
{
	int rc;
	int nid, pxm;
	struct memory_target *target;
	struct access_coordinate *attrs;

	if (!default_dram_type)
		return -EIO;

	for_each_node_mask(nid, default_dram_type->nodes) {
		pxm = node_to_pxm(nid);
		target = find_mem_target(pxm);
		if (!target)
			continue;
		attrs = &target->coord[1];
		rc = mt_set_default_dram_perf(nid, attrs, "ACPI HMAT");
		if (rc)
			return rc;
	}

	return 0;
}

static int hmat_calculate_adistance(struct notifier_block *self,
				    unsigned long nid, void *data)
{
	static DECLARE_BITMAP(p_nodes, MAX_NUMNODES);
	struct memory_target *target;
	struct access_coordinate *perf;
	int *adist = data;
	int pxm;

	pxm = node_to_pxm(nid);
	target = find_mem_target(pxm);
	if (!target)
		return NOTIFY_OK;

	mutex_lock(&target_lock);
	hmat_update_target_attrs(target, p_nodes, ACCESS_COORDINATE_CPU);
	mutex_unlock(&target_lock);

	perf = &target->coord[1];

	if (mt_perf_to_adistance(perf, adist))
		return NOTIFY_OK;

	return NOTIFY_STOP;
}

static struct notifier_block hmat_adist_nb __meminitdata = {
	.notifier_call = hmat_calculate_adistance,
	.priority = 100,
};

static __init void hmat_free_structures(void)
{
	struct memory_target *target, *tnext;
	struct memory_locality *loc, *lnext;
	struct memory_initiator *initiator, *inext;
	struct target_cache *tcache, *cnext;

	list_for_each_entry_safe(target, tnext, &targets, node) {
		struct resource *res, *res_next;

		list_for_each_entry_safe(tcache, cnext, &target->caches, node) {
			list_del(&tcache->node);
			kfree(tcache);
		}

		list_del(&target->node);
		res = target->memregions.child;
		while (res) {
			res_next = res->sibling;
			__release_region(&target->memregions, res->start,
					resource_size(res));
			res = res_next;
		}
		kfree(target);
	}

	list_for_each_entry_safe(initiator, inext, &initiators, node) {
		list_del(&initiator->node);
		kfree(initiator);
	}

	list_for_each_entry_safe(loc, lnext, &localities, node) {
		list_del(&loc->node);
		kfree(loc);
	}
}

static __init int hmat_init(void)
{
	struct acpi_table_header *tbl;
	enum acpi_hmat_type i;
	acpi_status status;

	if (srat_disabled() || hmat_disable)
		return 0;

	status = acpi_get_table(ACPI_SIG_SRAT, 0, &tbl);
	if (ACPI_FAILURE(status))
		return 0;

	if (acpi_table_parse_entries(ACPI_SIG_SRAT,
				sizeof(struct acpi_table_srat),
				ACPI_SRAT_TYPE_MEMORY_AFFINITY,
				srat_parse_mem_affinity, 0) < 0)
		goto out_put;

	if (acpi_table_parse_entries(ACPI_SIG_SRAT,
				     sizeof(struct acpi_table_srat),
				     ACPI_SRAT_TYPE_GENERIC_PORT_AFFINITY,
				     srat_parse_genport_affinity, 0) < 0)
		goto out_put;

	acpi_put_table(tbl);

	status = acpi_get_table(ACPI_SIG_HMAT, 0, &tbl);
	if (ACPI_FAILURE(status))
		goto out_put;

	hmat_revision = tbl->revision;
	switch (hmat_revision) {
	case 1:
	case 2:
		break;
	default:
		pr_notice("Ignoring: Unknown revision:%d\n", hmat_revision);
		goto out_put;
	}

	for (i = ACPI_HMAT_TYPE_PROXIMITY; i < ACPI_HMAT_TYPE_RESERVED; i++) {
		if (acpi_table_parse_entries(ACPI_SIG_HMAT,
					     sizeof(struct acpi_table_hmat), i,
					     hmat_parse_subtable, 0) < 0) {
			pr_notice("Ignoring: Invalid table");
			goto out_put;
		}
	}
	hmat_register_targets();

	/* Keep the table and structures if the notifier may use them */
	if (hotplug_memory_notifier(hmat_callback, HMAT_CALLBACK_PRI))
		goto out_put;

	if (!hmat_set_default_dram_perf())
		register_mt_adistance_algorithm(&hmat_adist_nb);

	return 0;
out_put:
	hmat_free_structures();
	acpi_put_table(tbl);
	return 0;
}
subsys_initcall(hmat_init);