Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 | // SPDX-License-Identifier: GPL-2.0 /* * Copyright 2016-2020 HabanaLabs, Ltd. * All Rights Reserved. */ #include "../habanalabs.h" #include "../../include/hw_ip/mmu/mmu_general.h" #include "../../include/hw_ip/mmu/mmu_v2_0.h" #include <linux/slab.h> /** * hl_mmu_v2_ctx_init() - initialize a context for using the MMU module. * @ctx: pointer to the context structure to initialize. * * Initialize a mutex to protect the concurrent mapping flow, a hash to hold all * page tables hops related to this context. * Return: 0 on success, non-zero otherwise. */ static int hl_mmu_v2_ctx_init(struct hl_ctx *ctx) { hash_init(ctx->mmu_shadow_hash); return 0; } /* * hl_mmu_v2_ctx_fini - disable a ctx from using the mmu module * * @ctx: pointer to the context structure * * This function does the following: * - Free any pgts which were not freed yet * - Free the mutex * - Free DRAM default page mapping hops */ static void hl_mmu_v2_ctx_fini(struct hl_ctx *ctx) { struct hl_device *hdev = ctx->hdev; struct pgt_info *pgt_info; struct hlist_node *tmp; int i; if (!hash_empty(ctx->mmu_shadow_hash)) dev_err(hdev->dev, "ctx %d is freed while it has pgts in use\n", ctx->asid); hash_for_each_safe(ctx->mmu_shadow_hash, i, tmp, pgt_info, node) { dev_err_ratelimited(hdev->dev, "pgt_info of addr 0x%llx of asid %d was not destroyed, num_ptes: %d\n", pgt_info->phys_addr, ctx->asid, pgt_info->num_of_ptes); hl_mmu_dr_free_pgt_node(ctx, pgt_info); } } static int hl_mmu_v2_unmap(struct hl_ctx *ctx, u64 virt_addr, bool is_dram_addr) { u64 hop_addr[MMU_ARCH_6_HOPS] = { 0 }, hop_pte_addr[MMU_ARCH_6_HOPS] = { 0 }, curr_pte, scrambled_virt_addr; struct asic_fixed_properties *prop = &ctx->hdev->asic_prop; struct hl_device *hdev = ctx->hdev; struct hl_mmu_properties *mmu_prop; bool is_huge = false; int i, hop_last; /* device resident in V2 are allowed only for HMMU */ if (!is_dram_addr) return -EINVAL; mmu_prop = &prop->dmmu; hop_last = mmu_prop->num_hops - 1; scrambled_virt_addr = hdev->asic_funcs->scramble_addr(hdev, virt_addr); hop_addr[0] = hl_mmu_dr_get_hop0_addr(ctx); hop_pte_addr[0] = hl_mmu_get_hop_pte_phys_addr(ctx, mmu_prop, 0, hop_addr[0], scrambled_virt_addr); if (hop_pte_addr[0] == U64_MAX) return -EFAULT; curr_pte = *(u64 *) (uintptr_t) hop_pte_addr[0]; for (i = 1 ; i < mmu_prop->num_hops ; i++) { hop_addr[i] = hl_mmu_get_next_hop_addr(ctx, curr_pte); if (hop_addr[i] == ULLONG_MAX) goto not_mapped; hop_pte_addr[i] = hl_mmu_get_hop_pte_phys_addr(ctx, mmu_prop, i, hop_addr[i], scrambled_virt_addr); if (hop_pte_addr[i] == U64_MAX) return -EFAULT; curr_pte = *(u64 *) (uintptr_t) hop_pte_addr[i]; if ((i <= hop_last) && (curr_pte & mmu_prop->last_mask)) { hop_last = i; is_huge = true; break; } } if (is_dram_addr && !is_huge) { dev_err(hdev->dev, "DRAM unmapping should use huge pages only\n"); return -EFAULT; } if (!(curr_pte & PAGE_PRESENT_MASK)) goto not_mapped; for (i = hop_last ; i > 0 ; i--) { hl_mmu_dr_clear_pte(ctx, hop_pte_addr[i]); if (hl_mmu_dr_put_pte(ctx, hop_addr[i])) goto mapped; } hl_mmu_dr_clear_pte(ctx, hop_pte_addr[0]); mapped: return 0; not_mapped: dev_err(hdev->dev, "virt addr 0x%llx is not mapped to phys addr\n", virt_addr); return -EINVAL; } static int hl_mmu_v2_map(struct hl_ctx *ctx, u64 virt_addr, u64 phys_addr, u32 page_size, bool is_dram_addr) { u64 hop_addr[MMU_ARCH_6_HOPS] = { 0 }, hop_pte_addr[MMU_ARCH_6_HOPS] = { 0 }, curr_pte = 0, scrambled_virt_addr, scrambled_phys_addr; struct asic_fixed_properties *prop = &ctx->hdev->asic_prop; bool hop_new[MMU_ARCH_6_HOPS] = { false }; struct hl_device *hdev = ctx->hdev; struct hl_mmu_properties *mmu_prop; int rc, i, hop_last; /* device resident in V2 are allowed only for HMMU */ if (!is_dram_addr) return -EINVAL; mmu_prop = &prop->dmmu; hop_last = mmu_prop->num_hops - 1; scrambled_virt_addr = hdev->asic_funcs->scramble_addr(hdev, virt_addr); scrambled_phys_addr = hdev->asic_funcs->scramble_addr(hdev, phys_addr); /* First hop is preallocated therefore it is treated differently */ hop_addr[0] = hl_mmu_dr_get_hop0_addr(ctx); hop_pte_addr[0] = hl_mmu_get_hop_pte_phys_addr(ctx, mmu_prop, 0, hop_addr[0], scrambled_virt_addr); curr_pte = *(u64 *) (uintptr_t) hop_pte_addr[0]; /* Handle hop1 to hop_last */ for (i = 1 ; i <= hop_last ; i++) { hop_addr[i] = hl_mmu_dr_get_alloc_next_hop_addr(ctx, curr_pte, &hop_new[i]); if (hop_addr[i] == ULLONG_MAX) { rc = -ENOMEM; goto err; } hop_pte_addr[i] = hl_mmu_get_hop_pte_phys_addr(ctx, mmu_prop, i, hop_addr[i], scrambled_virt_addr); if (hop_pte_addr[i] == U64_MAX) { rc = -EINVAL; goto err; } if (!hop_pte_addr[i]) { rc = -EINVAL; goto err; } curr_pte = *(u64 *) (uintptr_t) hop_pte_addr[i]; } if (curr_pte & PAGE_PRESENT_MASK) { dev_err(hdev->dev, "mapping already exists for virt_addr 0x%llx\n", virt_addr); for (i = 0 ; i <= hop_last ; i++) dev_dbg(hdev->dev, "hop%d pte: 0x%llx (0x%llx)\n", i, *(u64 *) (uintptr_t) hop_pte_addr[i], hop_pte_addr[i]); rc = -EINVAL; goto err; } curr_pte = (scrambled_phys_addr & HOP_PHYS_ADDR_MASK) | mmu_prop->last_mask | PAGE_PRESENT_MASK; /* Write the PTEs */ hl_mmu_dr_write_final_pte(ctx, hop_pte_addr[hop_last], curr_pte); /* for each new hop, add its address to the table of previous-hop */ for (i = 1 ; i <= hop_last ; i++) { if (hop_new[i]) { curr_pte = (hop_addr[i] & HOP_PHYS_ADDR_MASK) | PAGE_PRESENT_MASK; hl_mmu_dr_write_pte(ctx, hop_pte_addr[i - 1], curr_pte); if (i - 1) hl_mmu_dr_get_pte(ctx, hop_addr[i - 1]); } } hl_mmu_dr_get_pte(ctx, hop_addr[hop_last]); return 0; err: for (i = 1 ; i <= hop_last ; i++) if (hop_new[i] && (hop_addr[i] != U64_MAX)) hl_mmu_dr_free_hop(ctx, hop_addr[i]); return rc; } /* * hl_mmu_v2_swap_out - marks all mapping of the given ctx as swapped out * * @ctx: pointer to the context structure * */ static void hl_mmu_v2_swap_out(struct hl_ctx *ctx) { } /* * hl_mmu_v2_swap_in - marks all mapping of the given ctx as swapped in * * @ctx: pointer to the context structure * */ static void hl_mmu_v2_swap_in(struct hl_ctx *ctx) { } static int hl_mmu_v2_get_tlb_info(struct hl_ctx *ctx, u64 virt_addr, struct hl_mmu_hop_info *hops) { struct asic_fixed_properties *prop = &ctx->hdev->asic_prop; struct hl_device *hdev = ctx->hdev; struct hl_mmu_properties *mmu_prop; bool is_dram_addr; int i; is_dram_addr = hl_mem_area_inside_range(virt_addr, prop->dmmu.page_size, prop->dmmu.start_addr, prop->dmmu.end_addr); /* device resident in V2 are allowed only for HMMU */ if (!is_dram_addr) return -EINVAL; mmu_prop = &prop->dmmu; hops->range_type = HL_VA_RANGE_TYPE_DRAM; hops->scrambled_vaddr = hdev->asic_funcs->scramble_addr(hdev, virt_addr); hops->hop_info[0].hop_addr = hl_mmu_dr_get_phys_hop0_addr(ctx); hops->hop_info[0].hop_pte_addr = hl_mmu_get_hop_pte_phys_addr(ctx, mmu_prop, 0, hops->hop_info[0].hop_addr, hops->scrambled_vaddr); if (hops->hop_info[0].hop_pte_addr == U64_MAX) return -EFAULT; hops->hop_info[0].hop_pte_val = hdev->asic_funcs->read_pte(hdev, hops->hop_info[0].hop_pte_addr); if (hops->hop_info[0].hop_pte_val == U64_MAX) return -EFAULT; for (i = 1 ; i < mmu_prop->num_hops ; i++) { hops->hop_info[i].hop_addr = hl_mmu_get_next_hop_addr(ctx, hops->hop_info[i - 1].hop_pte_val); if (hops->hop_info[i].hop_addr == ULLONG_MAX) return -EFAULT; hops->hop_info[i].hop_pte_addr = hl_mmu_get_hop_pte_phys_addr(ctx, mmu_prop, i, hops->hop_info[i].hop_addr, hops->scrambled_vaddr); if (hops->hop_info[i].hop_pte_addr == U64_MAX) return -EFAULT; hops->hop_info[i].hop_pte_val = hdev->asic_funcs->read_pte(hdev, hops->hop_info[i].hop_pte_addr); if (!(hops->hop_info[i].hop_pte_val & PAGE_PRESENT_MASK)) return -EFAULT; if (hops->hop_info[i].hop_pte_val & mmu_prop->last_mask) break; } /* if passed over all hops then no last hop was found */ if (i == mmu_prop->num_hops) return -EFAULT; if (!(hops->hop_info[i].hop_pte_val & PAGE_PRESENT_MASK)) return -EFAULT; if (hops->scrambled_vaddr != virt_addr) hops->unscrambled_paddr = hdev->asic_funcs->descramble_addr (hdev, hops->hop_info[i].hop_pte_val); else hops->unscrambled_paddr = hops->hop_info[i].hop_pte_val; hops->used_hops = i + 1; return 0; } /* * hl_mmu_v2_prepare - prepare mmu_if for working with mmu v2 * * @hdev: pointer to the device structure * @mmu_if: pointer to the mmu interface structure */ void hl_mmu_v2_set_funcs(struct hl_device *hdev, struct hl_mmu_funcs *mmu) { mmu->init = hl_mmu_dr_init; mmu->fini = hl_mmu_dr_fini; mmu->ctx_init = hl_mmu_v2_ctx_init; mmu->ctx_fini = hl_mmu_v2_ctx_fini; mmu->map = hl_mmu_v2_map; mmu->unmap = hl_mmu_v2_unmap; mmu->flush = hl_mmu_dr_flush; mmu->swap_out = hl_mmu_v2_swap_out; mmu->swap_in = hl_mmu_v2_swap_in; mmu->get_tlb_info = hl_mmu_v2_get_tlb_info; } |