Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 | // SPDX-License-Identifier: GPL-2.0-or-later /* * This file contains the routines for flushing entries from the * TLB and MMU hash table. * * Derived from arch/ppc64/mm/init.c: * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) * * Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au) * and Cort Dougan (PReP) (cort@cs.nmt.edu) * Copyright (C) 1996 Paul Mackerras * * Derived from "arch/i386/mm/init.c" * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds * * Dave Engebretsen <engebret@us.ibm.com> * Rework for PPC64 port. */ #include <linux/kernel.h> #include <linux/mm.h> #include <linux/percpu.h> #include <linux/hardirq.h> #include <asm/tlbflush.h> #include <asm/tlb.h> #include <asm/bug.h> #include <asm/pte-walk.h> #include <trace/events/thp.h> DEFINE_PER_CPU(struct ppc64_tlb_batch, ppc64_tlb_batch); /* * A linux PTE was changed and the corresponding hash table entry * neesd to be flushed. This function will either perform the flush * immediately or will batch it up if the current CPU has an active * batch on it. */ void hpte_need_flush(struct mm_struct *mm, unsigned long addr, pte_t *ptep, unsigned long pte, int huge) { unsigned long vpn; struct ppc64_tlb_batch *batch = &get_cpu_var(ppc64_tlb_batch); unsigned long vsid; unsigned int psize; int ssize; real_pte_t rpte; int i, offset; i = batch->index; /* * Get page size (maybe move back to caller). * * NOTE: when using special 64K mappings in 4K environment like * for SPEs, we obtain the page size from the slice, which thus * must still exist (and thus the VMA not reused) at the time * of this call */ if (huge) { #ifdef CONFIG_HUGETLB_PAGE psize = get_slice_psize(mm, addr); /* Mask the address for the correct page size */ addr &= ~((1UL << mmu_psize_defs[psize].shift) - 1); if (unlikely(psize == MMU_PAGE_16G)) offset = PTRS_PER_PUD; else offset = PTRS_PER_PMD; #else BUG(); psize = pte_pagesize_index(mm, addr, pte); /* shutup gcc */ #endif } else { psize = pte_pagesize_index(mm, addr, pte); /* * Mask the address for the standard page size. If we * have a 64k page kernel, but the hardware does not * support 64k pages, this might be different from the * hardware page size encoded in the slice table. */ addr &= PAGE_MASK; offset = PTRS_PER_PTE; } /* Build full vaddr */ if (!is_kernel_addr(addr)) { ssize = user_segment_size(addr); vsid = get_user_vsid(&mm->context, addr, ssize); } else { vsid = get_kernel_vsid(addr, mmu_kernel_ssize); ssize = mmu_kernel_ssize; } WARN_ON(vsid == 0); vpn = hpt_vpn(addr, vsid, ssize); rpte = __real_pte(__pte(pte), ptep, offset); /* * Check if we have an active batch on this CPU. If not, just * flush now and return. */ if (!batch->active) { flush_hash_page(vpn, rpte, psize, ssize, mm_is_thread_local(mm)); put_cpu_var(ppc64_tlb_batch); return; } /* * This can happen when we are in the middle of a TLB batch and * we encounter memory pressure (eg copy_page_range when it tries * to allocate a new pte). If we have to reclaim memory and end * up scanning and resetting referenced bits then our batch context * will change mid stream. * * We also need to ensure only one page size is present in a given * batch */ if (i != 0 && (mm != batch->mm || batch->psize != psize || batch->ssize != ssize)) { __flush_tlb_pending(batch); i = 0; } if (i == 0) { batch->mm = mm; batch->psize = psize; batch->ssize = ssize; } batch->pte[i] = rpte; batch->vpn[i] = vpn; batch->index = ++i; if (i >= PPC64_TLB_BATCH_NR) __flush_tlb_pending(batch); put_cpu_var(ppc64_tlb_batch); } /* * This function is called when terminating an mmu batch or when a batch * is full. It will perform the flush of all the entries currently stored * in a batch. * * Must be called from within some kind of spinlock/non-preempt region... */ void __flush_tlb_pending(struct ppc64_tlb_batch *batch) { int i, local; i = batch->index; local = mm_is_thread_local(batch->mm); if (i == 1) flush_hash_page(batch->vpn[0], batch->pte[0], batch->psize, batch->ssize, local); else flush_hash_range(i, local); batch->index = 0; } void hash__tlb_flush(struct mmu_gather *tlb) { struct ppc64_tlb_batch *tlbbatch = &get_cpu_var(ppc64_tlb_batch); /* * If there's a TLB batch pending, then we must flush it because the * pages are going to be freed and we really don't want to have a CPU * access a freed page because it has a stale TLB */ if (tlbbatch->index) __flush_tlb_pending(tlbbatch); put_cpu_var(ppc64_tlb_batch); } /** * __flush_hash_table_range - Flush all HPTEs for a given address range * from the hash table (and the TLB). But keeps * the linux PTEs intact. * * @start : starting address * @end : ending address (not included in the flush) * * This function is mostly to be used by some IO hotplug code in order * to remove all hash entries from a given address range used to map IO * space on a removed PCI-PCI bidge without tearing down the full mapping * since 64K pages may overlap with other bridges when using 64K pages * with 4K HW pages on IO space. * * Because of that usage pattern, it is implemented for small size rather * than speed. */ void __flush_hash_table_range(unsigned long start, unsigned long end) { int hugepage_shift; unsigned long flags; start = ALIGN_DOWN(start, PAGE_SIZE); end = ALIGN(end, PAGE_SIZE); /* * Note: Normally, we should only ever use a batch within a * PTE locked section. This violates the rule, but will work * since we don't actually modify the PTEs, we just flush the * hash while leaving the PTEs intact (including their reference * to being hashed). This is not the most performance oriented * way to do things but is fine for our needs here. */ local_irq_save(flags); arch_enter_lazy_mmu_mode(); for (; start < end; start += PAGE_SIZE) { pte_t *ptep = find_init_mm_pte(start, &hugepage_shift); unsigned long pte; if (ptep == NULL) continue; pte = pte_val(*ptep); if (!(pte & H_PAGE_HASHPTE)) continue; hpte_need_flush(&init_mm, start, ptep, pte, hugepage_shift); } arch_leave_lazy_mmu_mode(); local_irq_restore(flags); } void flush_hash_table_pmd_range(struct mm_struct *mm, pmd_t *pmd, unsigned long addr) { pte_t *pte; pte_t *start_pte; unsigned long flags; addr = ALIGN_DOWN(addr, PMD_SIZE); /* * Note: Normally, we should only ever use a batch within a * PTE locked section. This violates the rule, but will work * since we don't actually modify the PTEs, we just flush the * hash while leaving the PTEs intact (including their reference * to being hashed). This is not the most performance oriented * way to do things but is fine for our needs here. */ local_irq_save(flags); arch_enter_lazy_mmu_mode(); start_pte = pte_offset_map(pmd, addr); if (!start_pte) goto out; for (pte = start_pte; pte < start_pte + PTRS_PER_PTE; pte++) { unsigned long pteval = pte_val(*pte); if (pteval & H_PAGE_HASHPTE) hpte_need_flush(mm, addr, pte, pteval, 0); addr += PAGE_SIZE; } pte_unmap(start_pte); out: arch_leave_lazy_mmu_mode(); local_irq_restore(flags); } |