Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 | // SPDX-License-Identifier: GPL-2.0 /* * Copyright 2016-2022 HabanaLabs, Ltd. * All Rights Reserved. */ #include <linux/slab.h> #include "../habanalabs.h" #include <trace/events/habanalabs.h> /** * hl_mmu_get_funcs() - get MMU functions structure * @hdev: habanalabs device structure. * @pgt_residency: page table residency. * @is_dram_addr: true if we need HMMU functions * * @return appropriate MMU functions structure */ static struct hl_mmu_funcs *hl_mmu_get_funcs(struct hl_device *hdev, int pgt_residency, bool is_dram_addr) { return &hdev->mmu_func[pgt_residency]; } bool hl_is_dram_va(struct hl_device *hdev, u64 virt_addr) { struct asic_fixed_properties *prop = &hdev->asic_prop; return hl_mem_area_inside_range(virt_addr, prop->dmmu.page_size, prop->dmmu.start_addr, prop->dmmu.end_addr); } /** * hl_mmu_init() - initialize the MMU module. * @hdev: habanalabs device structure. * * Return: 0 for success, non-zero for failure. */ int hl_mmu_init(struct hl_device *hdev) { int rc = -EOPNOTSUPP; if (hdev->mmu_disable) return 0; mutex_init(&hdev->mmu_lock); if (hdev->mmu_func[MMU_DR_PGT].init != NULL) { rc = hdev->mmu_func[MMU_DR_PGT].init(hdev); if (rc) return rc; } if (hdev->mmu_func[MMU_HR_PGT].init != NULL) { rc = hdev->mmu_func[MMU_HR_PGT].init(hdev); if (rc) goto fini_dr_mmu; } return 0; fini_dr_mmu: if (hdev->mmu_func[MMU_DR_PGT].fini != NULL) hdev->mmu_func[MMU_DR_PGT].fini(hdev); return rc; } /** * hl_mmu_fini() - release the MMU module. * @hdev: habanalabs device structure. * * This function does the following: * - Disable MMU in H/W. * - Free the pgt_infos pool. * * All contexts should be freed before calling this function. */ void hl_mmu_fini(struct hl_device *hdev) { if (hdev->mmu_disable) return; if (hdev->mmu_func[MMU_DR_PGT].fini != NULL) hdev->mmu_func[MMU_DR_PGT].fini(hdev); if (hdev->mmu_func[MMU_HR_PGT].fini != NULL) hdev->mmu_func[MMU_HR_PGT].fini(hdev); mutex_destroy(&hdev->mmu_lock); } /** * hl_mmu_ctx_init() - initialize a context for using the MMU module. * @ctx: pointer to the context structure to initialize. * * Initialize a mutex to protect the concurrent mapping flow, a hash to hold all * page tables hops related to this context. * Return: 0 on success, non-zero otherwise. */ int hl_mmu_ctx_init(struct hl_ctx *ctx) { struct hl_device *hdev = ctx->hdev; int rc = -EOPNOTSUPP; if (hdev->mmu_disable) return 0; if (hdev->mmu_func[MMU_DR_PGT].ctx_init != NULL) { rc = hdev->mmu_func[MMU_DR_PGT].ctx_init(ctx); if (rc) return rc; } if (hdev->mmu_func[MMU_HR_PGT].ctx_init != NULL) { rc = hdev->mmu_func[MMU_HR_PGT].ctx_init(ctx); if (rc) goto fini_dr_ctx; } return 0; fini_dr_ctx: if (hdev->mmu_func[MMU_DR_PGT].fini != NULL) hdev->mmu_func[MMU_DR_PGT].fini(hdev); return rc; } /* * hl_mmu_ctx_fini - disable a ctx from using the mmu module * * @ctx: pointer to the context structure * * This function does the following: * - Free any pgts which were not freed yet * - Free the mutex * - Free DRAM default page mapping hops */ void hl_mmu_ctx_fini(struct hl_ctx *ctx) { struct hl_device *hdev = ctx->hdev; if (hdev->mmu_disable) return; if (hdev->mmu_func[MMU_DR_PGT].ctx_fini != NULL) hdev->mmu_func[MMU_DR_PGT].ctx_fini(ctx); if (hdev->mmu_func[MMU_HR_PGT].ctx_fini != NULL) hdev->mmu_func[MMU_HR_PGT].ctx_fini(ctx); } /* * hl_mmu_get_real_page_size - get real page size to use in map/unmap operation * * @hdev: pointer to device data. * @mmu_prop: MMU properties. * @page_size: page size * @real_page_size: set here the actual page size to use for the operation * @is_dram_addr: true if DRAM address, otherwise false. * * @return 0 on success, otherwise non 0 error code * * note that this is general implementation that can fit most MMU arch. but as this is used as an * MMU function: * 1. it shall not be called directly- only from mmu_func structure instance * 2. each MMU may modify the implementation internally */ int hl_mmu_get_real_page_size(struct hl_device *hdev, struct hl_mmu_properties *mmu_prop, u32 page_size, u32 *real_page_size, bool is_dram_addr) { /* * The H/W handles mapping of specific page sizes. Hence if the page * size is bigger, we break it to sub-pages and map them separately. */ if ((page_size % mmu_prop->page_size) == 0) { *real_page_size = mmu_prop->page_size; return 0; } dev_err(hdev->dev, "page size of %u is not %uKB aligned, can't map\n", page_size, mmu_prop->page_size >> 10); return -EFAULT; } static struct hl_mmu_properties *hl_mmu_get_prop(struct hl_device *hdev, u32 page_size, bool is_dram_addr) { struct asic_fixed_properties *prop = &hdev->asic_prop; if (is_dram_addr) return &prop->dmmu; else if ((page_size % prop->pmmu_huge.page_size) == 0) return &prop->pmmu_huge; return &prop->pmmu; } /* * hl_mmu_unmap_page - unmaps a virtual addr * * @ctx: pointer to the context structure * @virt_addr: virt addr to map from * @page_size: size of the page to unmap * @flush_pte: whether to do a PCI flush * * This function does the following: * - Check that the virt addr is mapped * - Unmap the virt addr and frees pgts if possible * - Returns 0 on success, -EINVAL if the given addr is not mapped * * Because this function changes the page tables in the device and because it * changes the MMU hash, it must be protected by a lock. * However, because it maps only a single page, the lock should be implemented * in a higher level in order to protect the entire mapping of the memory area * * For optimization reasons PCI flush may be requested once after unmapping of * large area. */ int hl_mmu_unmap_page(struct hl_ctx *ctx, u64 virt_addr, u32 page_size, bool flush_pte) { struct hl_device *hdev = ctx->hdev; struct hl_mmu_properties *mmu_prop; struct hl_mmu_funcs *mmu_funcs; int i, pgt_residency, rc = 0; u32 real_page_size, npages; u64 real_virt_addr; bool is_dram_addr; if (hdev->mmu_disable) return 0; is_dram_addr = hl_is_dram_va(hdev, virt_addr); mmu_prop = hl_mmu_get_prop(hdev, page_size, is_dram_addr); pgt_residency = mmu_prop->host_resident ? MMU_HR_PGT : MMU_DR_PGT; mmu_funcs = hl_mmu_get_funcs(hdev, pgt_residency, is_dram_addr); rc = hdev->asic_funcs->mmu_get_real_page_size(hdev, mmu_prop, page_size, &real_page_size, is_dram_addr); if (rc) return rc; npages = page_size / real_page_size; real_virt_addr = virt_addr; for (i = 0 ; i < npages ; i++) { rc = mmu_funcs->unmap(ctx, real_virt_addr, is_dram_addr); if (rc) break; real_virt_addr += real_page_size; } if (flush_pte) mmu_funcs->flush(ctx); if (trace_habanalabs_mmu_unmap_enabled() && !rc) trace_habanalabs_mmu_unmap(hdev->dev, virt_addr, 0, page_size, flush_pte); return rc; } /* * hl_mmu_map_page - maps a virtual addr to physical addr * * @ctx: pointer to the context structure * @virt_addr: virt addr to map from * @phys_addr: phys addr to map to * @page_size: physical page size * @flush_pte: whether to do a PCI flush * * This function does the following: * - Check that the virt addr is not mapped * - Allocate pgts as necessary in order to map the virt addr to the phys * - Returns 0 on success, -EINVAL if addr is already mapped, or -ENOMEM. * * Because this function changes the page tables in the device and because it * changes the MMU hash, it must be protected by a lock. * However, because it maps only a single page, the lock should be implemented * in a higher level in order to protect the entire mapping of the memory area * * For optimization reasons PCI flush may be requested once after mapping of * large area. */ int hl_mmu_map_page(struct hl_ctx *ctx, u64 virt_addr, u64 phys_addr, u32 page_size, bool flush_pte) { int i, rc, pgt_residency, mapped_cnt = 0; struct hl_device *hdev = ctx->hdev; struct hl_mmu_properties *mmu_prop; u64 real_virt_addr, real_phys_addr; struct hl_mmu_funcs *mmu_funcs; u32 real_page_size, npages; bool is_dram_addr; if (hdev->mmu_disable) return 0; is_dram_addr = hl_is_dram_va(hdev, virt_addr); mmu_prop = hl_mmu_get_prop(hdev, page_size, is_dram_addr); pgt_residency = mmu_prop->host_resident ? MMU_HR_PGT : MMU_DR_PGT; mmu_funcs = hl_mmu_get_funcs(hdev, pgt_residency, is_dram_addr); rc = hdev->asic_funcs->mmu_get_real_page_size(hdev, mmu_prop, page_size, &real_page_size, is_dram_addr); if (rc) return rc; /* * Verify that the phys and virt addresses are aligned with the * MMU page size (in dram this means checking the address and MMU * after scrambling) */ if ((is_dram_addr && ((hdev->asic_funcs->scramble_addr(hdev, phys_addr) & (mmu_prop->page_size - 1)) || (hdev->asic_funcs->scramble_addr(hdev, virt_addr) & (mmu_prop->page_size - 1)))) || (!is_dram_addr && ((phys_addr & (real_page_size - 1)) || (virt_addr & (real_page_size - 1))))) dev_crit(hdev->dev, "Mapping address 0x%llx with virtual address 0x%llx and page size of 0x%x is erroneous! Addresses must be divisible by page size", phys_addr, virt_addr, real_page_size); npages = page_size / real_page_size; real_virt_addr = virt_addr; real_phys_addr = phys_addr; for (i = 0 ; i < npages ; i++) { rc = mmu_funcs->map(ctx, real_virt_addr, real_phys_addr, real_page_size, is_dram_addr); if (rc) goto err; real_virt_addr += real_page_size; real_phys_addr += real_page_size; mapped_cnt++; } if (flush_pte) mmu_funcs->flush(ctx); trace_habanalabs_mmu_map(hdev->dev, virt_addr, phys_addr, page_size, flush_pte); return 0; err: real_virt_addr = virt_addr; for (i = 0 ; i < mapped_cnt ; i++) { if (mmu_funcs->unmap(ctx, real_virt_addr, is_dram_addr)) dev_warn_ratelimited(hdev->dev, "failed to unmap va: 0x%llx\n", real_virt_addr); real_virt_addr += real_page_size; } mmu_funcs->flush(ctx); return rc; } /* * hl_mmu_map_contiguous - implements a wrapper for hl_mmu_map_page * for mapping contiguous physical memory * * @ctx: pointer to the context structure * @virt_addr: virt addr to map from * @phys_addr: phys addr to map to * @size: size to map * */ int hl_mmu_map_contiguous(struct hl_ctx *ctx, u64 virt_addr, u64 phys_addr, u32 size) { struct hl_device *hdev = ctx->hdev; struct asic_fixed_properties *prop = &hdev->asic_prop; u64 curr_va, curr_pa; u32 page_size; bool flush_pte; int rc = 0, off; if (hl_mem_area_inside_range(virt_addr, size, prop->dmmu.start_addr, prop->dmmu.end_addr)) page_size = prop->dmmu.page_size; else if (hl_mem_area_inside_range(virt_addr, size, prop->pmmu.start_addr, prop->pmmu.end_addr)) page_size = prop->pmmu.page_size; else if (hl_mem_area_inside_range(virt_addr, size, prop->pmmu_huge.start_addr, prop->pmmu_huge.end_addr)) page_size = prop->pmmu_huge.page_size; else return -EINVAL; for (off = 0 ; off < size ; off += page_size) { curr_va = virt_addr + off; curr_pa = phys_addr + off; flush_pte = (off + page_size) >= size; rc = hl_mmu_map_page(ctx, curr_va, curr_pa, page_size, flush_pte); if (rc) { dev_err(hdev->dev, "Map failed for va 0x%llx to pa 0x%llx\n", curr_va, curr_pa); /* last mapping failed so don't try to unmap it - reduce off by page_size */ off -= page_size; goto unmap; } } return rc; unmap: for (; off >= 0 ; off -= page_size) { curr_va = virt_addr + off; flush_pte = (off - (s32) page_size) < 0; if (hl_mmu_unmap_page(ctx, curr_va, page_size, flush_pte)) dev_warn_ratelimited(hdev->dev, "failed to unmap va 0x%llx\n", curr_va); } return rc; } /* * hl_mmu_unmap_contiguous - implements a wrapper for hl_mmu_unmap_page * for unmapping contiguous physical memory * * @ctx: pointer to the context structure * @virt_addr: virt addr to unmap * @size: size to unmap * */ int hl_mmu_unmap_contiguous(struct hl_ctx *ctx, u64 virt_addr, u32 size) { struct hl_device *hdev = ctx->hdev; struct asic_fixed_properties *prop = &hdev->asic_prop; u64 curr_va; u32 page_size; bool flush_pte; int rc = 0, off; if (hl_mem_area_inside_range(virt_addr, size, prop->dmmu.start_addr, prop->dmmu.end_addr)) page_size = prop->dmmu.page_size; else if (hl_mem_area_inside_range(virt_addr, size, prop->pmmu.start_addr, prop->pmmu.end_addr)) page_size = prop->pmmu.page_size; else if (hl_mem_area_inside_range(virt_addr, size, prop->pmmu_huge.start_addr, prop->pmmu_huge.end_addr)) page_size = prop->pmmu_huge.page_size; else return -EINVAL; for (off = 0 ; off < size ; off += page_size) { curr_va = virt_addr + off; flush_pte = (off + page_size) >= size; rc = hl_mmu_unmap_page(ctx, curr_va, page_size, flush_pte); if (rc) dev_warn_ratelimited(hdev->dev, "Unmap failed for va 0x%llx\n", curr_va); } return rc; } static void hl_mmu_pa_page_with_offset(struct hl_ctx *ctx, u64 virt_addr, struct hl_mmu_hop_info *hops, u64 *phys_addr) { struct asic_fixed_properties *prop = &ctx->hdev->asic_prop; u64 offset_mask, addr_mask, hop_shift, tmp_phys_addr; struct hl_mmu_properties *mmu_prop; /* last hop holds the phys address and flags */ if (hops->unscrambled_paddr) tmp_phys_addr = hops->unscrambled_paddr; else tmp_phys_addr = hops->hop_info[hops->used_hops - 1].hop_pte_val; if (hops->range_type == HL_VA_RANGE_TYPE_HOST_HUGE) mmu_prop = &prop->pmmu_huge; else if (hops->range_type == HL_VA_RANGE_TYPE_HOST) mmu_prop = &prop->pmmu; else /* HL_VA_RANGE_TYPE_DRAM */ mmu_prop = &prop->dmmu; if ((hops->range_type == HL_VA_RANGE_TYPE_DRAM) && !is_power_of_2(prop->dram_page_size)) { u64 dram_page_size, dram_base, abs_phys_addr, abs_virt_addr, page_id, page_start; u32 page_off; /* * Bit arithmetic cannot be used for non power of two page * sizes. In addition, since bit arithmetic is not used, * we cannot ignore dram base. All that shall be considered. */ dram_page_size = prop->dram_page_size; dram_base = prop->dram_base_address; abs_phys_addr = tmp_phys_addr - dram_base; abs_virt_addr = virt_addr - dram_base; page_id = DIV_ROUND_DOWN_ULL(abs_phys_addr, dram_page_size); page_start = page_id * dram_page_size; div_u64_rem(abs_virt_addr, dram_page_size, &page_off); *phys_addr = page_start + page_off + dram_base; } else { /* * find the correct hop shift field in hl_mmu_properties * structure in order to determine the right masks * for the page offset. */ hop_shift = mmu_prop->hop_shifts[hops->used_hops - 1]; offset_mask = (1ull << hop_shift) - 1; addr_mask = ~(offset_mask); *phys_addr = (tmp_phys_addr & addr_mask) | (virt_addr & offset_mask); } } int hl_mmu_va_to_pa(struct hl_ctx *ctx, u64 virt_addr, u64 *phys_addr) { struct hl_mmu_hop_info hops; int rc; memset(&hops, 0, sizeof(hops)); rc = hl_mmu_get_tlb_info(ctx, virt_addr, &hops); if (rc) return rc; hl_mmu_pa_page_with_offset(ctx, virt_addr, &hops, phys_addr); return 0; } int hl_mmu_get_tlb_info(struct hl_ctx *ctx, u64 virt_addr, struct hl_mmu_hop_info *hops) { struct hl_device *hdev = ctx->hdev; struct asic_fixed_properties *prop; struct hl_mmu_properties *mmu_prop; struct hl_mmu_funcs *mmu_funcs; int pgt_residency, rc; bool is_dram_addr; if (hdev->mmu_disable) return -EOPNOTSUPP; prop = &hdev->asic_prop; hops->scrambled_vaddr = virt_addr; /* assume no scrambling */ is_dram_addr = hl_mem_area_inside_range(virt_addr, prop->dmmu.page_size, prop->dmmu.start_addr, prop->dmmu.end_addr); /* host-residency is the same in PMMU and PMMU huge, no need to distinguish here */ mmu_prop = is_dram_addr ? &prop->dmmu : &prop->pmmu; pgt_residency = mmu_prop->host_resident ? MMU_HR_PGT : MMU_DR_PGT; mmu_funcs = hl_mmu_get_funcs(hdev, pgt_residency, is_dram_addr); mutex_lock(&hdev->mmu_lock); rc = mmu_funcs->get_tlb_info(ctx, virt_addr, hops); mutex_unlock(&hdev->mmu_lock); if (rc) return rc; /* add page offset to physical address */ if (hops->unscrambled_paddr) hl_mmu_pa_page_with_offset(ctx, virt_addr, hops, &hops->unscrambled_paddr); return 0; } int hl_mmu_if_set_funcs(struct hl_device *hdev) { struct asic_fixed_properties *prop = &hdev->asic_prop; if (hdev->mmu_disable) return 0; switch (hdev->asic_type) { case ASIC_GOYA: case ASIC_GAUDI: case ASIC_GAUDI_SEC: hl_mmu_v1_set_funcs(hdev, &hdev->mmu_func[MMU_DR_PGT]); break; case ASIC_GAUDI2: case ASIC_GAUDI2B: case ASIC_GAUDI2C: hl_mmu_v2_set_funcs(hdev, &hdev->mmu_func[MMU_DR_PGT]); if (prop->pmmu.host_resident) hl_mmu_v2_hr_set_funcs(hdev, &hdev->mmu_func[MMU_HR_PGT]); break; default: dev_err(hdev->dev, "Unrecognized ASIC type %d\n", hdev->asic_type); return -EOPNOTSUPP; } return 0; } /** * hl_mmu_scramble_addr() - The generic mmu address scrambling routine. * @hdev: pointer to device data. * @addr: The address to scramble. * * Return: The scrambled address. */ u64 hl_mmu_scramble_addr(struct hl_device *hdev, u64 addr) { return addr; } /** * hl_mmu_descramble_addr() - The generic mmu address descrambling * routine. * @hdev: pointer to device data. * @addr: The address to descramble. * * Return: The un-scrambled address. */ u64 hl_mmu_descramble_addr(struct hl_device *hdev, u64 addr) { return addr; } int hl_mmu_invalidate_cache(struct hl_device *hdev, bool is_hard, u32 flags) { int rc; rc = hdev->asic_funcs->mmu_invalidate_cache(hdev, is_hard, flags); if (rc) dev_err_ratelimited(hdev->dev, "%s cache invalidation failed, rc=%d\n", flags == VM_TYPE_USERPTR ? "PMMU" : "HMMU", rc); return rc; } int hl_mmu_invalidate_cache_range(struct hl_device *hdev, bool is_hard, u32 flags, u32 asid, u64 va, u64 size) { int rc; rc = hdev->asic_funcs->mmu_invalidate_cache_range(hdev, is_hard, flags, asid, va, size); if (rc) dev_err_ratelimited(hdev->dev, "%s cache range invalidation failed: va=%#llx, size=%llu, rc=%d", flags == VM_TYPE_USERPTR ? "PMMU" : "HMMU", va, size, rc); return rc; } static void hl_mmu_prefetch_work_function(struct work_struct *work) { struct hl_prefetch_work *pfw = container_of(work, struct hl_prefetch_work, prefetch_work); struct hl_ctx *ctx = pfw->ctx; struct hl_device *hdev = ctx->hdev; if (!hl_device_operational(hdev, NULL)) goto put_ctx; mutex_lock(&hdev->mmu_lock); hdev->asic_funcs->mmu_prefetch_cache_range(ctx, pfw->flags, pfw->asid, pfw->va, pfw->size); mutex_unlock(&hdev->mmu_lock); put_ctx: /* * context was taken in the common mmu prefetch function- see comment there about * context handling. */ hl_ctx_put(ctx); kfree(pfw); } int hl_mmu_prefetch_cache_range(struct hl_ctx *ctx, u32 flags, u32 asid, u64 va, u64 size) { struct hl_prefetch_work *handle_prefetch_work; handle_prefetch_work = kmalloc(sizeof(*handle_prefetch_work), GFP_KERNEL); if (!handle_prefetch_work) return -ENOMEM; INIT_WORK(&handle_prefetch_work->prefetch_work, hl_mmu_prefetch_work_function); handle_prefetch_work->ctx = ctx; handle_prefetch_work->va = va; handle_prefetch_work->size = size; handle_prefetch_work->flags = flags; handle_prefetch_work->asid = asid; /* * as actual prefetch is done in a WQ we must get the context (and put it * at the end of the work function) */ hl_ctx_get(ctx); queue_work(ctx->hdev->prefetch_wq, &handle_prefetch_work->prefetch_work); return 0; } u64 hl_mmu_get_next_hop_addr(struct hl_ctx *ctx, u64 curr_pte) { return (curr_pte & PAGE_PRESENT_MASK) ? (curr_pte & HOP_PHYS_ADDR_MASK) : ULLONG_MAX; } /** * hl_mmu_get_hop_pte_phys_addr() - extract PTE address from HOP * @ctx: pointer to the context structure to initialize. * @mmu_prop: MMU properties. * @hop_idx: HOP index. * @hop_addr: HOP address. * @virt_addr: virtual address for the translation. * * @return the matching PTE value on success, otherwise U64_MAX. */ u64 hl_mmu_get_hop_pte_phys_addr(struct hl_ctx *ctx, struct hl_mmu_properties *mmu_prop, u8 hop_idx, u64 hop_addr, u64 virt_addr) { u64 mask, shift; if (hop_idx >= mmu_prop->num_hops) { dev_err_ratelimited(ctx->hdev->dev, "Invalid hop index %d\n", hop_idx); return U64_MAX; } shift = mmu_prop->hop_shifts[hop_idx]; mask = mmu_prop->hop_masks[hop_idx]; return hop_addr + ctx->hdev->asic_prop.mmu_pte_size * ((virt_addr & mask) >> shift); } static void mmu_dma_mem_free_from_chunk(struct gen_pool *pool, struct gen_pool_chunk *chunk, void *data) { struct hl_device *hdev = data; hl_asic_dma_free_coherent(hdev, (chunk->end_addr - chunk->start_addr) + 1, (void *)chunk->start_addr, chunk->phys_addr); } void hl_mmu_hr_flush(struct hl_ctx *ctx) { /* a flush operation requires memory barrier */ mb(); } /** * hl_mmu_hr_pool_destroy() - destroy genpool * @hdev: habanalabs device structure. * @hr_priv: MMU HR private data. * @hop_table_size: HOP table size. * * This function does the following: * - free entries allocated for shadow HOP0 * - free pool chunks * - free pool */ static void hl_mmu_hr_pool_destroy(struct hl_device *hdev, struct hl_mmu_hr_priv *hr_priv, u32 hop_table_size) { struct asic_fixed_properties *prop = &hdev->asic_prop; struct gen_pool **pool = &hr_priv->mmu_pgt_pool; struct pgt_info *hop0_pgt; int asid; if (ZERO_OR_NULL_PTR(*pool)) return; /* Free the Fixed allocation of HOPs0 */ if (hr_priv->mmu_asid_hop0) { for (asid = 0 ; asid < prop->max_asid ; asid++) { hop0_pgt = &hr_priv->mmu_asid_hop0[asid]; if (ZERO_OR_NULL_PTR(hop0_pgt->virt_addr)) continue; gen_pool_free(*pool, (uintptr_t) hop0_pgt->virt_addr, hop_table_size); } } gen_pool_for_each_chunk(*pool, mmu_dma_mem_free_from_chunk, hdev); gen_pool_destroy(*pool); /* Make sure that if we arrive here again without init was called we * won't cause kernel panic. This can happen for example if we fail * during hard reset code at certain points */ *pool = NULL; } /** * hl_mmu_hr_init() - initialize the MMU module. * @hdev: habanalabs device structure. * @hr_priv: MMU HR private data. * @hop_table_size: HOP table size. * @pgt_size: memory size allocated for the page table * * @return 0 on success otherwise non-zero error code * * This function does the following: * - Create a pool of pages for pgt_infos. * - Create a shadow table for pgt */ int hl_mmu_hr_init(struct hl_device *hdev, struct hl_mmu_hr_priv *hr_priv, u32 hop_table_size, u64 pgt_size) { struct asic_fixed_properties *prop = &hdev->asic_prop; size_t pool_chunk_size = SZ_4M; struct pgt_info *hop0_pgt; dma_addr_t dma_addr; u64 virt_addr; int i, rc; /* * we set alloc size as PAGE_SIZE (sine dma_alloc_coherent allocation order/size is * PAGE_SHIFT/PAGE_SIZE) in order to be able to control the allocations alignment. * This way we can call "DMA alloc align" according to dma_alloc granularity and supply * allocations with higher-order alignment restrictions */ hr_priv->mmu_pgt_pool = gen_pool_create(PAGE_SHIFT, -1); if (ZERO_OR_NULL_PTR(hr_priv->mmu_pgt_pool)) { dev_err(hdev->dev, "Failed to create hr page pool\n"); return -ENOMEM; } hr_priv->mmu_asid_hop0 = kvcalloc(prop->max_asid, sizeof(struct pgt_info), GFP_KERNEL); if (ZERO_OR_NULL_PTR(hr_priv->mmu_asid_hop0)) { dev_err(hdev->dev, "Failed to allocate hr-mmu hop0 table\n"); rc = -ENOMEM; goto destroy_mmu_pgt_pool; } for (i = 0 ; i < pgt_size ; i += pool_chunk_size) { virt_addr = (uintptr_t) hl_asic_dma_alloc_coherent(hdev, pool_chunk_size, &dma_addr, GFP_KERNEL | __GFP_ZERO); if (ZERO_OR_NULL_PTR(virt_addr)) { dev_err(hdev->dev, "Failed to allocate memory for host-resident page pool\n"); rc = -ENOMEM; goto destroy_mmu_pgt_pool; } rc = gen_pool_add_virt(hr_priv->mmu_pgt_pool, virt_addr, (phys_addr_t) dma_addr, pool_chunk_size, -1); if (rc) { dev_err(hdev->dev, "Failed to fill host-resident page pool\n"); goto destroy_mmu_pgt_pool; } } for (i = 0 ; i < prop->max_asid ; i++) { hop0_pgt = &hr_priv->mmu_asid_hop0[i]; hop0_pgt->virt_addr = (uintptr_t) gen_pool_dma_zalloc_align(hr_priv->mmu_pgt_pool, hop_table_size, (dma_addr_t *) &hop0_pgt->phys_addr, hop_table_size); if (!hop0_pgt->virt_addr) { dev_err(hdev->dev, "Failed to allocate HOP from pgt pool\n"); rc = -ENOMEM; goto destroy_mmu_pgt_pool; } } /* MMU H/W init will be done in device hw_init() */ return 0; destroy_mmu_pgt_pool: hl_mmu_hr_pool_destroy(hdev, hr_priv, hop_table_size); if (!ZERO_OR_NULL_PTR(hr_priv->mmu_asid_hop0)) kvfree(hr_priv->mmu_asid_hop0); return rc; } /** * hl_mmu_hr_fini() - release the MMU module. * @hdev: habanalabs device structure. * @hr_priv: MMU host resident private info. * @hop_table_size: HOP table size * * This function does the following: * - Disable MMU in H/W. * - Free the pgt_infos pool. * * All contexts should be freed before calling this function. */ void hl_mmu_hr_fini(struct hl_device *hdev, struct hl_mmu_hr_priv *hr_priv, u32 hop_table_size) { /* MMU H/W fini was already done in device hw_fini() */ hl_mmu_hr_pool_destroy(hdev, hr_priv, hop_table_size); if (!ZERO_OR_NULL_PTR(hr_priv->mmu_asid_hop0)) { kvfree(hr_priv->mmu_asid_hop0); /* Make sure that if we arrive here again without init was * called we won't cause kernel panic. This can happen for * example if we fail during hard reset code at certain points */ hr_priv->mmu_asid_hop0 = NULL; } } /** * hl_mmu_hr_free_hop_remove_pgt() - free HOP and remove PGT from hash * @pgt_info: page table info structure. * @hr_priv: MMU HR private data. * @hop_table_size: HOP table size. */ void hl_mmu_hr_free_hop_remove_pgt(struct pgt_info *pgt_info, struct hl_mmu_hr_priv *hr_priv, u32 hop_table_size) { gen_pool_free(hr_priv->mmu_pgt_pool, pgt_info->virt_addr, hop_table_size); hash_del(&pgt_info->node); kfree(pgt_info); } /** * hl_mmu_hr_pte_phys_to_virt() - translate PTE phys addr to virt addr * @ctx: pointer to the context structure * @pgt: pgt_info for the HOP hosting the PTE * @phys_pte_addr: phys address of the PTE * @hop_table_size: HOP table size * * @return PTE virtual address * * The function use the pgt_info to get HOP base virt addr and obtain the PTE's virt addr * by adding the PTE offset. */ u64 hl_mmu_hr_pte_phys_to_virt(struct hl_ctx *ctx, struct pgt_info *pgt, u64 phys_pte_addr, u32 hop_table_size) { u64 page_mask = (hop_table_size - 1); u64 pte_offset = phys_pte_addr & page_mask; return pgt->virt_addr + pte_offset; } /** * hl_mmu_hr_write_pte() - write HR PTE * @ctx: pointer to the context structure * @pgt_info: HOP's page table info structure * @phys_pte_addr: phys PTE address * @val: raw PTE data * @hop_table_size: HOP table size */ void hl_mmu_hr_write_pte(struct hl_ctx *ctx, struct pgt_info *pgt_info, u64 phys_pte_addr, u64 val, u32 hop_table_size) { /* * The value to write is the phys address of the next hop + * flags at the 12 LSBs. */ u64 virt_addr = hl_mmu_hr_pte_phys_to_virt(ctx, pgt_info, phys_pte_addr, hop_table_size); *((u64 *) (uintptr_t) virt_addr) = val; } /** * hl_mmu_hr_clear_pte() - clear HR PTE * @ctx: pointer to the context structure * @pgt_info: HOP's page table info structure * @phys_pte_addr: phys PTE address * @hop_table_size: HOP table size */ void hl_mmu_hr_clear_pte(struct hl_ctx *ctx, struct pgt_info *pgt_info, u64 phys_pte_addr, u32 hop_table_size) { /* no need to transform the value to physical address */ hl_mmu_hr_write_pte(ctx, pgt_info, phys_pte_addr, 0, hop_table_size); } /** * hl_mmu_hr_put_pte() - put HR PTE and remove it if necessary (no more PTEs) * @ctx: pointer to the context structure * @pgt_info: HOP's page table info structure * @hr_priv: HR MMU private info * @hop_table_size: HOP table size * * @return number of PTEs still in the HOP */ int hl_mmu_hr_put_pte(struct hl_ctx *ctx, struct pgt_info *pgt_info, struct hl_mmu_hr_priv *hr_priv, u32 hop_table_size) { int num_of_ptes_left; pgt_info->num_of_ptes--; /* * Need to save the number of ptes left because free_hop might free * the pgt_info */ num_of_ptes_left = pgt_info->num_of_ptes; if (!num_of_ptes_left) hl_mmu_hr_free_hop_remove_pgt(pgt_info, hr_priv, hop_table_size); return num_of_ptes_left; } /** * hl_mmu_hr_get_pte() - increase PGT PTE count * @ctx: pointer to the context structure * @hr_func: host resident functions * @phys_hop_addr: HOP phys address */ void hl_mmu_hr_get_pte(struct hl_ctx *ctx, struct hl_hr_mmu_funcs *hr_func, u64 phys_hop_addr) { hr_func->get_pgt_info(ctx, phys_hop_addr)->num_of_ptes++; } /** * hl_mmu_hr_get_next_hop_pgt_info() - get pgt_info structure for the next HOP * @ctx: pointer to the context structure. * @hr_func: host resident functions. * @curr_pte: current PTE value. * * @return pgt_info structure on success, otherwise NULL. */ struct pgt_info *hl_mmu_hr_get_next_hop_pgt_info(struct hl_ctx *ctx, struct hl_hr_mmu_funcs *hr_func, u64 curr_pte) { u64 next_hop_phys_addr = hl_mmu_get_next_hop_addr(ctx, curr_pte); if (next_hop_phys_addr == ULLONG_MAX) return NULL; return hr_func->get_pgt_info(ctx, next_hop_phys_addr); } /** * hl_mmu_hr_alloc_hop() - allocate HOP * @ctx: pointer to the context structure. * @hr_priv: host resident private info structure. * @hr_func: host resident functions. * @mmu_prop: MMU properties. * * @return pgt_info structure associated with the allocated HOP on success, otherwise NULL. */ struct pgt_info *hl_mmu_hr_alloc_hop(struct hl_ctx *ctx, struct hl_mmu_hr_priv *hr_priv, struct hl_hr_mmu_funcs *hr_func, struct hl_mmu_properties *mmu_prop) { struct hl_device *hdev = ctx->hdev; struct pgt_info *pgt_info; dma_addr_t phys_addr; void *virt_addr; int i, retry = 1; pgt_info = kmalloc(sizeof(*pgt_info), GFP_KERNEL); if (!pgt_info) return NULL; for (i = 0; i <= retry; i++) { virt_addr = gen_pool_dma_zalloc_align(hr_priv->mmu_pgt_pool, mmu_prop->hop_table_size, &phys_addr, mmu_prop->hop_table_size); if (virt_addr) break; /* No memory in pool - get some and try again */ virt_addr = hl_asic_dma_alloc_coherent(hdev, SZ_2M, &phys_addr, GFP_KERNEL | __GFP_ZERO); if (ZERO_OR_NULL_PTR(virt_addr)) break; if (gen_pool_add_virt(hr_priv->mmu_pgt_pool, (unsigned long)virt_addr, phys_addr, SZ_2M, -1)) { hl_asic_dma_free_coherent(hdev, SZ_2M, virt_addr, phys_addr); virt_addr = NULL; break; } } if (ZERO_OR_NULL_PTR(virt_addr)) { dev_err(hdev->dev, "failed to allocate page\n"); goto pool_alloc_err; } pgt_info->phys_addr = phys_addr; pgt_info->shadow_addr = (unsigned long) NULL; pgt_info->virt_addr = (unsigned long)virt_addr; pgt_info->ctx = ctx; pgt_info->num_of_ptes = 0; hr_func->add_pgt_info(ctx, pgt_info, phys_addr); return pgt_info; pool_alloc_err: kfree(pgt_info); return NULL; } /** * hl_mmu_hr_get_alloc_next_hop() - get the next HOP, allocate it if it does not exist * @ctx: pointer to the context structure. * @hr_priv: host resident private info structure. * @hr_func: host resident functions. * @mmu_prop: MMU properties. * @curr_pte: current PTE value. * @is_new_hop: set to true if HOP is new (caller responsibility to set it to false). * * @return pgt_info structure associated with the allocated HOP on success, otherwise NULL. */ struct pgt_info *hl_mmu_hr_get_alloc_next_hop(struct hl_ctx *ctx, struct hl_mmu_hr_priv *hr_priv, struct hl_hr_mmu_funcs *hr_func, struct hl_mmu_properties *mmu_prop, u64 curr_pte, bool *is_new_hop) { u64 hop_addr = hl_mmu_get_next_hop_addr(ctx, curr_pte); if (hop_addr != ULLONG_MAX) return hr_func->get_pgt_info(ctx, hop_addr); *is_new_hop = true; return hl_mmu_hr_alloc_hop(ctx, hr_priv, hr_func, mmu_prop); } /** * hl_mmu_hr_get_tlb_info() - get the TLB info (info for a specific mapping) * @ctx: pointer to the context structure. * @virt_addr: the virt address for which to get info. * @hops: HOPs info structure. * @hr_func: host resident functions. * * @return 0 on success, otherwise non 0 error code.. */ int hl_mmu_hr_get_tlb_info(struct hl_ctx *ctx, u64 virt_addr, struct hl_mmu_hop_info *hops, struct hl_hr_mmu_funcs *hr_func) { /* using 6 HOPs as this is the maximum number of HOPs */ struct pgt_info *hops_pgt_info[MMU_ARCH_6_HOPS] = { NULL }; struct hl_device *hdev = ctx->hdev; struct hl_mmu_properties *mmu_prop; int rc, i, used_hops; bool is_huge; rc = hr_func->get_tlb_mapping_params(hdev, &mmu_prop, hops, virt_addr, &is_huge); if (rc) return rc; used_hops = mmu_prop->num_hops; /* huge pages use one less hop */ if (is_huge) used_hops--; hops->scrambled_vaddr = hdev->asic_funcs->scramble_addr(hdev, virt_addr); for (i = 0 ; i < used_hops ; i++) { if (i == 0) hops_pgt_info[i] = hr_func->get_hop0_pgt_info(ctx); else hops_pgt_info[i] = hl_mmu_hr_get_next_hop_pgt_info(ctx, hr_func, hops->hop_info[i - 1].hop_pte_val); if (!hops_pgt_info[i]) return -EFAULT; hops->hop_info[i].hop_addr = hops_pgt_info[i]->phys_addr; hops->hop_info[i].hop_pte_addr = hl_mmu_get_hop_pte_phys_addr(ctx, mmu_prop, i, hops->hop_info[i].hop_addr, hops->scrambled_vaddr); hops->hop_info[i].hop_pte_val = *(u64 *) (uintptr_t) hl_mmu_hr_pte_phys_to_virt(ctx, hops_pgt_info[i], hops->hop_info[i].hop_pte_addr, mmu_prop->hop_table_size); if (!(hops->hop_info[i].hop_pte_val & PAGE_PRESENT_MASK)) return -EFAULT; if (hops->hop_info[i].hop_pte_val & mmu_prop->last_mask) break; } /* if passed over all hops then no last hop was found */ if (i == mmu_prop->num_hops) return -EFAULT; if (hops->scrambled_vaddr != virt_addr) hops->unscrambled_paddr = hdev->asic_funcs->descramble_addr (hdev, hops->hop_info[i].hop_pte_val); else hops->unscrambled_paddr = hops->hop_info[i].hop_pte_val; hops->used_hops = i + 1; return 0; } struct pgt_info *hl_mmu_dr_get_pgt_info(struct hl_ctx *ctx, u64 hop_addr) { struct pgt_info *pgt_info = NULL; hash_for_each_possible(ctx->mmu_shadow_hash, pgt_info, node, (unsigned long) hop_addr) if (hop_addr == pgt_info->shadow_addr) break; return pgt_info; } void hl_mmu_dr_free_hop(struct hl_ctx *ctx, u64 hop_addr) { struct pgt_info *pgt_info = hl_mmu_dr_get_pgt_info(ctx, hop_addr); hl_mmu_dr_free_pgt_node(ctx, pgt_info); } void hl_mmu_dr_free_pgt_node(struct hl_ctx *ctx, struct pgt_info *pgt_info) { struct hl_device *hdev = ctx->hdev; gen_pool_free(hdev->mmu_priv.dr.mmu_pgt_pool, pgt_info->phys_addr, hdev->asic_prop.dmmu.hop_table_size); hash_del(&pgt_info->node); kfree((u64 *) (uintptr_t) pgt_info->shadow_addr); kfree(pgt_info); } u64 hl_mmu_dr_get_phys_hop0_addr(struct hl_ctx *ctx) { return ctx->hdev->asic_prop.mmu_pgt_addr + (ctx->asid * ctx->hdev->asic_prop.dmmu.hop_table_size); } u64 hl_mmu_dr_get_hop0_addr(struct hl_ctx *ctx) { return (u64) (uintptr_t) ctx->hdev->mmu_priv.dr.mmu_shadow_hop0 + (ctx->asid * ctx->hdev->asic_prop.dmmu.hop_table_size); } u64 hl_mmu_dr_get_phys_addr(struct hl_ctx *ctx, u64 shadow_addr) { u64 page_mask = ctx->hdev->asic_prop.dmmu.hop_table_size - 1; u64 shadow_hop_addr = shadow_addr & (~page_mask); u64 pte_offset = shadow_addr & page_mask; u64 phys_hop_addr; if (shadow_hop_addr != hl_mmu_dr_get_hop0_addr(ctx)) phys_hop_addr = hl_mmu_dr_get_pgt_info(ctx, shadow_hop_addr)->phys_addr; else phys_hop_addr = hl_mmu_dr_get_phys_hop0_addr(ctx); return phys_hop_addr + pte_offset; } void hl_mmu_dr_write_pte(struct hl_ctx *ctx, u64 shadow_pte_addr, u64 val) { u64 phys_val = hl_mmu_dr_get_phys_addr(ctx, val); ctx->hdev->asic_funcs->write_pte(ctx->hdev, hl_mmu_dr_get_phys_addr(ctx, shadow_pte_addr), phys_val); *(u64 *) (uintptr_t) shadow_pte_addr = val; } void hl_mmu_dr_write_final_pte(struct hl_ctx *ctx, u64 shadow_pte_addr, u64 val) { ctx->hdev->asic_funcs->write_pte(ctx->hdev, hl_mmu_dr_get_phys_addr(ctx, shadow_pte_addr), val); *(u64 *) (uintptr_t) shadow_pte_addr = val; } void hl_mmu_dr_clear_pte(struct hl_ctx *ctx, u64 pte_addr) { hl_mmu_dr_write_final_pte(ctx, pte_addr, 0); } void hl_mmu_dr_get_pte(struct hl_ctx *ctx, u64 hop_addr) { hl_mmu_dr_get_pgt_info(ctx, hop_addr)->num_of_ptes++; } int hl_mmu_dr_put_pte(struct hl_ctx *ctx, u64 hop_addr) { struct pgt_info *pgt_info = hl_mmu_dr_get_pgt_info(ctx, hop_addr); int num_of_ptes_left; pgt_info->num_of_ptes--; /* * Need to save the number of ptes left because hl_mmu_free_hop might free * the pgt_info */ num_of_ptes_left = pgt_info->num_of_ptes; if (!num_of_ptes_left) hl_mmu_dr_free_pgt_node(ctx, pgt_info); return num_of_ptes_left; } u64 hl_mmu_dr_alloc_hop(struct hl_ctx *ctx) { struct hl_device *hdev = ctx->hdev; struct asic_fixed_properties *prop = &hdev->asic_prop; struct pgt_info *pgt_info; u64 phys_addr, shadow_addr; pgt_info = kmalloc(sizeof(*pgt_info), GFP_KERNEL); if (!pgt_info) return ULLONG_MAX; phys_addr = (u64) gen_pool_alloc(hdev->mmu_priv.dr.mmu_pgt_pool, prop->dmmu.hop_table_size); if (!phys_addr) { dev_err(hdev->dev, "failed to allocate page\n"); goto pool_add_err; } shadow_addr = (u64) (uintptr_t) kzalloc(prop->dmmu.hop_table_size, GFP_KERNEL); if (!shadow_addr) goto shadow_err; pgt_info->phys_addr = phys_addr; pgt_info->shadow_addr = shadow_addr; pgt_info->ctx = ctx; pgt_info->num_of_ptes = 0; hash_add(ctx->mmu_shadow_hash, &pgt_info->node, shadow_addr); return shadow_addr; shadow_err: gen_pool_free(hdev->mmu_priv.dr.mmu_pgt_pool, phys_addr, prop->dmmu.hop_table_size); pool_add_err: kfree(pgt_info); return ULLONG_MAX; } u64 hl_mmu_dr_get_alloc_next_hop_addr(struct hl_ctx *ctx, u64 curr_pte, bool *is_new_hop) { u64 hop_addr = hl_mmu_get_next_hop_addr(ctx, curr_pte); if (hop_addr == ULLONG_MAX) { hop_addr = hl_mmu_dr_alloc_hop(ctx); *is_new_hop = (hop_addr != ULLONG_MAX); } return hop_addr; } void hl_mmu_dr_flush(struct hl_ctx *ctx) { /* flush all writes from all cores to reach PCI */ mb(); ctx->hdev->asic_funcs->read_pte(ctx->hdev, hl_mmu_dr_get_phys_hop0_addr(ctx)); } int hl_mmu_dr_init(struct hl_device *hdev) { struct asic_fixed_properties *prop = &hdev->asic_prop; int rc; hdev->mmu_priv.dr.mmu_pgt_pool = gen_pool_create(__ffs(prop->dmmu.hop_table_size), -1); if (!hdev->mmu_priv.dr.mmu_pgt_pool) { dev_err(hdev->dev, "Failed to create page gen pool\n"); return -ENOMEM; } rc = gen_pool_add(hdev->mmu_priv.dr.mmu_pgt_pool, prop->mmu_pgt_addr + prop->dmmu.hop0_tables_total_size, prop->dmmu.pgt_size - prop->dmmu.hop0_tables_total_size, -1); if (rc) { dev_err(hdev->dev, "Failed to add memory to page gen pool\n"); goto err_pool_add; } hdev->mmu_priv.dr.mmu_shadow_hop0 = kvcalloc(prop->max_asid, prop->dmmu.hop_table_size, GFP_KERNEL); if (ZERO_OR_NULL_PTR(hdev->mmu_priv.dr.mmu_shadow_hop0)) { rc = -ENOMEM; goto err_pool_add; } /* MMU H/W init will be done in device hw_init() */ return 0; err_pool_add: gen_pool_destroy(hdev->mmu_priv.dr.mmu_pgt_pool); return rc; } void hl_mmu_dr_fini(struct hl_device *hdev) { /* MMU H/W fini was already done in device hw_fini() */ if (ZERO_OR_NULL_PTR(hdev->mmu_priv.dr.mmu_shadow_hop0)) return; kvfree(hdev->mmu_priv.dr.mmu_shadow_hop0); gen_pool_destroy(hdev->mmu_priv.dr.mmu_pgt_pool); /* Make sure that if we arrive here again without init was * called we won't cause kernel panic. This can happen for * example if we fail during hard reset code at certain points */ hdev->mmu_priv.dr.mmu_shadow_hop0 = NULL; } |