Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 | // SPDX-License-Identifier: GPL-2.0-or-later /* * MMU context allocation for 64-bit kernels. * * Copyright (C) 2004 Anton Blanchard, IBM Corp. <anton@samba.org> */ #include <linux/sched.h> #include <linux/kernel.h> #include <linux/errno.h> #include <linux/string.h> #include <linux/types.h> #include <linux/mm.h> #include <linux/pkeys.h> #include <linux/spinlock.h> #include <linux/idr.h> #include <linux/export.h> #include <linux/gfp.h> #include <linux/slab.h> #include <linux/cpu.h> #include <asm/mmu_context.h> #include <asm/pgalloc.h> #include "internal.h" static DEFINE_IDA(mmu_context_ida); static int alloc_context_id(int min_id, int max_id) { return ida_alloc_range(&mmu_context_ida, min_id, max_id, GFP_KERNEL); } #ifdef CONFIG_PPC_64S_HASH_MMU void __init hash__reserve_context_id(int id) { int result = ida_alloc_range(&mmu_context_ida, id, id, GFP_KERNEL); WARN(result != id, "mmu: Failed to reserve context id %d (rc %d)\n", id, result); } int hash__alloc_context_id(void) { unsigned long max; if (mmu_has_feature(MMU_FTR_68_BIT_VA)) max = MAX_USER_CONTEXT; else max = MAX_USER_CONTEXT_65BIT_VA; return alloc_context_id(MIN_USER_CONTEXT, max); } EXPORT_SYMBOL_GPL(hash__alloc_context_id); #endif #ifdef CONFIG_PPC_64S_HASH_MMU static int realloc_context_ids(mm_context_t *ctx) { int i, id; /* * id 0 (aka. ctx->id) is special, we always allocate a new one, even if * there wasn't one allocated previously (which happens in the exec * case where ctx is newly allocated). * * We have to be a bit careful here. We must keep the existing ids in * the array, so that we can test if they're non-zero to decide if we * need to allocate a new one. However in case of error we must free the * ids we've allocated but *not* any of the existing ones (or risk a * UAF). That's why we decrement i at the start of the error handling * loop, to skip the id that we just tested but couldn't reallocate. */ for (i = 0; i < ARRAY_SIZE(ctx->extended_id); i++) { if (i == 0 || ctx->extended_id[i]) { id = hash__alloc_context_id(); if (id < 0) goto error; ctx->extended_id[i] = id; } } /* The caller expects us to return id */ return ctx->id; error: for (i--; i >= 0; i--) { if (ctx->extended_id[i]) ida_free(&mmu_context_ida, ctx->extended_id[i]); } return id; } static int hash__init_new_context(struct mm_struct *mm) { int index; mm->context.hash_context = kmalloc(sizeof(struct hash_mm_context), GFP_KERNEL); if (!mm->context.hash_context) return -ENOMEM; /* * The old code would re-promote on fork, we don't do that when using * slices as it could cause problem promoting slices that have been * forced down to 4K. * * For book3s we have MMU_NO_CONTEXT set to be ~0. Hence check * explicitly against context.id == 0. This ensures that we properly * initialize context slice details for newly allocated mm's (which will * have id == 0) and don't alter context slice inherited via fork (which * will have id != 0). * * We should not be calling init_new_context() on init_mm. Hence a * check against 0 is OK. */ if (mm->context.id == 0) { memset(mm->context.hash_context, 0, sizeof(struct hash_mm_context)); slice_init_new_context_exec(mm); } else { /* This is fork. Copy hash_context details from current->mm */ memcpy(mm->context.hash_context, current->mm->context.hash_context, sizeof(struct hash_mm_context)); #ifdef CONFIG_PPC_SUBPAGE_PROT /* inherit subpage prot details if we have one. */ if (current->mm->context.hash_context->spt) { mm->context.hash_context->spt = kmalloc(sizeof(struct subpage_prot_table), GFP_KERNEL); if (!mm->context.hash_context->spt) { kfree(mm->context.hash_context); return -ENOMEM; } } #endif } index = realloc_context_ids(&mm->context); if (index < 0) { #ifdef CONFIG_PPC_SUBPAGE_PROT kfree(mm->context.hash_context->spt); #endif kfree(mm->context.hash_context); return index; } pkey_mm_init(mm); return index; } void hash__setup_new_exec(void) { slice_setup_new_exec(); slb_setup_new_exec(); } #else static inline int hash__init_new_context(struct mm_struct *mm) { BUILD_BUG(); return 0; } #endif static int radix__init_new_context(struct mm_struct *mm) { unsigned long rts_field; int index, max_id; max_id = (1 << mmu_pid_bits) - 1; index = alloc_context_id(mmu_base_pid, max_id); if (index < 0) return index; /* * set the process table entry, */ rts_field = radix__get_tree_size(); process_tb[index].prtb0 = cpu_to_be64(rts_field | __pa(mm->pgd) | RADIX_PGD_INDEX_SIZE); /* * Order the above store with subsequent update of the PID * register (at which point HW can start loading/caching * the entry) and the corresponding load by the MMU from * the L2 cache. */ asm volatile("ptesync;isync" : : : "memory"); #ifdef CONFIG_PPC_64S_HASH_MMU mm->context.hash_context = NULL; #endif return index; } int init_new_context(struct task_struct *tsk, struct mm_struct *mm) { int index; if (radix_enabled()) index = radix__init_new_context(mm); else index = hash__init_new_context(mm); if (index < 0) return index; mm->context.id = index; mm->context.pte_frag = NULL; mm->context.pmd_frag = NULL; #ifdef CONFIG_SPAPR_TCE_IOMMU mm_iommu_init(mm); #endif atomic_set(&mm->context.active_cpus, 0); atomic_set(&mm->context.copros, 0); return 0; } void __destroy_context(int context_id) { ida_free(&mmu_context_ida, context_id); } EXPORT_SYMBOL_GPL(__destroy_context); static void destroy_contexts(mm_context_t *ctx) { if (radix_enabled()) { ida_free(&mmu_context_ida, ctx->id); } else { #ifdef CONFIG_PPC_64S_HASH_MMU int index, context_id; for (index = 0; index < ARRAY_SIZE(ctx->extended_id); index++) { context_id = ctx->extended_id[index]; if (context_id) ida_free(&mmu_context_ida, context_id); } kfree(ctx->hash_context); #else BUILD_BUG(); // radix_enabled() should be constant true #endif } } static void pmd_frag_destroy(void *pmd_frag) { int count; struct ptdesc *ptdesc; ptdesc = virt_to_ptdesc(pmd_frag); /* drop all the pending references */ count = ((unsigned long)pmd_frag & ~PAGE_MASK) >> PMD_FRAG_SIZE_SHIFT; /* We allow PTE_FRAG_NR fragments from a PTE page */ if (atomic_sub_and_test(PMD_FRAG_NR - count, &ptdesc->pt_frag_refcount)) { pagetable_pmd_dtor(ptdesc); pagetable_free(ptdesc); } } static void destroy_pagetable_cache(struct mm_struct *mm) { void *frag; frag = mm->context.pte_frag; if (frag) pte_frag_destroy(frag); frag = mm->context.pmd_frag; if (frag) pmd_frag_destroy(frag); return; } void destroy_context(struct mm_struct *mm) { #ifdef CONFIG_SPAPR_TCE_IOMMU WARN_ON_ONCE(!list_empty(&mm->context.iommu_group_mem_list)); #endif /* * For tasks which were successfully initialized we end up calling * arch_exit_mmap() which clears the process table entry. And * arch_exit_mmap() is called before the required fullmm TLB flush * which does a RIC=2 flush. Hence for an initialized task, we do clear * any cached process table entries. * * The condition below handles the error case during task init. We have * set the process table entry early and if we fail a task * initialization, we need to ensure the process table entry is zeroed. * We need not worry about process table entry caches because the task * never ran with the PID value. */ if (radix_enabled()) process_tb[mm->context.id].prtb0 = 0; else subpage_prot_free(mm); destroy_contexts(&mm->context); mm->context.id = MMU_NO_CONTEXT; } void arch_exit_mmap(struct mm_struct *mm) { destroy_pagetable_cache(mm); if (radix_enabled()) { /* * Radix doesn't have a valid bit in the process table * entries. However we know that at least P9 implementation * will avoid caching an entry with an invalid RTS field, * and 0 is invalid. So this will do. * * This runs before the "fullmm" tlb flush in exit_mmap, * which does a RIC=2 tlbie to clear the process table * entry. See the "fullmm" comments in tlb-radix.c. * * No barrier required here after the store because * this process will do the invalidate, which starts with * ptesync. */ process_tb[mm->context.id].prtb0 = 0; } } #ifdef CONFIG_PPC_RADIX_MMU void radix__switch_mmu_context(struct mm_struct *prev, struct mm_struct *next) { mtspr(SPRN_PID, next->context.id); isync(); } #endif /** * cleanup_cpu_mmu_context - Clean up MMU details for this CPU (newly offlined) * * This clears the CPU from mm_cpumask for all processes, and then flushes the * local TLB to ensure TLB coherency in case the CPU is onlined again. * * KVM guest translations are not necessarily flushed here. If KVM started * using mm_cpumask or the Linux APIs which do, this would have to be resolved. */ #ifdef CONFIG_HOTPLUG_CPU void cleanup_cpu_mmu_context(void) { int cpu = smp_processor_id(); clear_tasks_mm_cpumask(cpu); tlbiel_all(); } #endif |