Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 | // SPDX-License-Identifier: GPL-2.0 /* * fake_mem.c * * Copyright (C) 2015 FUJITSU LIMITED * Author: Taku Izumi <izumi.taku@jp.fujitsu.com> * * This code introduces new boot option named "efi_fake_mem" * By specifying this parameter, you can add arbitrary attribute to * specific memory range by updating original (firmware provided) EFI * memmap. */ #include <linux/kernel.h> #include <linux/efi.h> #include <linux/init.h> #include <linux/memblock.h> #include <linux/types.h> #include <linux/sort.h> #include <asm/e820/api.h> #include <asm/efi.h> #define EFI_MAX_FAKEMEM CONFIG_EFI_MAX_FAKE_MEM static struct efi_mem_range efi_fake_mems[EFI_MAX_FAKEMEM]; static int nr_fake_mem; static int __init cmp_fake_mem(const void *x1, const void *x2) { const struct efi_mem_range *m1 = x1; const struct efi_mem_range *m2 = x2; if (m1->range.start < m2->range.start) return -1; if (m1->range.start > m2->range.start) return 1; return 0; } static void __init efi_fake_range(struct efi_mem_range *efi_range) { struct efi_memory_map_data data = { 0 }; int new_nr_map = efi.memmap.nr_map; efi_memory_desc_t *md; void *new_memmap; /* count up the number of EFI memory descriptor */ for_each_efi_memory_desc(md) new_nr_map += efi_memmap_split_count(md, &efi_range->range); /* allocate memory for new EFI memmap */ if (efi_memmap_alloc(new_nr_map, &data) != 0) return; /* create new EFI memmap */ new_memmap = early_memremap(data.phys_map, data.size); if (!new_memmap) { __efi_memmap_free(data.phys_map, data.size, data.flags); return; } efi_memmap_insert(&efi.memmap, new_memmap, efi_range); /* swap into new EFI memmap */ early_memunmap(new_memmap, data.size); efi_memmap_install(&data); } void __init efi_fake_memmap(void) { int i; if (!efi_enabled(EFI_MEMMAP) || !nr_fake_mem) return; for (i = 0; i < nr_fake_mem; i++) efi_fake_range(&efi_fake_mems[i]); /* print new EFI memmap */ efi_print_memmap(); } static int __init setup_fake_mem(char *p) { u64 start = 0, mem_size = 0, attribute = 0; int i; if (!p) return -EINVAL; while (*p != '\0') { mem_size = memparse(p, &p); if (*p == '@') start = memparse(p+1, &p); else break; if (*p == ':') attribute = simple_strtoull(p+1, &p, 0); else break; if (nr_fake_mem >= EFI_MAX_FAKEMEM) break; efi_fake_mems[nr_fake_mem].range.start = start; efi_fake_mems[nr_fake_mem].range.end = start + mem_size - 1; efi_fake_mems[nr_fake_mem].attribute = attribute; nr_fake_mem++; if (*p == ',') p++; } sort(efi_fake_mems, nr_fake_mem, sizeof(struct efi_mem_range), cmp_fake_mem, NULL); for (i = 0; i < nr_fake_mem; i++) pr_info("efi_fake_mem: add attr=0x%016llx to [mem 0x%016llx-0x%016llx]", efi_fake_mems[i].attribute, efi_fake_mems[i].range.start, efi_fake_mems[i].range.end); return *p == '\0' ? 0 : -EINVAL; } early_param("efi_fake_mem", setup_fake_mem); void __init efi_fake_memmap_early(void) { int i; /* * The late efi_fake_mem() call can handle all requests if * EFI_MEMORY_SP support is disabled. */ if (!efi_soft_reserve_enabled()) return; if (!efi_enabled(EFI_MEMMAP) || !nr_fake_mem) return; /* * Given that efi_fake_memmap() needs to perform memblock * allocations it needs to run after e820__memblock_setup(). * However, if efi_fake_mem specifies EFI_MEMORY_SP for a given * address range that potentially needs to mark the memory as * reserved prior to e820__memblock_setup(). Update e820 * directly if EFI_MEMORY_SP is specified for an * EFI_CONVENTIONAL_MEMORY descriptor. */ for (i = 0; i < nr_fake_mem; i++) { struct efi_mem_range *mem = &efi_fake_mems[i]; efi_memory_desc_t *md; u64 m_start, m_end; if ((mem->attribute & EFI_MEMORY_SP) == 0) continue; m_start = mem->range.start; m_end = mem->range.end; for_each_efi_memory_desc(md) { u64 start, end, size; if (md->type != EFI_CONVENTIONAL_MEMORY) continue; start = md->phys_addr; end = md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT) - 1; if (m_start <= end && m_end >= start) /* fake range overlaps descriptor */; else continue; /* * Trim the boundary of the e820 update to the * descriptor in case the fake range overlaps * !EFI_CONVENTIONAL_MEMORY */ start = max(start, m_start); end = min(end, m_end); size = end - start + 1; if (end <= start) continue; /* * Ensure each efi_fake_mem instance results in * a unique e820 resource */ e820__range_remove(start, size, E820_TYPE_RAM, 1); e820__range_add(start, size, E820_TYPE_SOFT_RESERVED); e820__update_table(e820_table); } } } |