Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 | // SPDX-License-Identifier: GPL-2.0 /* * Bad block management * * - Heavily based on MD badblocks code from Neil Brown * * Copyright (c) 2015, Intel Corporation. */ #include <linux/badblocks.h> #include <linux/seqlock.h> #include <linux/device.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/stddef.h> #include <linux/types.h> #include <linux/slab.h> /* * The purpose of badblocks set/clear is to manage bad blocks ranges which are * identified by LBA addresses. * * When the caller of badblocks_set() wants to set a range of bad blocks, the * setting range can be acked or unacked. And the setting range may merge, * overwrite, skip the overlapped already set range, depends on who they are * overlapped or adjacent, and the acknowledgment type of the ranges. It can be * more complicated when the setting range covers multiple already set bad block * ranges, with restrictions of maximum length of each bad range and the bad * table space limitation. * * It is difficult and unnecessary to take care of all the possible situations, * for setting a large range of bad blocks, we can handle it by dividing the * large range into smaller ones when encounter overlap, max range length or * bad table full conditions. Every time only a smaller piece of the bad range * is handled with a limited number of conditions how it is interacted with * possible overlapped or adjacent already set bad block ranges. Then the hard * complicated problem can be much simpler to handle in proper way. * * When setting a range of bad blocks to the bad table, the simplified situations * to be considered are, (The already set bad blocks ranges are naming with * prefix E, and the setting bad blocks range is naming with prefix S) * * 1) A setting range is not overlapped or adjacent to any other already set bad * block range. * +--------+ * | S | * +--------+ * +-------------+ +-------------+ * | E1 | | E2 | * +-------------+ +-------------+ * For this situation if the bad blocks table is not full, just allocate a * free slot from the bad blocks table to mark the setting range S. The * result is, * +-------------+ +--------+ +-------------+ * | E1 | | S | | E2 | * +-------------+ +--------+ +-------------+ * 2) A setting range starts exactly at a start LBA of an already set bad blocks * range. * 2.1) The setting range size < already set range size * +--------+ * | S | * +--------+ * +-------------+ * | E | * +-------------+ * 2.1.1) If S and E are both acked or unacked range, the setting range S can * be merged into existing bad range E. The result is, * +-------------+ * | S | * +-------------+ * 2.1.2) If S is unacked setting and E is acked, the setting will be denied, and * the result is, * +-------------+ * | E | * +-------------+ * 2.1.3) If S is acked setting and E is unacked, range S can overwrite on E. * An extra slot from the bad blocks table will be allocated for S, and head * of E will move to end of the inserted range S. The result is, * +--------+----+ * | S | E | * +--------+----+ * 2.2) The setting range size == already set range size * 2.2.1) If S and E are both acked or unacked range, the setting range S can * be merged into existing bad range E. The result is, * +-------------+ * | S | * +-------------+ * 2.2.2) If S is unacked setting and E is acked, the setting will be denied, and * the result is, * +-------------+ * | E | * +-------------+ * 2.2.3) If S is acked setting and E is unacked, range S can overwrite all of bad blocks range E. The result is, * +-------------+ * | S | * +-------------+ * 2.3) The setting range size > already set range size * +-------------------+ * | S | * +-------------------+ * +-------------+ * | E | * +-------------+ * For such situation, the setting range S can be treated as two parts, the * first part (S1) is as same size as the already set range E, the second * part (S2) is the rest of setting range. * +-------------+-----+ +-------------+ +-----+ * | S1 | S2 | | S1 | | S2 | * +-------------+-----+ ===> +-------------+ +-----+ * +-------------+ +-------------+ * | E | | E | * +-------------+ +-------------+ * Now we only focus on how to handle the setting range S1 and already set * range E, which are already explained in 2.2), for the rest S2 it will be * handled later in next loop. * 3) A setting range starts before the start LBA of an already set bad blocks * range. * +-------------+ * | S | * +-------------+ * +-------------+ * | E | * +-------------+ * For this situation, the setting range S can be divided into two parts, the * first (S1) ends at the start LBA of already set range E, the second part * (S2) starts exactly at a start LBA of the already set range E. * +----+---------+ +----+ +---------+ * | S1 | S2 | | S1 | | S2 | * +----+---------+ ===> +----+ +---------+ * +-------------+ +-------------+ * | E | | E | * +-------------+ +-------------+ * Now only the first part S1 should be handled in this loop, which is in * similar condition as 1). The rest part S2 has exact same start LBA address * of the already set range E, they will be handled in next loop in one of * situations in 2). * 4) A setting range starts after the start LBA of an already set bad blocks * range. * 4.1) If the setting range S exactly matches the tail part of already set bad * blocks range E, like the following chart shows, * +---------+ * | S | * +---------+ * +-------------+ * | E | * +-------------+ * 4.1.1) If range S and E have same acknowledge value (both acked or unacked), * they will be merged into one, the result is, * +-------------+ * | S | * +-------------+ * 4.1.2) If range E is acked and the setting range S is unacked, the setting * request of S will be rejected, the result is, * +-------------+ * | E | * +-------------+ * 4.1.3) If range E is unacked, and the setting range S is acked, then S may * overwrite the overlapped range of E, the result is, * +---+---------+ * | E | S | * +---+---------+ * 4.2) If the setting range S stays in middle of an already set range E, like * the following chart shows, * +----+ * | S | * +----+ * +--------------+ * | E | * +--------------+ * 4.2.1) If range S and E have same acknowledge value (both acked or unacked), * they will be merged into one, the result is, * +--------------+ * | S | * +--------------+ * 4.2.2) If range E is acked and the setting range S is unacked, the setting * request of S will be rejected, the result is also, * +--------------+ * | E | * +--------------+ * 4.2.3) If range E is unacked, and the setting range S is acked, then S will * inserted into middle of E and split previous range E into two parts (E1 * and E2), the result is, * +----+----+----+ * | E1 | S | E2 | * +----+----+----+ * 4.3) If the setting bad blocks range S is overlapped with an already set bad * blocks range E. The range S starts after the start LBA of range E, and * ends after the end LBA of range E, as the following chart shows, * +-------------------+ * | S | * +-------------------+ * +-------------+ * | E | * +-------------+ * For this situation the range S can be divided into two parts, the first * part (S1) ends at end range E, and the second part (S2) has rest range of * origin S. * +---------+---------+ +---------+ +---------+ * | S1 | S2 | | S1 | | S2 | * +---------+---------+ ===> +---------+ +---------+ * +-------------+ +-------------+ * | E | | E | * +-------------+ +-------------+ * Now in this loop the setting range S1 and already set range E can be * handled as the situations 4.1), the rest range S2 will be handled in next * loop and ignored in this loop. * 5) A setting bad blocks range S is adjacent to one or more already set bad * blocks range(s), and they are all acked or unacked range. * 5.1) Front merge: If the already set bad blocks range E is before setting * range S and they are adjacent, * +------+ * | S | * +------+ * +-------+ * | E | * +-------+ * 5.1.1) When total size of range S and E <= BB_MAX_LEN, and their acknowledge * values are same, the setting range S can front merges into range E. The * result is, * +--------------+ * | S | * +--------------+ * 5.1.2) Otherwise these two ranges cannot merge, just insert the setting * range S right after already set range E into the bad blocks table. The * result is, * +--------+------+ * | E | S | * +--------+------+ * 6) Special cases which above conditions cannot handle * 6.1) Multiple already set ranges may merge into less ones in a full bad table * +-------------------------------------------------------+ * | S | * +-------------------------------------------------------+ * |<----- BB_MAX_LEN ----->| * +-----+ +-----+ +-----+ * | E1 | | E2 | | E3 | * +-----+ +-----+ +-----+ * In the above example, when the bad blocks table is full, inserting the * first part of setting range S will fail because no more available slot * can be allocated from bad blocks table. In this situation a proper * setting method should be go though all the setting bad blocks range and * look for chance to merge already set ranges into less ones. When there * is available slot from bad blocks table, re-try again to handle more * setting bad blocks ranges as many as possible. * +------------------------+ * | S3 | * +------------------------+ * |<----- BB_MAX_LEN ----->| * +-----+-----+-----+---+-----+--+ * | S1 | S2 | * +-----+-----+-----+---+-----+--+ * The above chart shows although the first part (S3) cannot be inserted due * to no-space in bad blocks table, but the following E1, E2 and E3 ranges * can be merged with rest part of S into less range S1 and S2. Now there is * 1 free slot in bad blocks table. * +------------------------+-----+-----+-----+---+-----+--+ * | S3 | S1 | S2 | * +------------------------+-----+-----+-----+---+-----+--+ * Since the bad blocks table is not full anymore, re-try again for the * origin setting range S. Now the setting range S3 can be inserted into the * bad blocks table with previous freed slot from multiple ranges merge. * 6.2) Front merge after overwrite * In the following example, in bad blocks table, E1 is an acked bad blocks * range and E2 is an unacked bad blocks range, therefore they are not able * to merge into a larger range. The setting bad blocks range S is acked, * therefore part of E2 can be overwritten by S. * +--------+ * | S | acknowledged * +--------+ S: 1 * +-------+-------------+ E1: 1 * | E1 | E2 | E2: 0 * +-------+-------------+ * With previous simplified routines, after overwriting part of E2 with S, * the bad blocks table should be (E3 is remaining part of E2 which is not * overwritten by S), * acknowledged * +-------+--------+----+ S: 1 * | E1 | S | E3 | E1: 1 * +-------+--------+----+ E3: 0 * The above result is correct but not perfect. Range E1 and S in the bad * blocks table are all acked, merging them into a larger one range may * occupy less bad blocks table space and make badblocks_check() faster. * Therefore in such situation, after overwriting range S, the previous range * E1 should be checked for possible front combination. Then the ideal * result can be, * +----------------+----+ acknowledged * | E1 | E3 | E1: 1 * +----------------+----+ E3: 0 * 6.3) Behind merge: If the already set bad blocks range E is behind the setting * range S and they are adjacent. Normally we don't need to care about this * because front merge handles this while going though range S from head to * tail, except for the tail part of range S. When the setting range S are * fully handled, all the above simplified routine doesn't check whether the * tail LBA of range S is adjacent to the next already set range and not * merge them even it is possible. * +------+ * | S | * +------+ * +-------+ * | E | * +-------+ * For the above special situation, when the setting range S are all handled * and the loop ends, an extra check is necessary for whether next already * set range E is right after S and mergeable. * 6.3.1) When total size of range E and S <= BB_MAX_LEN, and their acknowledge * values are same, the setting range S can behind merges into range E. The * result is, * +--------------+ * | S | * +--------------+ * 6.3.2) Otherwise these two ranges cannot merge, just insert the setting range * S in front of the already set range E in the bad blocks table. The result * is, * +------+-------+ * | S | E | * +------+-------+ * * All the above 5 simplified situations and 3 special cases may cover 99%+ of * the bad block range setting conditions. Maybe there is some rare corner case * is not considered and optimized, it won't hurt if badblocks_set() fails due * to no space, or some ranges are not merged to save bad blocks table space. * * Inside badblocks_set() each loop starts by jumping to re_insert label, every * time for the new loop prev_badblocks() is called to find an already set range * which starts before or at current setting range. Since the setting bad blocks * range is handled from head to tail, most of the cases it is unnecessary to do * the binary search inside prev_badblocks(), it is possible to provide a hint * to prev_badblocks() for a fast path, then the expensive binary search can be * avoided. In my test with the hint to prev_badblocks(), except for the first * loop, all rested calls to prev_badblocks() can go into the fast path and * return correct bad blocks table index immediately. * * * Clearing a bad blocks range from the bad block table has similar idea as * setting does, but much more simpler. The only thing needs to be noticed is * when the clearing range hits middle of a bad block range, the existing bad * block range will split into two, and one more item should be added into the * bad block table. The simplified situations to be considered are, (The already * set bad blocks ranges in bad block table are naming with prefix E, and the * clearing bad blocks range is naming with prefix C) * * 1) A clearing range is not overlapped to any already set ranges in bad block * table. * +-----+ | +-----+ | +-----+ * | C | | | C | | | C | * +-----+ or +-----+ or +-----+ * +---+ | +----+ +----+ | +---+ * | E | | | E1 | | E2 | | | E | * +---+ | +----+ +----+ | +---+ * For the above situations, no bad block to be cleared and no failure * happens, simply returns 0. * 2) The clearing range hits middle of an already setting bad blocks range in * the bad block table. * +---+ * | C | * +---+ * +-----------------+ * | E | * +-----------------+ * In this situation if the bad block table is not full, the range E will be * split into two ranges E1 and E2. The result is, * +------+ +------+ * | E1 | | E2 | * +------+ +------+ * 3) The clearing range starts exactly at same LBA as an already set bad block range * from the bad block table. * 3.1) Partially covered at head part * +------------+ * | C | * +------------+ * +-----------------+ * | E | * +-----------------+ * For this situation, the overlapped already set range will update the * start LBA to end of C and shrink the range to BB_LEN(E) - BB_LEN(C). No * item deleted from bad block table. The result is, * +----+ * | E1 | * +----+ * 3.2) Exact fully covered * +-----------------+ * | C | * +-----------------+ * +-----------------+ * | E | * +-----------------+ * For this situation the whole bad blocks range E will be cleared and its * corresponded item is deleted from the bad block table. * 4) The clearing range exactly ends at same LBA as an already set bad block * range. * +-------+ * | C | * +-------+ * +-----------------+ * | E | * +-----------------+ * For the above situation, the already set range E is updated to shrink its * end to the start of C, and reduce its length to BB_LEN(E) - BB_LEN(C). * The result is, * +---------+ * | E | * +---------+ * 5) The clearing range is partially overlapped with an already set bad block * range from the bad block table. * 5.1) The already set bad block range is front overlapped with the clearing * range. * +----------+ * | C | * +----------+ * +------------+ * | E | * +------------+ * For such situation, the clearing range C can be treated as two parts. The * first part ends at the start LBA of range E, and the second part starts at * same LBA of range E. * +----+-----+ +----+ +-----+ * | C1 | C2 | | C1 | | C2 | * +----+-----+ ===> +----+ +-----+ * +------------+ +------------+ * | E | | E | * +------------+ +------------+ * Now the first part C1 can be handled as condition 1), and the second part C2 can be * handled as condition 3.1) in next loop. * 5.2) The already set bad block range is behind overlaopped with the clearing * range. * +----------+ * | C | * +----------+ * +------------+ * | E | * +------------+ * For such situation, the clearing range C can be treated as two parts. The * first part C1 ends at same end LBA of range E, and the second part starts * at end LBA of range E. * +----+-----+ +----+ +-----+ * | C1 | C2 | | C1 | | C2 | * +----+-----+ ===> +----+ +-----+ * +------------+ +------------+ * | E | | E | * +------------+ +------------+ * Now the first part clearing range C1 can be handled as condition 4), and * the second part clearing range C2 can be handled as condition 1) in next * loop. * * All bad blocks range clearing can be simplified into the above 5 situations * by only handling the head part of the clearing range in each run of the * while-loop. The idea is similar to bad blocks range setting but much * simpler. */ /* * Find the range starts at-or-before 's' from bad table. The search * starts from index 'hint' and stops at index 'hint_end' from the bad * table. */ static int prev_by_hint(struct badblocks *bb, sector_t s, int hint) { int hint_end = hint + 2; u64 *p = bb->page; int ret = -1; while ((hint < hint_end) && ((hint + 1) <= bb->count) && (BB_OFFSET(p[hint]) <= s)) { if ((hint + 1) == bb->count || BB_OFFSET(p[hint + 1]) > s) { ret = hint; break; } hint++; } return ret; } /* * Find the range starts at-or-before bad->start. If 'hint' is provided * (hint >= 0) then search in the bad table from hint firstly. It is * very probably the wanted bad range can be found from the hint index, * then the unnecessary while-loop iteration can be avoided. */ static int prev_badblocks(struct badblocks *bb, struct badblocks_context *bad, int hint) { sector_t s = bad->start; int ret = -1; int lo, hi; u64 *p; if (!bb->count) goto out; if (hint >= 0) { ret = prev_by_hint(bb, s, hint); if (ret >= 0) goto out; } lo = 0; hi = bb->count; p = bb->page; /* The following bisect search might be unnecessary */ if (BB_OFFSET(p[lo]) > s) return -1; if (BB_OFFSET(p[hi - 1]) <= s) return hi - 1; /* Do bisect search in bad table */ while (hi - lo > 1) { int mid = (lo + hi)/2; sector_t a = BB_OFFSET(p[mid]); if (a == s) { ret = mid; goto out; } if (a < s) lo = mid; else hi = mid; } if (BB_OFFSET(p[lo]) <= s) ret = lo; out: return ret; } /* * Return 'true' if the range indicated by 'bad' can be backward merged * with the bad range (from the bad table) index by 'behind'. */ static bool can_merge_behind(struct badblocks *bb, struct badblocks_context *bad, int behind) { sector_t sectors = bad->len; sector_t s = bad->start; u64 *p = bb->page; if ((s < BB_OFFSET(p[behind])) && ((s + sectors) >= BB_OFFSET(p[behind])) && ((BB_END(p[behind]) - s) <= BB_MAX_LEN) && BB_ACK(p[behind]) == bad->ack) return true; return false; } /* * Do backward merge for range indicated by 'bad' and the bad range * (from the bad table) indexed by 'behind'. The return value is merged * sectors from bad->len. */ static int behind_merge(struct badblocks *bb, struct badblocks_context *bad, int behind) { sector_t sectors = bad->len; sector_t s = bad->start; u64 *p = bb->page; int merged = 0; WARN_ON(s >= BB_OFFSET(p[behind])); WARN_ON((s + sectors) < BB_OFFSET(p[behind])); if (s < BB_OFFSET(p[behind])) { merged = BB_OFFSET(p[behind]) - s; p[behind] = BB_MAKE(s, BB_LEN(p[behind]) + merged, bad->ack); WARN_ON((BB_LEN(p[behind]) + merged) >= BB_MAX_LEN); } return merged; } /* * Return 'true' if the range indicated by 'bad' can be forward * merged with the bad range (from the bad table) indexed by 'prev'. */ static bool can_merge_front(struct badblocks *bb, int prev, struct badblocks_context *bad) { sector_t s = bad->start; u64 *p = bb->page; if (BB_ACK(p[prev]) == bad->ack && (s < BB_END(p[prev]) || (s == BB_END(p[prev]) && (BB_LEN(p[prev]) < BB_MAX_LEN)))) return true; return false; } /* * Do forward merge for range indicated by 'bad' and the bad range * (from bad table) indexed by 'prev'. The return value is sectors * merged from bad->len. */ static int front_merge(struct badblocks *bb, int prev, struct badblocks_context *bad) { sector_t sectors = bad->len; sector_t s = bad->start; u64 *p = bb->page; int merged = 0; WARN_ON(s > BB_END(p[prev])); if (s < BB_END(p[prev])) { merged = min_t(sector_t, sectors, BB_END(p[prev]) - s); } else { merged = min_t(sector_t, sectors, BB_MAX_LEN - BB_LEN(p[prev])); if ((prev + 1) < bb->count && merged > (BB_OFFSET(p[prev + 1]) - BB_END(p[prev]))) { merged = BB_OFFSET(p[prev + 1]) - BB_END(p[prev]); } p[prev] = BB_MAKE(BB_OFFSET(p[prev]), BB_LEN(p[prev]) + merged, bad->ack); } return merged; } /* * 'Combine' is a special case which can_merge_front() is not able to * handle: If a bad range (indexed by 'prev' from bad table) exactly * starts as bad->start, and the bad range ahead of 'prev' (indexed by * 'prev - 1' from bad table) exactly ends at where 'prev' starts, and * the sum of their lengths does not exceed BB_MAX_LEN limitation, then * these two bad range (from bad table) can be combined. * * Return 'true' if bad ranges indexed by 'prev' and 'prev - 1' from bad * table can be combined. */ static bool can_combine_front(struct badblocks *bb, int prev, struct badblocks_context *bad) { u64 *p = bb->page; if ((prev > 0) && (BB_OFFSET(p[prev]) == bad->start) && (BB_END(p[prev - 1]) == BB_OFFSET(p[prev])) && (BB_LEN(p[prev - 1]) + BB_LEN(p[prev]) <= BB_MAX_LEN) && (BB_ACK(p[prev - 1]) == BB_ACK(p[prev]))) return true; return false; } /* * Combine the bad ranges indexed by 'prev' and 'prev - 1' (from bad * table) into one larger bad range, and the new range is indexed by * 'prev - 1'. * The caller of front_combine() will decrease bb->count, therefore * it is unnecessary to clear p[perv] after front merge. */ static void front_combine(struct badblocks *bb, int prev) { u64 *p = bb->page; p[prev - 1] = BB_MAKE(BB_OFFSET(p[prev - 1]), BB_LEN(p[prev - 1]) + BB_LEN(p[prev]), BB_ACK(p[prev])); if ((prev + 1) < bb->count) memmove(p + prev, p + prev + 1, (bb->count - prev - 1) * 8); } /* * Return 'true' if the range indicated by 'bad' is exactly forward * overlapped with the bad range (from bad table) indexed by 'front'. * Exactly forward overlap means the bad range (from bad table) indexed * by 'prev' does not cover the whole range indicated by 'bad'. */ static bool overlap_front(struct badblocks *bb, int front, struct badblocks_context *bad) { u64 *p = bb->page; if (bad->start >= BB_OFFSET(p[front]) && bad->start < BB_END(p[front])) return true; return false; } /* * Return 'true' if the range indicated by 'bad' is exactly backward * overlapped with the bad range (from bad table) indexed by 'behind'. */ static bool overlap_behind(struct badblocks *bb, struct badblocks_context *bad, int behind) { u64 *p = bb->page; if (bad->start < BB_OFFSET(p[behind]) && (bad->start + bad->len) > BB_OFFSET(p[behind])) return true; return false; } /* * Return 'true' if the range indicated by 'bad' can overwrite the bad * range (from bad table) indexed by 'prev'. * * The range indicated by 'bad' can overwrite the bad range indexed by * 'prev' when, * 1) The whole range indicated by 'bad' can cover partial or whole bad * range (from bad table) indexed by 'prev'. * 2) The ack value of 'bad' is larger or equal to the ack value of bad * range 'prev'. * * If the overwriting doesn't cover the whole bad range (from bad table) * indexed by 'prev', new range might be split from existing bad range, * 1) The overwrite covers head or tail part of existing bad range, 1 * extra bad range will be split and added into the bad table. * 2) The overwrite covers middle of existing bad range, 2 extra bad * ranges will be split (ahead and after the overwritten range) and * added into the bad table. * The number of extra split ranges of the overwriting is stored in * 'extra' and returned for the caller. */ static bool can_front_overwrite(struct badblocks *bb, int prev, struct badblocks_context *bad, int *extra) { u64 *p = bb->page; int len; WARN_ON(!overlap_front(bb, prev, bad)); if (BB_ACK(p[prev]) >= bad->ack) return false; if (BB_END(p[prev]) <= (bad->start + bad->len)) { len = BB_END(p[prev]) - bad->start; if (BB_OFFSET(p[prev]) == bad->start) *extra = 0; else *extra = 1; bad->len = len; } else { if (BB_OFFSET(p[prev]) == bad->start) *extra = 1; else /* * prev range will be split into two, beside the overwritten * one, an extra slot needed from bad table. */ *extra = 2; } if ((bb->count + (*extra)) >= MAX_BADBLOCKS) return false; return true; } /* * Do the overwrite from the range indicated by 'bad' to the bad range * (from bad table) indexed by 'prev'. * The previously called can_front_overwrite() will provide how many * extra bad range(s) might be split and added into the bad table. All * the splitting cases in the bad table will be handled here. */ static int front_overwrite(struct badblocks *bb, int prev, struct badblocks_context *bad, int extra) { u64 *p = bb->page; sector_t orig_end = BB_END(p[prev]); int orig_ack = BB_ACK(p[prev]); switch (extra) { case 0: p[prev] = BB_MAKE(BB_OFFSET(p[prev]), BB_LEN(p[prev]), bad->ack); break; case 1: if (BB_OFFSET(p[prev]) == bad->start) { p[prev] = BB_MAKE(BB_OFFSET(p[prev]), bad->len, bad->ack); memmove(p + prev + 2, p + prev + 1, (bb->count - prev - 1) * 8); p[prev + 1] = BB_MAKE(bad->start + bad->len, orig_end - BB_END(p[prev]), orig_ack); } else { p[prev] = BB_MAKE(BB_OFFSET(p[prev]), bad->start - BB_OFFSET(p[prev]), orig_ack); /* * prev +2 -> prev + 1 + 1, which is for, * 1) prev + 1: the slot index of the previous one * 2) + 1: one more slot for extra being 1. */ memmove(p + prev + 2, p + prev + 1, (bb->count - prev - 1) * 8); p[prev + 1] = BB_MAKE(bad->start, bad->len, bad->ack); } break; case 2: p[prev] = BB_MAKE(BB_OFFSET(p[prev]), bad->start - BB_OFFSET(p[prev]), orig_ack); /* * prev + 3 -> prev + 1 + 2, which is for, * 1) prev + 1: the slot index of the previous one * 2) + 2: two more slots for extra being 2. */ memmove(p + prev + 3, p + prev + 1, (bb->count - prev - 1) * 8); p[prev + 1] = BB_MAKE(bad->start, bad->len, bad->ack); p[prev + 2] = BB_MAKE(BB_END(p[prev + 1]), orig_end - BB_END(p[prev + 1]), orig_ack); break; default: break; } return bad->len; } /* * Explicitly insert a range indicated by 'bad' to the bad table, where * the location is indexed by 'at'. */ static int insert_at(struct badblocks *bb, int at, struct badblocks_context *bad) { u64 *p = bb->page; int len; WARN_ON(badblocks_full(bb)); len = min_t(sector_t, bad->len, BB_MAX_LEN); if (at < bb->count) memmove(p + at + 1, p + at, (bb->count - at) * 8); p[at] = BB_MAKE(bad->start, len, bad->ack); return len; } static void badblocks_update_acked(struct badblocks *bb) { bool unacked = false; u64 *p = bb->page; int i; if (!bb->unacked_exist) return; for (i = 0; i < bb->count ; i++) { if (!BB_ACK(p[i])) { unacked = true; break; } } if (!unacked) bb->unacked_exist = 0; } /* Do exact work to set bad block range into the bad block table */ static int _badblocks_set(struct badblocks *bb, sector_t s, int sectors, int acknowledged) { int retried = 0, space_desired = 0; int orig_len, len = 0, added = 0; struct badblocks_context bad; int prev = -1, hint = -1; sector_t orig_start; unsigned long flags; int rv = 0; u64 *p; if (bb->shift < 0) /* badblocks are disabled */ return 1; if (sectors == 0) /* Invalid sectors number */ return 1; if (bb->shift) { /* round the start down, and the end up */ sector_t next = s + sectors; rounddown(s, bb->shift); roundup(next, bb->shift); sectors = next - s; } write_seqlock_irqsave(&bb->lock, flags); orig_start = s; orig_len = sectors; bad.ack = acknowledged; p = bb->page; re_insert: bad.start = s; bad.len = sectors; len = 0; if (badblocks_empty(bb)) { len = insert_at(bb, 0, &bad); bb->count++; added++; goto update_sectors; } prev = prev_badblocks(bb, &bad, hint); /* start before all badblocks */ if (prev < 0) { if (!badblocks_full(bb)) { /* insert on the first */ if (bad.len > (BB_OFFSET(p[0]) - bad.start)) bad.len = BB_OFFSET(p[0]) - bad.start; len = insert_at(bb, 0, &bad); bb->count++; added++; hint = 0; goto update_sectors; } /* No sapce, try to merge */ if (overlap_behind(bb, &bad, 0)) { if (can_merge_behind(bb, &bad, 0)) { len = behind_merge(bb, &bad, 0); added++; } else { len = BB_OFFSET(p[0]) - s; space_desired = 1; } hint = 0; goto update_sectors; } /* no table space and give up */ goto out; } /* in case p[prev-1] can be merged with p[prev] */ if (can_combine_front(bb, prev, &bad)) { front_combine(bb, prev); bb->count--; added++; hint = prev; goto update_sectors; } if (overlap_front(bb, prev, &bad)) { if (can_merge_front(bb, prev, &bad)) { len = front_merge(bb, prev, &bad); added++; } else { int extra = 0; if (!can_front_overwrite(bb, prev, &bad, &extra)) { len = min_t(sector_t, BB_END(p[prev]) - s, sectors); hint = prev; goto update_sectors; } len = front_overwrite(bb, prev, &bad, extra); added++; bb->count += extra; if (can_combine_front(bb, prev, &bad)) { front_combine(bb, prev); bb->count--; } } hint = prev; goto update_sectors; } if (can_merge_front(bb, prev, &bad)) { len = front_merge(bb, prev, &bad); added++; hint = prev; goto update_sectors; } /* if no space in table, still try to merge in the covered range */ if (badblocks_full(bb)) { /* skip the cannot-merge range */ if (((prev + 1) < bb->count) && overlap_behind(bb, &bad, prev + 1) && ((s + sectors) >= BB_END(p[prev + 1]))) { len = BB_END(p[prev + 1]) - s; hint = prev + 1; goto update_sectors; } /* no retry any more */ len = sectors; space_desired = 1; hint = -1; goto update_sectors; } /* cannot merge and there is space in bad table */ if ((prev + 1) < bb->count && overlap_behind(bb, &bad, prev + 1)) bad.len = min_t(sector_t, bad.len, BB_OFFSET(p[prev + 1]) - bad.start); len = insert_at(bb, prev + 1, &bad); bb->count++; added++; hint = prev + 1; update_sectors: s += len; sectors -= len; if (sectors > 0) goto re_insert; WARN_ON(sectors < 0); /* * Check whether the following already set range can be * merged. (prev < 0) condition is not handled here, * because it's already complicated enough. */ if (prev >= 0 && (prev + 1) < bb->count && BB_END(p[prev]) == BB_OFFSET(p[prev + 1]) && (BB_LEN(p[prev]) + BB_LEN(p[prev + 1])) <= BB_MAX_LEN && BB_ACK(p[prev]) == BB_ACK(p[prev + 1])) { p[prev] = BB_MAKE(BB_OFFSET(p[prev]), BB_LEN(p[prev]) + BB_LEN(p[prev + 1]), BB_ACK(p[prev])); if ((prev + 2) < bb->count) memmove(p + prev + 1, p + prev + 2, (bb->count - (prev + 2)) * 8); bb->count--; } if (space_desired && !badblocks_full(bb)) { s = orig_start; sectors = orig_len; space_desired = 0; if (retried++ < 3) goto re_insert; } out: if (added) { set_changed(bb); if (!acknowledged) bb->unacked_exist = 1; else badblocks_update_acked(bb); } write_sequnlock_irqrestore(&bb->lock, flags); if (!added) rv = 1; return rv; } /* * Clear the bad block range from bad block table which is front overlapped * with the clearing range. The return value is how many sectors from an * already set bad block range are cleared. If the whole bad block range is * covered by the clearing range and fully cleared, 'delete' is set as 1 for * the caller to reduce bb->count. */ static int front_clear(struct badblocks *bb, int prev, struct badblocks_context *bad, int *deleted) { sector_t sectors = bad->len; sector_t s = bad->start; u64 *p = bb->page; int cleared = 0; *deleted = 0; if (s == BB_OFFSET(p[prev])) { if (BB_LEN(p[prev]) > sectors) { p[prev] = BB_MAKE(BB_OFFSET(p[prev]) + sectors, BB_LEN(p[prev]) - sectors, BB_ACK(p[prev])); cleared = sectors; } else { /* BB_LEN(p[prev]) <= sectors */ cleared = BB_LEN(p[prev]); if ((prev + 1) < bb->count) memmove(p + prev, p + prev + 1, (bb->count - prev - 1) * 8); *deleted = 1; } } else if (s > BB_OFFSET(p[prev])) { if (BB_END(p[prev]) <= (s + sectors)) { cleared = BB_END(p[prev]) - s; p[prev] = BB_MAKE(BB_OFFSET(p[prev]), s - BB_OFFSET(p[prev]), BB_ACK(p[prev])); } else { /* Splitting is handled in front_splitting_clear() */ BUG(); } } return cleared; } /* * Handle the condition that the clearing range hits middle of an already set * bad block range from bad block table. In this condition the existing bad * block range is split into two after the middle part is cleared. */ static int front_splitting_clear(struct badblocks *bb, int prev, struct badblocks_context *bad) { u64 *p = bb->page; u64 end = BB_END(p[prev]); int ack = BB_ACK(p[prev]); sector_t sectors = bad->len; sector_t s = bad->start; p[prev] = BB_MAKE(BB_OFFSET(p[prev]), s - BB_OFFSET(p[prev]), ack); memmove(p + prev + 2, p + prev + 1, (bb->count - prev - 1) * 8); p[prev + 1] = BB_MAKE(s + sectors, end - s - sectors, ack); return sectors; } /* Do the exact work to clear bad block range from the bad block table */ static int _badblocks_clear(struct badblocks *bb, sector_t s, int sectors) { struct badblocks_context bad; int prev = -1, hint = -1; int len = 0, cleared = 0; int rv = 0; u64 *p; if (bb->shift < 0) /* badblocks are disabled */ return 1; if (sectors == 0) /* Invalid sectors number */ return 1; if (bb->shift) { sector_t target; /* When clearing we round the start up and the end down. * This should not matter as the shift should align with * the block size and no rounding should ever be needed. * However it is better the think a block is bad when it * isn't than to think a block is not bad when it is. */ target = s + sectors; roundup(s, bb->shift); rounddown(target, bb->shift); sectors = target - s; } write_seqlock_irq(&bb->lock); bad.ack = true; p = bb->page; re_clear: bad.start = s; bad.len = sectors; if (badblocks_empty(bb)) { len = sectors; cleared++; goto update_sectors; } prev = prev_badblocks(bb, &bad, hint); /* Start before all badblocks */ if (prev < 0) { if (overlap_behind(bb, &bad, 0)) { len = BB_OFFSET(p[0]) - s; hint = 0; } else { len = sectors; } /* * Both situations are to clear non-bad range, * should be treated as successful */ cleared++; goto update_sectors; } /* Start after all badblocks */ if ((prev + 1) >= bb->count && !overlap_front(bb, prev, &bad)) { len = sectors; cleared++; goto update_sectors; } /* Clear will split a bad record but the table is full */ if (badblocks_full(bb) && (BB_OFFSET(p[prev]) < bad.start) && (BB_END(p[prev]) > (bad.start + sectors))) { len = sectors; goto update_sectors; } if (overlap_front(bb, prev, &bad)) { if ((BB_OFFSET(p[prev]) < bad.start) && (BB_END(p[prev]) > (bad.start + bad.len))) { /* Splitting */ if ((bb->count + 1) < MAX_BADBLOCKS) { len = front_splitting_clear(bb, prev, &bad); bb->count += 1; cleared++; } else { /* No space to split, give up */ len = sectors; } } else { int deleted = 0; len = front_clear(bb, prev, &bad, &deleted); bb->count -= deleted; cleared++; hint = prev; } goto update_sectors; } /* Not front overlap, but behind overlap */ if ((prev + 1) < bb->count && overlap_behind(bb, &bad, prev + 1)) { len = BB_OFFSET(p[prev + 1]) - bad.start; hint = prev + 1; /* Clear non-bad range should be treated as successful */ cleared++; goto update_sectors; } /* Not cover any badblocks range in the table */ len = sectors; /* Clear non-bad range should be treated as successful */ cleared++; update_sectors: s += len; sectors -= len; if (sectors > 0) goto re_clear; WARN_ON(sectors < 0); if (cleared) { badblocks_update_acked(bb); set_changed(bb); } write_sequnlock_irq(&bb->lock); if (!cleared) rv = 1; return rv; } /* Do the exact work to check bad blocks range from the bad block table */ static int _badblocks_check(struct badblocks *bb, sector_t s, int sectors, sector_t *first_bad, int *bad_sectors) { int unacked_badblocks, acked_badblocks; int prev = -1, hint = -1, set = 0; struct badblocks_context bad; unsigned int seq; int len, rv; u64 *p; WARN_ON(bb->shift < 0 || sectors == 0); if (bb->shift > 0) { sector_t target; /* round the start down, and the end up */ target = s + sectors; rounddown(s, bb->shift); roundup(target, bb->shift); sectors = target - s; } retry: seq = read_seqbegin(&bb->lock); p = bb->page; unacked_badblocks = 0; acked_badblocks = 0; re_check: bad.start = s; bad.len = sectors; if (badblocks_empty(bb)) { len = sectors; goto update_sectors; } prev = prev_badblocks(bb, &bad, hint); /* start after all badblocks */ if ((prev >= 0) && ((prev + 1) >= bb->count) && !overlap_front(bb, prev, &bad)) { len = sectors; goto update_sectors; } /* Overlapped with front badblocks record */ if ((prev >= 0) && overlap_front(bb, prev, &bad)) { if (BB_ACK(p[prev])) acked_badblocks++; else unacked_badblocks++; if (BB_END(p[prev]) >= (s + sectors)) len = sectors; else len = BB_END(p[prev]) - s; if (set == 0) { *first_bad = BB_OFFSET(p[prev]); *bad_sectors = BB_LEN(p[prev]); set = 1; } goto update_sectors; } /* Not front overlap, but behind overlap */ if ((prev + 1) < bb->count && overlap_behind(bb, &bad, prev + 1)) { len = BB_OFFSET(p[prev + 1]) - bad.start; hint = prev + 1; goto update_sectors; } /* not cover any badblocks range in the table */ len = sectors; update_sectors: s += len; sectors -= len; if (sectors > 0) goto re_check; WARN_ON(sectors < 0); if (unacked_badblocks > 0) rv = -1; else if (acked_badblocks > 0) rv = 1; else rv = 0; if (read_seqretry(&bb->lock, seq)) goto retry; return rv; } /** * badblocks_check() - check a given range for bad sectors * @bb: the badblocks structure that holds all badblock information * @s: sector (start) at which to check for badblocks * @sectors: number of sectors to check for badblocks * @first_bad: pointer to store location of the first badblock * @bad_sectors: pointer to store number of badblocks after @first_bad * * We can record which blocks on each device are 'bad' and so just * fail those blocks, or that stripe, rather than the whole device. * Entries in the bad-block table are 64bits wide. This comprises: * Length of bad-range, in sectors: 0-511 for lengths 1-512 * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes) * A 'shift' can be set so that larger blocks are tracked and * consequently larger devices can be covered. * 'Acknowledged' flag - 1 bit. - the most significant bit. * * Locking of the bad-block table uses a seqlock so badblocks_check * might need to retry if it is very unlucky. * We will sometimes want to check for bad blocks in a bi_end_io function, * so we use the write_seqlock_irq variant. * * When looking for a bad block we specify a range and want to * know if any block in the range is bad. So we binary-search * to the last range that starts at-or-before the given endpoint, * (or "before the sector after the target range") * then see if it ends after the given start. * * Return: * 0: there are no known bad blocks in the range * 1: there are known bad block which are all acknowledged * -1: there are bad blocks which have not yet been acknowledged in metadata. * plus the start/length of the first bad section we overlap. */ int badblocks_check(struct badblocks *bb, sector_t s, int sectors, sector_t *first_bad, int *bad_sectors) { return _badblocks_check(bb, s, sectors, first_bad, bad_sectors); } EXPORT_SYMBOL_GPL(badblocks_check); /** * badblocks_set() - Add a range of bad blocks to the table. * @bb: the badblocks structure that holds all badblock information * @s: first sector to mark as bad * @sectors: number of sectors to mark as bad * @acknowledged: weather to mark the bad sectors as acknowledged * * This might extend the table, or might contract it if two adjacent ranges * can be merged. We binary-search to find the 'insertion' point, then * decide how best to handle it. * * Return: * 0: success * 1: failed to set badblocks (out of space) */ int badblocks_set(struct badblocks *bb, sector_t s, int sectors, int acknowledged) { return _badblocks_set(bb, s, sectors, acknowledged); } EXPORT_SYMBOL_GPL(badblocks_set); /** * badblocks_clear() - Remove a range of bad blocks to the table. * @bb: the badblocks structure that holds all badblock information * @s: first sector to mark as bad * @sectors: number of sectors to mark as bad * * This may involve extending the table if we spilt a region, * but it must not fail. So if the table becomes full, we just * drop the remove request. * * Return: * 0: success * 1: failed to clear badblocks */ int badblocks_clear(struct badblocks *bb, sector_t s, int sectors) { return _badblocks_clear(bb, s, sectors); } EXPORT_SYMBOL_GPL(badblocks_clear); /** * ack_all_badblocks() - Acknowledge all bad blocks in a list. * @bb: the badblocks structure that holds all badblock information * * This only succeeds if ->changed is clear. It is used by * in-kernel metadata updates */ void ack_all_badblocks(struct badblocks *bb) { if (bb->page == NULL || bb->changed) /* no point even trying */ return; write_seqlock_irq(&bb->lock); if (bb->changed == 0 && bb->unacked_exist) { u64 *p = bb->page; int i; for (i = 0; i < bb->count ; i++) { if (!BB_ACK(p[i])) { sector_t start = BB_OFFSET(p[i]); int len = BB_LEN(p[i]); p[i] = BB_MAKE(start, len, 1); } } bb->unacked_exist = 0; } write_sequnlock_irq(&bb->lock); } EXPORT_SYMBOL_GPL(ack_all_badblocks); /** * badblocks_show() - sysfs access to bad-blocks list * @bb: the badblocks structure that holds all badblock information * @page: buffer received from sysfs * @unack: weather to show unacknowledged badblocks * * Return: * Length of returned data */ ssize_t badblocks_show(struct badblocks *bb, char *page, int unack) { size_t len; int i; u64 *p = bb->page; unsigned seq; if (bb->shift < 0) return 0; retry: seq = read_seqbegin(&bb->lock); len = 0; i = 0; while (len < PAGE_SIZE && i < bb->count) { sector_t s = BB_OFFSET(p[i]); unsigned int length = BB_LEN(p[i]); int ack = BB_ACK(p[i]); i++; if (unack && ack) continue; len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n", (unsigned long long)s << bb->shift, length << bb->shift); } if (unack && len == 0) bb->unacked_exist = 0; if (read_seqretry(&bb->lock, seq)) goto retry; return len; } EXPORT_SYMBOL_GPL(badblocks_show); /** * badblocks_store() - sysfs access to bad-blocks list * @bb: the badblocks structure that holds all badblock information * @page: buffer received from sysfs * @len: length of data received from sysfs * @unack: weather to show unacknowledged badblocks * * Return: * Length of the buffer processed or -ve error. */ ssize_t badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack) { unsigned long long sector; int length; char newline; switch (sscanf(page, "%llu %d%c", §or, &length, &newline)) { case 3: if (newline != '\n') return -EINVAL; fallthrough; case 2: if (length <= 0) return -EINVAL; break; default: return -EINVAL; } if (badblocks_set(bb, sector, length, !unack)) return -ENOSPC; else return len; } EXPORT_SYMBOL_GPL(badblocks_store); static int __badblocks_init(struct device *dev, struct badblocks *bb, int enable) { bb->dev = dev; bb->count = 0; if (enable) bb->shift = 0; else bb->shift = -1; if (dev) bb->page = devm_kzalloc(dev, PAGE_SIZE, GFP_KERNEL); else bb->page = kzalloc(PAGE_SIZE, GFP_KERNEL); if (!bb->page) { bb->shift = -1; return -ENOMEM; } seqlock_init(&bb->lock); return 0; } /** * badblocks_init() - initialize the badblocks structure * @bb: the badblocks structure that holds all badblock information * @enable: weather to enable badblocks accounting * * Return: * 0: success * -ve errno: on error */ int badblocks_init(struct badblocks *bb, int enable) { return __badblocks_init(NULL, bb, enable); } EXPORT_SYMBOL_GPL(badblocks_init); int devm_init_badblocks(struct device *dev, struct badblocks *bb) { if (!bb) return -EINVAL; return __badblocks_init(dev, bb, 1); } EXPORT_SYMBOL_GPL(devm_init_badblocks); /** * badblocks_exit() - free the badblocks structure * @bb: the badblocks structure that holds all badblock information */ void badblocks_exit(struct badblocks *bb) { if (!bb) return; if (bb->dev) devm_kfree(bb->dev, bb->page); else kfree(bb->page); bb->page = NULL; } EXPORT_SYMBOL_GPL(badblocks_exit); |