Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 | /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_UACCESS_64_H #define _ASM_X86_UACCESS_64_H /* * User space memory access functions */ #include <linux/compiler.h> #include <linux/lockdep.h> #include <linux/kasan-checks.h> #include <asm/alternative.h> #include <asm/cpufeatures.h> #include <asm/page.h> #include <asm/percpu.h> #ifdef CONFIG_ADDRESS_MASKING /* * Mask out tag bits from the address. */ static inline unsigned long __untagged_addr(unsigned long addr) { asm (ALTERNATIVE("", "and " __percpu_arg([mask]) ", %[addr]", X86_FEATURE_LAM) : [addr] "+r" (addr) : [mask] "m" (__my_cpu_var(tlbstate_untag_mask))); return addr; } #define untagged_addr(addr) ({ \ unsigned long __addr = (__force unsigned long)(addr); \ (__force __typeof__(addr))__untagged_addr(__addr); \ }) static inline unsigned long __untagged_addr_remote(struct mm_struct *mm, unsigned long addr) { mmap_assert_locked(mm); return addr & (mm)->context.untag_mask; } #define untagged_addr_remote(mm, addr) ({ \ unsigned long __addr = (__force unsigned long)(addr); \ (__force __typeof__(addr))__untagged_addr_remote(mm, __addr); \ }) #endif /* * The virtual address space space is logically divided into a kernel * half and a user half. When cast to a signed type, user pointers * are positive and kernel pointers are negative. */ #define valid_user_address(x) ((__force long)(x) >= 0) /* * User pointers can have tag bits on x86-64. This scheme tolerates * arbitrary values in those bits rather then masking them off. * * Enforce two rules: * 1. 'ptr' must be in the user half of the address space * 2. 'ptr+size' must not overflow into kernel addresses * * Note that addresses around the sign change are not valid addresses, * and will GP-fault even with LAM enabled if the sign bit is set (see * "CR3.LAM_SUP" that can narrow the canonicality check if we ever * enable it, but not remove it entirely). * * So the "overflow into kernel addresses" does not imply some sudden * exact boundary at the sign bit, and we can allow a lot of slop on the * size check. * * In fact, we could probably remove the size check entirely, since * any kernel accesses will be in increasing address order starting * at 'ptr', and even if the end might be in kernel space, we'll * hit the GP faults for non-canonical accesses before we ever get * there. * * That's a separate optimization, for now just handle the small * constant case. */ static inline bool __access_ok(const void __user *ptr, unsigned long size) { if (__builtin_constant_p(size <= PAGE_SIZE) && size <= PAGE_SIZE) { return valid_user_address(ptr); } else { unsigned long sum = size + (__force unsigned long)ptr; return valid_user_address(sum) && sum >= (__force unsigned long)ptr; } } #define __access_ok __access_ok /* * Copy To/From Userspace */ /* Handles exceptions in both to and from, but doesn't do access_ok */ __must_check unsigned long rep_movs_alternative(void *to, const void *from, unsigned len); static __always_inline __must_check unsigned long copy_user_generic(void *to, const void *from, unsigned long len) { stac(); /* * If CPU has FSRM feature, use 'rep movs'. * Otherwise, use rep_movs_alternative. */ asm volatile( "1:\n\t" ALTERNATIVE("rep movsb", "call rep_movs_alternative", ALT_NOT(X86_FEATURE_FSRM)) "2:\n" _ASM_EXTABLE_UA(1b, 2b) :"+c" (len), "+D" (to), "+S" (from), ASM_CALL_CONSTRAINT : : "memory", "rax"); clac(); return len; } static __always_inline __must_check unsigned long raw_copy_from_user(void *dst, const void __user *src, unsigned long size) { return copy_user_generic(dst, (__force void *)src, size); } static __always_inline __must_check unsigned long raw_copy_to_user(void __user *dst, const void *src, unsigned long size) { return copy_user_generic((__force void *)dst, src, size); } extern long __copy_user_nocache(void *dst, const void __user *src, unsigned size); extern long __copy_user_flushcache(void *dst, const void __user *src, unsigned size); static inline int __copy_from_user_inatomic_nocache(void *dst, const void __user *src, unsigned size) { long ret; kasan_check_write(dst, size); stac(); ret = __copy_user_nocache(dst, src, size); clac(); return ret; } static inline int __copy_from_user_flushcache(void *dst, const void __user *src, unsigned size) { kasan_check_write(dst, size); return __copy_user_flushcache(dst, src, size); } /* * Zero Userspace. */ __must_check unsigned long rep_stos_alternative(void __user *addr, unsigned long len); static __always_inline __must_check unsigned long __clear_user(void __user *addr, unsigned long size) { might_fault(); stac(); /* * No memory constraint because it doesn't change any memory gcc * knows about. */ asm volatile( "1:\n\t" ALTERNATIVE("rep stosb", "call rep_stos_alternative", ALT_NOT(X86_FEATURE_FSRS)) "2:\n" _ASM_EXTABLE_UA(1b, 2b) : "+c" (size), "+D" (addr), ASM_CALL_CONSTRAINT : "a" (0)); clac(); return size; } static __always_inline unsigned long clear_user(void __user *to, unsigned long n) { if (__access_ok(to, n)) return __clear_user(to, n); return n; } #endif /* _ASM_X86_UACCESS_64_H */ |