Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 | // SPDX-License-Identifier: GPL-2.0-or-later /* * The file intends to implement the platform dependent EEH operations on pseries. * Actually, the pseries platform is built based on RTAS heavily. That means the * pseries platform dependent EEH operations will be built on RTAS calls. The functions * are derived from arch/powerpc/platforms/pseries/eeh.c and necessary cleanup has * been done. * * Copyright Benjamin Herrenschmidt & Gavin Shan, IBM Corporation 2011. * Copyright IBM Corporation 2001, 2005, 2006 * Copyright Dave Engebretsen & Todd Inglett 2001 * Copyright Linas Vepstas 2005, 2006 */ #include <linux/atomic.h> #include <linux/delay.h> #include <linux/export.h> #include <linux/init.h> #include <linux/list.h> #include <linux/of.h> #include <linux/pci.h> #include <linux/proc_fs.h> #include <linux/rbtree.h> #include <linux/sched.h> #include <linux/seq_file.h> #include <linux/spinlock.h> #include <linux/crash_dump.h> #include <asm/eeh.h> #include <asm/eeh_event.h> #include <asm/io.h> #include <asm/machdep.h> #include <asm/ppc-pci.h> #include <asm/rtas.h> /* RTAS tokens */ static int ibm_set_eeh_option; static int ibm_set_slot_reset; static int ibm_read_slot_reset_state; static int ibm_read_slot_reset_state2; static int ibm_slot_error_detail; static int ibm_get_config_addr_info; static int ibm_get_config_addr_info2; static int ibm_configure_pe; static void pseries_eeh_init_edev(struct pci_dn *pdn); static void pseries_pcibios_bus_add_device(struct pci_dev *pdev) { struct pci_dn *pdn = pci_get_pdn(pdev); if (eeh_has_flag(EEH_FORCE_DISABLED)) return; dev_dbg(&pdev->dev, "EEH: Setting up device\n"); #ifdef CONFIG_PCI_IOV if (pdev->is_virtfn) { pdn->device_id = pdev->device; pdn->vendor_id = pdev->vendor; pdn->class_code = pdev->class; /* * Last allow unfreeze return code used for retrieval * by user space in eeh-sysfs to show the last command * completion from platform. */ pdn->last_allow_rc = 0; } #endif pseries_eeh_init_edev(pdn); #ifdef CONFIG_PCI_IOV if (pdev->is_virtfn) { /* * FIXME: This really should be handled by choosing the right * parent PE in pseries_eeh_init_edev(). */ struct eeh_pe *physfn_pe = pci_dev_to_eeh_dev(pdev->physfn)->pe; struct eeh_dev *edev = pdn_to_eeh_dev(pdn); edev->pe_config_addr = (pdn->busno << 16) | (pdn->devfn << 8); eeh_pe_tree_remove(edev); /* Remove as it is adding to bus pe */ eeh_pe_tree_insert(edev, physfn_pe); /* Add as VF PE type */ } #endif eeh_probe_device(pdev); } /** * pseries_eeh_get_pe_config_addr - Find the pe_config_addr for a device * @pdn: pci_dn of the input device * * The EEH RTAS calls use a tuple consisting of: (buid_hi, buid_lo, * pe_config_addr) as a handle to a given PE. This function finds the * pe_config_addr based on the device's config addr. * * Keep in mind that the pe_config_addr *might* be numerically identical to the * device's config addr, but the two are conceptually distinct. * * Returns the pe_config_addr, or a negative error code. */ static int pseries_eeh_get_pe_config_addr(struct pci_dn *pdn) { int config_addr = rtas_config_addr(pdn->busno, pdn->devfn, 0); struct pci_controller *phb = pdn->phb; int ret, rets[3]; if (ibm_get_config_addr_info2 != RTAS_UNKNOWN_SERVICE) { /* * First of all, use function 1 to determine if this device is * part of a PE or not. ret[0] being zero indicates it's not. */ ret = rtas_call(ibm_get_config_addr_info2, 4, 2, rets, config_addr, BUID_HI(phb->buid), BUID_LO(phb->buid), 1); if (ret || (rets[0] == 0)) return -ENOENT; /* Retrieve the associated PE config address with function 0 */ ret = rtas_call(ibm_get_config_addr_info2, 4, 2, rets, config_addr, BUID_HI(phb->buid), BUID_LO(phb->buid), 0); if (ret) { pr_warn("%s: Failed to get address for PHB#%x-PE#%x\n", __func__, phb->global_number, config_addr); return -ENXIO; } return rets[0]; } if (ibm_get_config_addr_info != RTAS_UNKNOWN_SERVICE) { ret = rtas_call(ibm_get_config_addr_info, 4, 2, rets, config_addr, BUID_HI(phb->buid), BUID_LO(phb->buid), 0); if (ret) { pr_warn("%s: Failed to get address for PHB#%x-PE#%x\n", __func__, phb->global_number, config_addr); return -ENXIO; } return rets[0]; } /* * PAPR does describe a process for finding the pe_config_addr that was * used before the ibm,get-config-addr-info calls were added. However, * I haven't found *any* systems that don't have that RTAS call * implemented. If you happen to find one that needs the old DT based * process, patches are welcome! */ return -ENOENT; } /** * pseries_eeh_phb_reset - Reset the specified PHB * @phb: PCI controller * @config_addr: the associated config address * @option: reset option * * Reset the specified PHB/PE */ static int pseries_eeh_phb_reset(struct pci_controller *phb, int config_addr, int option) { int ret; /* Reset PE through RTAS call */ ret = rtas_call(ibm_set_slot_reset, 4, 1, NULL, config_addr, BUID_HI(phb->buid), BUID_LO(phb->buid), option); /* If fundamental-reset not supported, try hot-reset */ if (option == EEH_RESET_FUNDAMENTAL && ret == -8) { option = EEH_RESET_HOT; ret = rtas_call(ibm_set_slot_reset, 4, 1, NULL, config_addr, BUID_HI(phb->buid), BUID_LO(phb->buid), option); } /* We need reset hold or settlement delay */ if (option == EEH_RESET_FUNDAMENTAL || option == EEH_RESET_HOT) msleep(EEH_PE_RST_HOLD_TIME); else msleep(EEH_PE_RST_SETTLE_TIME); return ret; } /** * pseries_eeh_phb_configure_bridge - Configure PCI bridges in the indicated PE * @phb: PCI controller * @config_addr: the associated config address * * The function will be called to reconfigure the bridges included * in the specified PE so that the mulfunctional PE would be recovered * again. */ static int pseries_eeh_phb_configure_bridge(struct pci_controller *phb, int config_addr) { int ret; /* Waiting 0.2s maximum before skipping configuration */ int max_wait = 200; while (max_wait > 0) { ret = rtas_call(ibm_configure_pe, 3, 1, NULL, config_addr, BUID_HI(phb->buid), BUID_LO(phb->buid)); if (!ret) return ret; if (ret < 0) break; /* * If RTAS returns a delay value that's above 100ms, cut it * down to 100ms in case firmware made a mistake. For more * on how these delay values work see rtas_busy_delay_time */ if (ret > RTAS_EXTENDED_DELAY_MIN+2 && ret <= RTAS_EXTENDED_DELAY_MAX) ret = RTAS_EXTENDED_DELAY_MIN+2; max_wait -= rtas_busy_delay_time(ret); if (max_wait < 0) break; rtas_busy_delay(ret); } pr_warn("%s: Unable to configure bridge PHB#%x-PE#%x (%d)\n", __func__, phb->global_number, config_addr, ret); /* PAPR defines -3 as "Parameter Error" for this function: */ if (ret == -3) return -EINVAL; else return -EIO; } /* * Buffer for reporting slot-error-detail rtas calls. Its here * in BSS, and not dynamically alloced, so that it ends up in * RMO where RTAS can access it. */ static unsigned char slot_errbuf[RTAS_ERROR_LOG_MAX]; static DEFINE_SPINLOCK(slot_errbuf_lock); static int eeh_error_buf_size; static int pseries_eeh_cap_start(struct pci_dn *pdn) { u32 status; if (!pdn) return 0; rtas_pci_dn_read_config(pdn, PCI_STATUS, 2, &status); if (!(status & PCI_STATUS_CAP_LIST)) return 0; return PCI_CAPABILITY_LIST; } static int pseries_eeh_find_cap(struct pci_dn *pdn, int cap) { int pos = pseries_eeh_cap_start(pdn); int cnt = 48; /* Maximal number of capabilities */ u32 id; if (!pos) return 0; while (cnt--) { rtas_pci_dn_read_config(pdn, pos, 1, &pos); if (pos < 0x40) break; pos &= ~3; rtas_pci_dn_read_config(pdn, pos + PCI_CAP_LIST_ID, 1, &id); if (id == 0xff) break; if (id == cap) return pos; pos += PCI_CAP_LIST_NEXT; } return 0; } static int pseries_eeh_find_ecap(struct pci_dn *pdn, int cap) { struct eeh_dev *edev = pdn_to_eeh_dev(pdn); u32 header; int pos = 256; int ttl = (4096 - 256) / 8; if (!edev || !edev->pcie_cap) return 0; if (rtas_pci_dn_read_config(pdn, pos, 4, &header) != PCIBIOS_SUCCESSFUL) return 0; else if (!header) return 0; while (ttl-- > 0) { if (PCI_EXT_CAP_ID(header) == cap && pos) return pos; pos = PCI_EXT_CAP_NEXT(header); if (pos < 256) break; if (rtas_pci_dn_read_config(pdn, pos, 4, &header) != PCIBIOS_SUCCESSFUL) break; } return 0; } /** * pseries_eeh_pe_get_parent - Retrieve the parent PE * @edev: EEH device * * The whole PEs existing in the system are organized as hierarchy * tree. The function is used to retrieve the parent PE according * to the parent EEH device. */ static struct eeh_pe *pseries_eeh_pe_get_parent(struct eeh_dev *edev) { struct eeh_dev *parent; struct pci_dn *pdn = eeh_dev_to_pdn(edev); /* * It might have the case for the indirect parent * EEH device already having associated PE, but * the direct parent EEH device doesn't have yet. */ if (edev->physfn) pdn = pci_get_pdn(edev->physfn); else pdn = pdn ? pdn->parent : NULL; while (pdn) { /* We're poking out of PCI territory */ parent = pdn_to_eeh_dev(pdn); if (!parent) return NULL; if (parent->pe) return parent->pe; pdn = pdn->parent; } return NULL; } /** * pseries_eeh_init_edev - initialise the eeh_dev and eeh_pe for a pci_dn * * @pdn: PCI device node * * When we discover a new PCI device via the device-tree we create a * corresponding pci_dn and we allocate, but don't initialise, an eeh_dev. * This function takes care of the initialisation and inserts the eeh_dev * into the correct eeh_pe. If no eeh_pe exists we'll allocate one. */ static void pseries_eeh_init_edev(struct pci_dn *pdn) { struct eeh_pe pe, *parent; struct eeh_dev *edev; u32 pcie_flags; int ret; if (WARN_ON_ONCE(!eeh_has_flag(EEH_PROBE_MODE_DEVTREE))) return; /* * Find the eeh_dev for this pdn. The storage for the eeh_dev was * allocated at the same time as the pci_dn. * * XXX: We should probably re-visit that. */ edev = pdn_to_eeh_dev(pdn); if (!edev) return; /* * If ->pe is set then we've already probed this device. We hit * this path when a pci_dev is removed and rescanned while recovering * a PE (i.e. for devices where the driver doesn't support error * recovery). */ if (edev->pe) return; /* Check class/vendor/device IDs */ if (!pdn->vendor_id || !pdn->device_id || !pdn->class_code) return; /* Skip for PCI-ISA bridge */ if ((pdn->class_code >> 8) == PCI_CLASS_BRIDGE_ISA) return; eeh_edev_dbg(edev, "Probing device\n"); /* * Update class code and mode of eeh device. We need * correctly reflects that current device is root port * or PCIe switch downstream port. */ edev->pcix_cap = pseries_eeh_find_cap(pdn, PCI_CAP_ID_PCIX); edev->pcie_cap = pseries_eeh_find_cap(pdn, PCI_CAP_ID_EXP); edev->aer_cap = pseries_eeh_find_ecap(pdn, PCI_EXT_CAP_ID_ERR); edev->mode &= 0xFFFFFF00; if ((pdn->class_code >> 8) == PCI_CLASS_BRIDGE_PCI) { edev->mode |= EEH_DEV_BRIDGE; if (edev->pcie_cap) { rtas_pci_dn_read_config(pdn, edev->pcie_cap + PCI_EXP_FLAGS, 2, &pcie_flags); pcie_flags = (pcie_flags & PCI_EXP_FLAGS_TYPE) >> 4; if (pcie_flags == PCI_EXP_TYPE_ROOT_PORT) edev->mode |= EEH_DEV_ROOT_PORT; else if (pcie_flags == PCI_EXP_TYPE_DOWNSTREAM) edev->mode |= EEH_DEV_DS_PORT; } } /* first up, find the pe_config_addr for the PE containing the device */ ret = pseries_eeh_get_pe_config_addr(pdn); if (ret < 0) { eeh_edev_dbg(edev, "Unable to find pe_config_addr\n"); goto err; } /* Try enable EEH on the fake PE */ memset(&pe, 0, sizeof(struct eeh_pe)); pe.phb = pdn->phb; pe.addr = ret; eeh_edev_dbg(edev, "Enabling EEH on device\n"); ret = eeh_ops->set_option(&pe, EEH_OPT_ENABLE); if (ret) { eeh_edev_dbg(edev, "EEH failed to enable on device (code %d)\n", ret); goto err; } edev->pe_config_addr = pe.addr; eeh_add_flag(EEH_ENABLED); parent = pseries_eeh_pe_get_parent(edev); eeh_pe_tree_insert(edev, parent); eeh_save_bars(edev); eeh_edev_dbg(edev, "EEH enabled for device"); return; err: eeh_edev_dbg(edev, "EEH is unsupported on device (code = %d)\n", ret); } static struct eeh_dev *pseries_eeh_probe(struct pci_dev *pdev) { struct eeh_dev *edev; struct pci_dn *pdn; pdn = pci_get_pdn_by_devfn(pdev->bus, pdev->devfn); if (!pdn) return NULL; /* * If the system supports EEH on this device then the eeh_dev was * configured and inserted into a PE in pseries_eeh_init_edev() */ edev = pdn_to_eeh_dev(pdn); if (!edev || !edev->pe) return NULL; return edev; } /** * pseries_eeh_init_edev_recursive - Enable EEH for the indicated device * @pdn: PCI device node * * This routine must be used to perform EEH initialization for the * indicated PCI device that was added after system boot (e.g. * hotplug, dlpar). */ void pseries_eeh_init_edev_recursive(struct pci_dn *pdn) { struct pci_dn *n; if (!pdn) return; list_for_each_entry(n, &pdn->child_list, list) pseries_eeh_init_edev_recursive(n); pseries_eeh_init_edev(pdn); } EXPORT_SYMBOL_GPL(pseries_eeh_init_edev_recursive); /** * pseries_eeh_set_option - Initialize EEH or MMIO/DMA reenable * @pe: EEH PE * @option: operation to be issued * * The function is used to control the EEH functionality globally. * Currently, following options are support according to PAPR: * Enable EEH, Disable EEH, Enable MMIO and Enable DMA */ static int pseries_eeh_set_option(struct eeh_pe *pe, int option) { int ret = 0; /* * When we're enabling or disabling EEH functionality on * the particular PE, the PE config address is possibly * unavailable. Therefore, we have to figure it out from * the FDT node. */ switch (option) { case EEH_OPT_DISABLE: case EEH_OPT_ENABLE: case EEH_OPT_THAW_MMIO: case EEH_OPT_THAW_DMA: break; case EEH_OPT_FREEZE_PE: /* Not support */ return 0; default: pr_err("%s: Invalid option %d\n", __func__, option); return -EINVAL; } ret = rtas_call(ibm_set_eeh_option, 4, 1, NULL, pe->addr, BUID_HI(pe->phb->buid), BUID_LO(pe->phb->buid), option); return ret; } /** * pseries_eeh_get_state - Retrieve PE state * @pe: EEH PE * @delay: suggested time to wait if state is unavailable * * Retrieve the state of the specified PE. On RTAS compliant * pseries platform, there already has one dedicated RTAS function * for the purpose. It's notable that the associated PE config address * might be ready when calling the function. Therefore, endeavour to * use the PE config address if possible. Further more, there're 2 * RTAS calls for the purpose, we need to try the new one and back * to the old one if the new one couldn't work properly. */ static int pseries_eeh_get_state(struct eeh_pe *pe, int *delay) { int ret; int rets[4]; int result; if (ibm_read_slot_reset_state2 != RTAS_UNKNOWN_SERVICE) { ret = rtas_call(ibm_read_slot_reset_state2, 3, 4, rets, pe->addr, BUID_HI(pe->phb->buid), BUID_LO(pe->phb->buid)); } else if (ibm_read_slot_reset_state != RTAS_UNKNOWN_SERVICE) { /* Fake PE unavailable info */ rets[2] = 0; ret = rtas_call(ibm_read_slot_reset_state, 3, 3, rets, pe->addr, BUID_HI(pe->phb->buid), BUID_LO(pe->phb->buid)); } else { return EEH_STATE_NOT_SUPPORT; } if (ret) return ret; /* Parse the result out */ if (!rets[1]) return EEH_STATE_NOT_SUPPORT; switch(rets[0]) { case 0: result = EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE; break; case 1: result = EEH_STATE_RESET_ACTIVE | EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE; break; case 2: result = 0; break; case 4: result = EEH_STATE_MMIO_ENABLED; break; case 5: if (rets[2]) { if (delay) *delay = rets[2]; result = EEH_STATE_UNAVAILABLE; } else { result = EEH_STATE_NOT_SUPPORT; } break; default: result = EEH_STATE_NOT_SUPPORT; } return result; } /** * pseries_eeh_reset - Reset the specified PE * @pe: EEH PE * @option: reset option * * Reset the specified PE */ static int pseries_eeh_reset(struct eeh_pe *pe, int option) { return pseries_eeh_phb_reset(pe->phb, pe->addr, option); } /** * pseries_eeh_get_log - Retrieve error log * @pe: EEH PE * @severity: temporary or permanent error log * @drv_log: driver log to be combined with retrieved error log * @len: length of driver log * * Retrieve the temporary or permanent error from the PE. * Actually, the error will be retrieved through the dedicated * RTAS call. */ static int pseries_eeh_get_log(struct eeh_pe *pe, int severity, char *drv_log, unsigned long len) { unsigned long flags; int ret; spin_lock_irqsave(&slot_errbuf_lock, flags); memset(slot_errbuf, 0, eeh_error_buf_size); ret = rtas_call(ibm_slot_error_detail, 8, 1, NULL, pe->addr, BUID_HI(pe->phb->buid), BUID_LO(pe->phb->buid), virt_to_phys(drv_log), len, virt_to_phys(slot_errbuf), eeh_error_buf_size, severity); if (!ret) log_error(slot_errbuf, ERR_TYPE_RTAS_LOG, 0); spin_unlock_irqrestore(&slot_errbuf_lock, flags); return ret; } /** * pseries_eeh_configure_bridge - Configure PCI bridges in the indicated PE * @pe: EEH PE * */ static int pseries_eeh_configure_bridge(struct eeh_pe *pe) { return pseries_eeh_phb_configure_bridge(pe->phb, pe->addr); } /** * pseries_eeh_read_config - Read PCI config space * @edev: EEH device handle * @where: PCI config space offset * @size: size to read * @val: return value * * Read config space from the speicifed device */ static int pseries_eeh_read_config(struct eeh_dev *edev, int where, int size, u32 *val) { struct pci_dn *pdn = eeh_dev_to_pdn(edev); return rtas_pci_dn_read_config(pdn, where, size, val); } /** * pseries_eeh_write_config - Write PCI config space * @edev: EEH device handle * @where: PCI config space offset * @size: size to write * @val: value to be written * * Write config space to the specified device */ static int pseries_eeh_write_config(struct eeh_dev *edev, int where, int size, u32 val) { struct pci_dn *pdn = eeh_dev_to_pdn(edev); return rtas_pci_dn_write_config(pdn, where, size, val); } #ifdef CONFIG_PCI_IOV static int pseries_send_allow_unfreeze(struct pci_dn *pdn, u16 *vf_pe_array, int cur_vfs) { int rc; int ibm_allow_unfreeze = rtas_function_token(RTAS_FN_IBM_OPEN_SRIOV_ALLOW_UNFREEZE); unsigned long buid, addr; addr = rtas_config_addr(pdn->busno, pdn->devfn, 0); buid = pdn->phb->buid; spin_lock(&rtas_data_buf_lock); memcpy(rtas_data_buf, vf_pe_array, RTAS_DATA_BUF_SIZE); rc = rtas_call(ibm_allow_unfreeze, 5, 1, NULL, addr, BUID_HI(buid), BUID_LO(buid), rtas_data_buf, cur_vfs * sizeof(u16)); spin_unlock(&rtas_data_buf_lock); if (rc) pr_warn("%s: Failed to allow unfreeze for PHB#%x-PE#%lx, rc=%x\n", __func__, pdn->phb->global_number, addr, rc); return rc; } static int pseries_call_allow_unfreeze(struct eeh_dev *edev) { int cur_vfs = 0, rc = 0, vf_index, bus, devfn, vf_pe_num; struct pci_dn *pdn, *tmp, *parent, *physfn_pdn; u16 *vf_pe_array; vf_pe_array = kzalloc(RTAS_DATA_BUF_SIZE, GFP_KERNEL); if (!vf_pe_array) return -ENOMEM; if (pci_num_vf(edev->physfn ? edev->physfn : edev->pdev)) { if (edev->pdev->is_physfn) { cur_vfs = pci_num_vf(edev->pdev); pdn = eeh_dev_to_pdn(edev); parent = pdn->parent; for (vf_index = 0; vf_index < cur_vfs; vf_index++) vf_pe_array[vf_index] = cpu_to_be16(pdn->pe_num_map[vf_index]); rc = pseries_send_allow_unfreeze(pdn, vf_pe_array, cur_vfs); pdn->last_allow_rc = rc; for (vf_index = 0; vf_index < cur_vfs; vf_index++) { list_for_each_entry_safe(pdn, tmp, &parent->child_list, list) { bus = pci_iov_virtfn_bus(edev->pdev, vf_index); devfn = pci_iov_virtfn_devfn(edev->pdev, vf_index); if (pdn->busno != bus || pdn->devfn != devfn) continue; pdn->last_allow_rc = rc; } } } else { pdn = pci_get_pdn(edev->pdev); physfn_pdn = pci_get_pdn(edev->physfn); vf_pe_num = physfn_pdn->pe_num_map[edev->vf_index]; vf_pe_array[0] = cpu_to_be16(vf_pe_num); rc = pseries_send_allow_unfreeze(physfn_pdn, vf_pe_array, 1); pdn->last_allow_rc = rc; } } kfree(vf_pe_array); return rc; } static int pseries_notify_resume(struct eeh_dev *edev) { if (!edev) return -EEXIST; if (rtas_function_token(RTAS_FN_IBM_OPEN_SRIOV_ALLOW_UNFREEZE) == RTAS_UNKNOWN_SERVICE) return -EINVAL; if (edev->pdev->is_physfn || edev->pdev->is_virtfn) return pseries_call_allow_unfreeze(edev); return 0; } #endif static struct eeh_ops pseries_eeh_ops = { .name = "pseries", .probe = pseries_eeh_probe, .set_option = pseries_eeh_set_option, .get_state = pseries_eeh_get_state, .reset = pseries_eeh_reset, .get_log = pseries_eeh_get_log, .configure_bridge = pseries_eeh_configure_bridge, .err_inject = NULL, .read_config = pseries_eeh_read_config, .write_config = pseries_eeh_write_config, .next_error = NULL, .restore_config = NULL, /* NB: configure_bridge() does this */ #ifdef CONFIG_PCI_IOV .notify_resume = pseries_notify_resume #endif }; /** * eeh_pseries_init - Register platform dependent EEH operations * * EEH initialization on pseries platform. This function should be * called before any EEH related functions. */ static int __init eeh_pseries_init(void) { struct pci_controller *phb; struct pci_dn *pdn; int ret, config_addr; /* figure out EEH RTAS function call tokens */ ibm_set_eeh_option = rtas_function_token(RTAS_FN_IBM_SET_EEH_OPTION); ibm_set_slot_reset = rtas_function_token(RTAS_FN_IBM_SET_SLOT_RESET); ibm_read_slot_reset_state2 = rtas_function_token(RTAS_FN_IBM_READ_SLOT_RESET_STATE2); ibm_read_slot_reset_state = rtas_function_token(RTAS_FN_IBM_READ_SLOT_RESET_STATE); ibm_slot_error_detail = rtas_function_token(RTAS_FN_IBM_SLOT_ERROR_DETAIL); ibm_get_config_addr_info2 = rtas_function_token(RTAS_FN_IBM_GET_CONFIG_ADDR_INFO2); ibm_get_config_addr_info = rtas_function_token(RTAS_FN_IBM_GET_CONFIG_ADDR_INFO); ibm_configure_pe = rtas_function_token(RTAS_FN_IBM_CONFIGURE_PE); /* * ibm,configure-pe and ibm,configure-bridge have the same semantics, * however ibm,configure-pe can be faster. If we can't find * ibm,configure-pe then fall back to using ibm,configure-bridge. */ if (ibm_configure_pe == RTAS_UNKNOWN_SERVICE) ibm_configure_pe = rtas_function_token(RTAS_FN_IBM_CONFIGURE_BRIDGE); /* * Necessary sanity check. We needn't check "get-config-addr-info" * and its variant since the old firmware probably support address * of domain/bus/slot/function for EEH RTAS operations. */ if (ibm_set_eeh_option == RTAS_UNKNOWN_SERVICE || ibm_set_slot_reset == RTAS_UNKNOWN_SERVICE || (ibm_read_slot_reset_state2 == RTAS_UNKNOWN_SERVICE && ibm_read_slot_reset_state == RTAS_UNKNOWN_SERVICE) || ibm_slot_error_detail == RTAS_UNKNOWN_SERVICE || ibm_configure_pe == RTAS_UNKNOWN_SERVICE) { pr_info("EEH functionality not supported\n"); return -EINVAL; } /* Initialize error log size */ eeh_error_buf_size = rtas_get_error_log_max(); /* Set EEH probe mode */ eeh_add_flag(EEH_PROBE_MODE_DEVTREE | EEH_ENABLE_IO_FOR_LOG); /* Set EEH machine dependent code */ ppc_md.pcibios_bus_add_device = pseries_pcibios_bus_add_device; if (is_kdump_kernel() || reset_devices) { pr_info("Issue PHB reset ...\n"); list_for_each_entry(phb, &hose_list, list_node) { // Skip if the slot is empty if (list_empty(&PCI_DN(phb->dn)->child_list)) continue; pdn = list_first_entry(&PCI_DN(phb->dn)->child_list, struct pci_dn, list); config_addr = pseries_eeh_get_pe_config_addr(pdn); /* invalid PE config addr */ if (config_addr < 0) continue; pseries_eeh_phb_reset(phb, config_addr, EEH_RESET_FUNDAMENTAL); pseries_eeh_phb_reset(phb, config_addr, EEH_RESET_DEACTIVATE); pseries_eeh_phb_configure_bridge(phb, config_addr); } } ret = eeh_init(&pseries_eeh_ops); if (!ret) pr_info("EEH: pSeries platform initialized\n"); else pr_info("EEH: pSeries platform initialization failure (%d)\n", ret); return ret; } machine_arch_initcall(pseries, eeh_pseries_init); |