Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 | // SPDX-License-Identifier: GPL-2.0-only /* * Using hardware provided CRC32 instruction to accelerate the CRC32 disposal. * CRC32C polynomial:0x1EDC6F41(BE)/0x82F63B78(LE) * CRC32 is a new instruction in Intel SSE4.2, the reference can be found at: * http://www.intel.com/products/processor/manuals/ * Intel(R) 64 and IA-32 Architectures Software Developer's Manual * Volume 2A: Instruction Set Reference, A-M * * Copyright (C) 2008 Intel Corporation * Authors: Austin Zhang <austin_zhang@linux.intel.com> * Kent Liu <kent.liu@intel.com> */ #include <linux/init.h> #include <linux/module.h> #include <linux/string.h> #include <linux/kernel.h> #include <crypto/internal/hash.h> #include <crypto/internal/simd.h> #include <asm/cpufeatures.h> #include <asm/cpu_device_id.h> #include <asm/simd.h> #define CHKSUM_BLOCK_SIZE 1 #define CHKSUM_DIGEST_SIZE 4 #define SCALE_F sizeof(unsigned long) #ifdef CONFIG_X86_64 #define CRC32_INST "crc32q %1, %q0" #else #define CRC32_INST "crc32l %1, %0" #endif #ifdef CONFIG_X86_64 /* * use carryless multiply version of crc32c when buffer * size is >= 512 to account * for fpu state save/restore overhead. */ #define CRC32C_PCL_BREAKEVEN 512 asmlinkage unsigned int crc_pcl(const u8 *buffer, int len, unsigned int crc_init); #endif /* CONFIG_X86_64 */ static u32 crc32c_intel_le_hw_byte(u32 crc, unsigned char const *data, size_t length) { while (length--) { asm("crc32b %1, %0" : "+r" (crc) : "rm" (*data)); data++; } return crc; } static u32 __pure crc32c_intel_le_hw(u32 crc, unsigned char const *p, size_t len) { unsigned int iquotient = len / SCALE_F; unsigned int iremainder = len % SCALE_F; unsigned long *ptmp = (unsigned long *)p; while (iquotient--) { asm(CRC32_INST : "+r" (crc) : "rm" (*ptmp)); ptmp++; } if (iremainder) crc = crc32c_intel_le_hw_byte(crc, (unsigned char *)ptmp, iremainder); return crc; } /* * Setting the seed allows arbitrary accumulators and flexible XOR policy * If your algorithm starts with ~0, then XOR with ~0 before you set * the seed. */ static int crc32c_intel_setkey(struct crypto_shash *hash, const u8 *key, unsigned int keylen) { u32 *mctx = crypto_shash_ctx(hash); if (keylen != sizeof(u32)) return -EINVAL; *mctx = le32_to_cpup((__le32 *)key); return 0; } static int crc32c_intel_init(struct shash_desc *desc) { u32 *mctx = crypto_shash_ctx(desc->tfm); u32 *crcp = shash_desc_ctx(desc); *crcp = *mctx; return 0; } static int crc32c_intel_update(struct shash_desc *desc, const u8 *data, unsigned int len) { u32 *crcp = shash_desc_ctx(desc); *crcp = crc32c_intel_le_hw(*crcp, data, len); return 0; } static int __crc32c_intel_finup(u32 *crcp, const u8 *data, unsigned int len, u8 *out) { *(__le32 *)out = ~cpu_to_le32(crc32c_intel_le_hw(*crcp, data, len)); return 0; } static int crc32c_intel_finup(struct shash_desc *desc, const u8 *data, unsigned int len, u8 *out) { return __crc32c_intel_finup(shash_desc_ctx(desc), data, len, out); } static int crc32c_intel_final(struct shash_desc *desc, u8 *out) { u32 *crcp = shash_desc_ctx(desc); *(__le32 *)out = ~cpu_to_le32p(crcp); return 0; } static int crc32c_intel_digest(struct shash_desc *desc, const u8 *data, unsigned int len, u8 *out) { return __crc32c_intel_finup(crypto_shash_ctx(desc->tfm), data, len, out); } static int crc32c_intel_cra_init(struct crypto_tfm *tfm) { u32 *key = crypto_tfm_ctx(tfm); *key = ~0; return 0; } #ifdef CONFIG_X86_64 static int crc32c_pcl_intel_update(struct shash_desc *desc, const u8 *data, unsigned int len) { u32 *crcp = shash_desc_ctx(desc); /* * use faster PCL version if datasize is large enough to * overcome kernel fpu state save/restore overhead */ if (len >= CRC32C_PCL_BREAKEVEN && crypto_simd_usable()) { kernel_fpu_begin(); *crcp = crc_pcl(data, len, *crcp); kernel_fpu_end(); } else *crcp = crc32c_intel_le_hw(*crcp, data, len); return 0; } static int __crc32c_pcl_intel_finup(u32 *crcp, const u8 *data, unsigned int len, u8 *out) { if (len >= CRC32C_PCL_BREAKEVEN && crypto_simd_usable()) { kernel_fpu_begin(); *(__le32 *)out = ~cpu_to_le32(crc_pcl(data, len, *crcp)); kernel_fpu_end(); } else *(__le32 *)out = ~cpu_to_le32(crc32c_intel_le_hw(*crcp, data, len)); return 0; } static int crc32c_pcl_intel_finup(struct shash_desc *desc, const u8 *data, unsigned int len, u8 *out) { return __crc32c_pcl_intel_finup(shash_desc_ctx(desc), data, len, out); } static int crc32c_pcl_intel_digest(struct shash_desc *desc, const u8 *data, unsigned int len, u8 *out) { return __crc32c_pcl_intel_finup(crypto_shash_ctx(desc->tfm), data, len, out); } #endif /* CONFIG_X86_64 */ static struct shash_alg alg = { .setkey = crc32c_intel_setkey, .init = crc32c_intel_init, .update = crc32c_intel_update, .final = crc32c_intel_final, .finup = crc32c_intel_finup, .digest = crc32c_intel_digest, .descsize = sizeof(u32), .digestsize = CHKSUM_DIGEST_SIZE, .base = { .cra_name = "crc32c", .cra_driver_name = "crc32c-intel", .cra_priority = 200, .cra_flags = CRYPTO_ALG_OPTIONAL_KEY, .cra_blocksize = CHKSUM_BLOCK_SIZE, .cra_ctxsize = sizeof(u32), .cra_module = THIS_MODULE, .cra_init = crc32c_intel_cra_init, } }; static const struct x86_cpu_id crc32c_cpu_id[] = { X86_MATCH_FEATURE(X86_FEATURE_XMM4_2, NULL), {} }; MODULE_DEVICE_TABLE(x86cpu, crc32c_cpu_id); static int __init crc32c_intel_mod_init(void) { if (!x86_match_cpu(crc32c_cpu_id)) return -ENODEV; #ifdef CONFIG_X86_64 if (boot_cpu_has(X86_FEATURE_PCLMULQDQ)) { alg.update = crc32c_pcl_intel_update; alg.finup = crc32c_pcl_intel_finup; alg.digest = crc32c_pcl_intel_digest; } #endif return crypto_register_shash(&alg); } static void __exit crc32c_intel_mod_fini(void) { crypto_unregister_shash(&alg); } module_init(crc32c_intel_mod_init); module_exit(crc32c_intel_mod_fini); MODULE_AUTHOR("Austin Zhang <austin.zhang@intel.com>, Kent Liu <kent.liu@intel.com>"); MODULE_DESCRIPTION("CRC32c (Castagnoli) optimization using Intel Hardware."); MODULE_LICENSE("GPL"); MODULE_ALIAS_CRYPTO("crc32c"); MODULE_ALIAS_CRYPTO("crc32c-intel"); |