Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 | // SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2020-2023 Loongson Technology Corporation Limited */ #include <linux/highmem.h> #include <linux/hugetlb.h> #include <linux/kvm_host.h> #include <linux/page-flags.h> #include <linux/uaccess.h> #include <asm/mmu_context.h> #include <asm/pgalloc.h> #include <asm/tlb.h> #include <asm/kvm_mmu.h> static inline bool kvm_hugepage_capable(struct kvm_memory_slot *slot) { return slot->arch.flags & KVM_MEM_HUGEPAGE_CAPABLE; } static inline bool kvm_hugepage_incapable(struct kvm_memory_slot *slot) { return slot->arch.flags & KVM_MEM_HUGEPAGE_INCAPABLE; } static inline void kvm_ptw_prepare(struct kvm *kvm, kvm_ptw_ctx *ctx) { ctx->level = kvm->arch.root_level; /* pte table */ ctx->invalid_ptes = kvm->arch.invalid_ptes; ctx->pte_shifts = kvm->arch.pte_shifts; ctx->pgtable_shift = ctx->pte_shifts[ctx->level]; ctx->invalid_entry = ctx->invalid_ptes[ctx->level]; ctx->opaque = kvm; } /* * Mark a range of guest physical address space old (all accesses fault) in the * VM's GPA page table to allow detection of commonly used pages. */ static int kvm_mkold_pte(kvm_pte_t *pte, phys_addr_t addr, kvm_ptw_ctx *ctx) { if (kvm_pte_young(*pte)) { *pte = kvm_pte_mkold(*pte); return 1; } return 0; } /* * Mark a range of guest physical address space clean (writes fault) in the VM's * GPA page table to allow dirty page tracking. */ static int kvm_mkclean_pte(kvm_pte_t *pte, phys_addr_t addr, kvm_ptw_ctx *ctx) { gfn_t offset; kvm_pte_t val; val = *pte; /* * For kvm_arch_mmu_enable_log_dirty_pt_masked with mask, start and end * may cross hugepage, for first huge page parameter addr is equal to * start, however for the second huge page addr is base address of * this huge page, rather than start or end address */ if ((ctx->flag & _KVM_HAS_PGMASK) && !kvm_pte_huge(val)) { offset = (addr >> PAGE_SHIFT) - ctx->gfn; if (!(BIT(offset) & ctx->mask)) return 0; } /* * Need not split huge page now, just set write-proect pte bit * Split huge page until next write fault */ if (kvm_pte_dirty(val)) { *pte = kvm_pte_mkclean(val); return 1; } return 0; } /* * Clear pte entry */ static int kvm_flush_pte(kvm_pte_t *pte, phys_addr_t addr, kvm_ptw_ctx *ctx) { struct kvm *kvm; kvm = ctx->opaque; if (ctx->level) kvm->stat.hugepages--; else kvm->stat.pages--; *pte = ctx->invalid_entry; return 1; } /* * kvm_pgd_alloc() - Allocate and initialise a KVM GPA page directory. * * Allocate a blank KVM GPA page directory (PGD) for representing guest physical * to host physical page mappings. * * Returns: Pointer to new KVM GPA page directory. * NULL on allocation failure. */ kvm_pte_t *kvm_pgd_alloc(void) { kvm_pte_t *pgd; pgd = (kvm_pte_t *)__get_free_pages(GFP_KERNEL, 0); if (pgd) pgd_init((void *)pgd); return pgd; } static void _kvm_pte_init(void *addr, unsigned long val) { unsigned long *p, *end; p = (unsigned long *)addr; end = p + PTRS_PER_PTE; do { p[0] = val; p[1] = val; p[2] = val; p[3] = val; p[4] = val; p += 8; p[-3] = val; p[-2] = val; p[-1] = val; } while (p != end); } /* * Caller must hold kvm->mm_lock * * Walk the page tables of kvm to find the PTE corresponding to the * address @addr. If page tables don't exist for @addr, they will be created * from the MMU cache if @cache is not NULL. */ static kvm_pte_t *kvm_populate_gpa(struct kvm *kvm, struct kvm_mmu_memory_cache *cache, unsigned long addr, int level) { kvm_ptw_ctx ctx; kvm_pte_t *entry, *child; kvm_ptw_prepare(kvm, &ctx); child = kvm->arch.pgd; while (ctx.level > level) { entry = kvm_pgtable_offset(&ctx, child, addr); if (kvm_pte_none(&ctx, entry)) { if (!cache) return NULL; child = kvm_mmu_memory_cache_alloc(cache); _kvm_pte_init(child, ctx.invalid_ptes[ctx.level - 1]); kvm_set_pte(entry, __pa(child)); } else if (kvm_pte_huge(*entry)) { return entry; } else child = (kvm_pte_t *)__va(PHYSADDR(*entry)); kvm_ptw_enter(&ctx); } entry = kvm_pgtable_offset(&ctx, child, addr); return entry; } /* * Page walker for VM shadow mmu at last level * The last level is small pte page or huge pmd page */ static int kvm_ptw_leaf(kvm_pte_t *dir, phys_addr_t addr, phys_addr_t end, kvm_ptw_ctx *ctx) { int ret; phys_addr_t next, start, size; struct list_head *list; kvm_pte_t *entry, *child; ret = 0; start = addr; child = (kvm_pte_t *)__va(PHYSADDR(*dir)); entry = kvm_pgtable_offset(ctx, child, addr); do { next = addr + (0x1UL << ctx->pgtable_shift); if (!kvm_pte_present(ctx, entry)) continue; ret |= ctx->ops(entry, addr, ctx); } while (entry++, addr = next, addr < end); if (kvm_need_flush(ctx)) { size = 0x1UL << (ctx->pgtable_shift + PAGE_SHIFT - 3); if (start + size == end) { list = (struct list_head *)child; list_add_tail(list, &ctx->list); *dir = ctx->invalid_ptes[ctx->level + 1]; } } return ret; } /* * Page walker for VM shadow mmu at page table dir level */ static int kvm_ptw_dir(kvm_pte_t *dir, phys_addr_t addr, phys_addr_t end, kvm_ptw_ctx *ctx) { int ret; phys_addr_t next, start, size; struct list_head *list; kvm_pte_t *entry, *child; ret = 0; start = addr; child = (kvm_pte_t *)__va(PHYSADDR(*dir)); entry = kvm_pgtable_offset(ctx, child, addr); do { next = kvm_pgtable_addr_end(ctx, addr, end); if (!kvm_pte_present(ctx, entry)) continue; if (kvm_pte_huge(*entry)) { ret |= ctx->ops(entry, addr, ctx); continue; } kvm_ptw_enter(ctx); if (ctx->level == 0) ret |= kvm_ptw_leaf(entry, addr, next, ctx); else ret |= kvm_ptw_dir(entry, addr, next, ctx); kvm_ptw_exit(ctx); } while (entry++, addr = next, addr < end); if (kvm_need_flush(ctx)) { size = 0x1UL << (ctx->pgtable_shift + PAGE_SHIFT - 3); if (start + size == end) { list = (struct list_head *)child; list_add_tail(list, &ctx->list); *dir = ctx->invalid_ptes[ctx->level + 1]; } } return ret; } /* * Page walker for VM shadow mmu at page root table */ static int kvm_ptw_top(kvm_pte_t *dir, phys_addr_t addr, phys_addr_t end, kvm_ptw_ctx *ctx) { int ret; phys_addr_t next; kvm_pte_t *entry; ret = 0; entry = kvm_pgtable_offset(ctx, dir, addr); do { next = kvm_pgtable_addr_end(ctx, addr, end); if (!kvm_pte_present(ctx, entry)) continue; kvm_ptw_enter(ctx); ret |= kvm_ptw_dir(entry, addr, next, ctx); kvm_ptw_exit(ctx); } while (entry++, addr = next, addr < end); return ret; } /* * kvm_flush_range() - Flush a range of guest physical addresses. * @kvm: KVM pointer. * @start_gfn: Guest frame number of first page in GPA range to flush. * @end_gfn: Guest frame number of last page in GPA range to flush. * @lock: Whether to hold mmu_lock or not * * Flushes a range of GPA mappings from the GPA page tables. */ static void kvm_flush_range(struct kvm *kvm, gfn_t start_gfn, gfn_t end_gfn, int lock) { int ret; kvm_ptw_ctx ctx; struct list_head *pos, *temp; ctx.ops = kvm_flush_pte; ctx.flag = _KVM_FLUSH_PGTABLE; kvm_ptw_prepare(kvm, &ctx); INIT_LIST_HEAD(&ctx.list); if (lock) { spin_lock(&kvm->mmu_lock); ret = kvm_ptw_top(kvm->arch.pgd, start_gfn << PAGE_SHIFT, end_gfn << PAGE_SHIFT, &ctx); spin_unlock(&kvm->mmu_lock); } else ret = kvm_ptw_top(kvm->arch.pgd, start_gfn << PAGE_SHIFT, end_gfn << PAGE_SHIFT, &ctx); /* Flush vpid for each vCPU individually */ if (ret) kvm_flush_remote_tlbs(kvm); /* * free pte table page after mmu_lock * the pte table page is linked together with ctx.list */ list_for_each_safe(pos, temp, &ctx.list) { list_del(pos); free_page((unsigned long)pos); } } /* * kvm_mkclean_gpa_pt() - Make a range of guest physical addresses clean. * @kvm: KVM pointer. * @start_gfn: Guest frame number of first page in GPA range to flush. * @end_gfn: Guest frame number of last page in GPA range to flush. * * Make a range of GPA mappings clean so that guest writes will fault and * trigger dirty page logging. * * The caller must hold the @kvm->mmu_lock spinlock. * * Returns: Whether any GPA mappings were modified, which would require * derived mappings (GVA page tables & TLB enties) to be * invalidated. */ static int kvm_mkclean_gpa_pt(struct kvm *kvm, gfn_t start_gfn, gfn_t end_gfn) { kvm_ptw_ctx ctx; ctx.ops = kvm_mkclean_pte; ctx.flag = 0; kvm_ptw_prepare(kvm, &ctx); return kvm_ptw_top(kvm->arch.pgd, start_gfn << PAGE_SHIFT, end_gfn << PAGE_SHIFT, &ctx); } /* * kvm_arch_mmu_enable_log_dirty_pt_masked() - write protect dirty pages * @kvm: The KVM pointer * @slot: The memory slot associated with mask * @gfn_offset: The gfn offset in memory slot * @mask: The mask of dirty pages at offset 'gfn_offset' in this memory * slot to be write protected * * Walks bits set in mask write protects the associated pte's. Caller must * acquire @kvm->mmu_lock. */ void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, struct kvm_memory_slot *slot, gfn_t gfn_offset, unsigned long mask) { kvm_ptw_ctx ctx; gfn_t base_gfn = slot->base_gfn + gfn_offset; gfn_t start = base_gfn + __ffs(mask); gfn_t end = base_gfn + __fls(mask) + 1; ctx.ops = kvm_mkclean_pte; ctx.flag = _KVM_HAS_PGMASK; ctx.mask = mask; ctx.gfn = base_gfn; kvm_ptw_prepare(kvm, &ctx); kvm_ptw_top(kvm->arch.pgd, start << PAGE_SHIFT, end << PAGE_SHIFT, &ctx); } int kvm_arch_prepare_memory_region(struct kvm *kvm, const struct kvm_memory_slot *old, struct kvm_memory_slot *new, enum kvm_mr_change change) { gpa_t gpa_start; hva_t hva_start; size_t size, gpa_offset, hva_offset; if ((change != KVM_MR_MOVE) && (change != KVM_MR_CREATE)) return 0; /* * Prevent userspace from creating a memory region outside of the * VM GPA address space */ if ((new->base_gfn + new->npages) > (kvm->arch.gpa_size >> PAGE_SHIFT)) return -ENOMEM; new->arch.flags = 0; size = new->npages * PAGE_SIZE; gpa_start = new->base_gfn << PAGE_SHIFT; hva_start = new->userspace_addr; if (IS_ALIGNED(size, PMD_SIZE) && IS_ALIGNED(gpa_start, PMD_SIZE) && IS_ALIGNED(hva_start, PMD_SIZE)) new->arch.flags |= KVM_MEM_HUGEPAGE_CAPABLE; else { /* * Pages belonging to memslots that don't have the same * alignment within a PMD for userspace and GPA cannot be * mapped with PMD entries, because we'll end up mapping * the wrong pages. * * Consider a layout like the following: * * memslot->userspace_addr: * +-----+--------------------+--------------------+---+ * |abcde|fgh Stage-1 block | Stage-1 block tv|xyz| * +-----+--------------------+--------------------+---+ * * memslot->base_gfn << PAGE_SIZE: * +---+--------------------+--------------------+-----+ * |abc|def Stage-2 block | Stage-2 block |tvxyz| * +---+--------------------+--------------------+-----+ * * If we create those stage-2 blocks, we'll end up with this * incorrect mapping: * d -> f * e -> g * f -> h */ gpa_offset = gpa_start & (PMD_SIZE - 1); hva_offset = hva_start & (PMD_SIZE - 1); if (gpa_offset != hva_offset) { new->arch.flags |= KVM_MEM_HUGEPAGE_INCAPABLE; } else { if (gpa_offset == 0) gpa_offset = PMD_SIZE; if ((size + gpa_offset) < (PMD_SIZE * 2)) new->arch.flags |= KVM_MEM_HUGEPAGE_INCAPABLE; } } return 0; } void kvm_arch_commit_memory_region(struct kvm *kvm, struct kvm_memory_slot *old, const struct kvm_memory_slot *new, enum kvm_mr_change change) { int needs_flush; /* * If dirty page logging is enabled, write protect all pages in the slot * ready for dirty logging. * * There is no need to do this in any of the following cases: * CREATE: No dirty mappings will already exist. * MOVE/DELETE: The old mappings will already have been cleaned up by * kvm_arch_flush_shadow_memslot() */ if (change == KVM_MR_FLAGS_ONLY && (!(old->flags & KVM_MEM_LOG_DIRTY_PAGES) && new->flags & KVM_MEM_LOG_DIRTY_PAGES)) { spin_lock(&kvm->mmu_lock); /* Write protect GPA page table entries */ needs_flush = kvm_mkclean_gpa_pt(kvm, new->base_gfn, new->base_gfn + new->npages); spin_unlock(&kvm->mmu_lock); if (needs_flush) kvm_flush_remote_tlbs(kvm); } } void kvm_arch_flush_shadow_all(struct kvm *kvm) { kvm_flush_range(kvm, 0, kvm->arch.gpa_size >> PAGE_SHIFT, 0); } void kvm_arch_flush_shadow_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) { /* * The slot has been made invalid (ready for moving or deletion), so we * need to ensure that it can no longer be accessed by any guest vCPUs. */ kvm_flush_range(kvm, slot->base_gfn, slot->base_gfn + slot->npages, 1); } bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range) { kvm_ptw_ctx ctx; ctx.flag = 0; ctx.ops = kvm_flush_pte; kvm_ptw_prepare(kvm, &ctx); INIT_LIST_HEAD(&ctx.list); return kvm_ptw_top(kvm->arch.pgd, range->start << PAGE_SHIFT, range->end << PAGE_SHIFT, &ctx); } bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range) { unsigned long prot_bits; kvm_pte_t *ptep; kvm_pfn_t pfn = pte_pfn(range->arg.pte); gpa_t gpa = range->start << PAGE_SHIFT; ptep = kvm_populate_gpa(kvm, NULL, gpa, 0); if (!ptep) return false; /* Replacing an absent or old page doesn't need flushes */ if (!kvm_pte_present(NULL, ptep) || !kvm_pte_young(*ptep)) { kvm_set_pte(ptep, 0); return false; } /* Fill new pte if write protected or page migrated */ prot_bits = _PAGE_PRESENT | __READABLE; prot_bits |= _CACHE_MASK & pte_val(range->arg.pte); /* * Set _PAGE_WRITE or _PAGE_DIRTY iff old and new pte both support * _PAGE_WRITE for map_page_fast if next page write fault * _PAGE_DIRTY since gpa has already recorded as dirty page */ prot_bits |= __WRITEABLE & *ptep & pte_val(range->arg.pte); kvm_set_pte(ptep, kvm_pfn_pte(pfn, __pgprot(prot_bits))); return true; } bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) { kvm_ptw_ctx ctx; ctx.flag = 0; ctx.ops = kvm_mkold_pte; kvm_ptw_prepare(kvm, &ctx); return kvm_ptw_top(kvm->arch.pgd, range->start << PAGE_SHIFT, range->end << PAGE_SHIFT, &ctx); } bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) { gpa_t gpa = range->start << PAGE_SHIFT; kvm_pte_t *ptep = kvm_populate_gpa(kvm, NULL, gpa, 0); if (ptep && kvm_pte_present(NULL, ptep) && kvm_pte_young(*ptep)) return true; return false; } /* * kvm_map_page_fast() - Fast path GPA fault handler. * @vcpu: vCPU pointer. * @gpa: Guest physical address of fault. * @write: Whether the fault was due to a write. * * Perform fast path GPA fault handling, doing all that can be done without * calling into KVM. This handles marking old pages young (for idle page * tracking), and dirtying of clean pages (for dirty page logging). * * Returns: 0 on success, in which case we can update derived mappings and * resume guest execution. * -EFAULT on failure due to absent GPA mapping or write to * read-only page, in which case KVM must be consulted. */ static int kvm_map_page_fast(struct kvm_vcpu *vcpu, unsigned long gpa, bool write) { int ret = 0; kvm_pfn_t pfn = 0; kvm_pte_t *ptep, changed, new; gfn_t gfn = gpa >> PAGE_SHIFT; struct kvm *kvm = vcpu->kvm; struct kvm_memory_slot *slot; spin_lock(&kvm->mmu_lock); /* Fast path - just check GPA page table for an existing entry */ ptep = kvm_populate_gpa(kvm, NULL, gpa, 0); if (!ptep || !kvm_pte_present(NULL, ptep)) { ret = -EFAULT; goto out; } /* Track access to pages marked old */ new = *ptep; if (!kvm_pte_young(new)) new = kvm_pte_mkyoung(new); /* call kvm_set_pfn_accessed() after unlock */ if (write && !kvm_pte_dirty(new)) { if (!kvm_pte_write(new)) { ret = -EFAULT; goto out; } if (kvm_pte_huge(new)) { /* * Do not set write permission when dirty logging is * enabled for HugePages */ slot = gfn_to_memslot(kvm, gfn); if (kvm_slot_dirty_track_enabled(slot)) { ret = -EFAULT; goto out; } } /* Track dirtying of writeable pages */ new = kvm_pte_mkdirty(new); } changed = new ^ (*ptep); if (changed) { kvm_set_pte(ptep, new); pfn = kvm_pte_pfn(new); } spin_unlock(&kvm->mmu_lock); /* * Fixme: pfn may be freed after mmu_lock * kvm_try_get_pfn(pfn)/kvm_release_pfn pair to prevent this? */ if (kvm_pte_young(changed)) kvm_set_pfn_accessed(pfn); if (kvm_pte_dirty(changed)) { mark_page_dirty(kvm, gfn); kvm_set_pfn_dirty(pfn); } return ret; out: spin_unlock(&kvm->mmu_lock); return ret; } static bool fault_supports_huge_mapping(struct kvm_memory_slot *memslot, unsigned long hva, bool write) { hva_t start, end; /* Disable dirty logging on HugePages */ if (kvm_slot_dirty_track_enabled(memslot) && write) return false; if (kvm_hugepage_capable(memslot)) return true; if (kvm_hugepage_incapable(memslot)) return false; start = memslot->userspace_addr; end = start + memslot->npages * PAGE_SIZE; /* * Next, let's make sure we're not trying to map anything not covered * by the memslot. This means we have to prohibit block size mappings * for the beginning and end of a non-block aligned and non-block sized * memory slot (illustrated by the head and tail parts of the * userspace view above containing pages 'abcde' and 'xyz', * respectively). * * Note that it doesn't matter if we do the check using the * userspace_addr or the base_gfn, as both are equally aligned (per * the check above) and equally sized. */ return (hva >= ALIGN(start, PMD_SIZE)) && (hva < ALIGN_DOWN(end, PMD_SIZE)); } /* * Lookup the mapping level for @gfn in the current mm. * * WARNING! Use of host_pfn_mapping_level() requires the caller and the end * consumer to be tied into KVM's handlers for MMU notifier events! * * There are several ways to safely use this helper: * * - Check mmu_invalidate_retry_gfn() after grabbing the mapping level, before * consuming it. In this case, mmu_lock doesn't need to be held during the * lookup, but it does need to be held while checking the MMU notifier. * * - Hold mmu_lock AND ensure there is no in-progress MMU notifier invalidation * event for the hva. This can be done by explicit checking the MMU notifier * or by ensuring that KVM already has a valid mapping that covers the hva. * * - Do not use the result to install new mappings, e.g. use the host mapping * level only to decide whether or not to zap an entry. In this case, it's * not required to hold mmu_lock (though it's highly likely the caller will * want to hold mmu_lock anyways, e.g. to modify SPTEs). * * Note! The lookup can still race with modifications to host page tables, but * the above "rules" ensure KVM will not _consume_ the result of the walk if a * race with the primary MMU occurs. */ static int host_pfn_mapping_level(struct kvm *kvm, gfn_t gfn, const struct kvm_memory_slot *slot) { int level = 0; unsigned long hva; unsigned long flags; pgd_t pgd; p4d_t p4d; pud_t pud; pmd_t pmd; /* * Note, using the already-retrieved memslot and __gfn_to_hva_memslot() * is not solely for performance, it's also necessary to avoid the * "writable" check in __gfn_to_hva_many(), which will always fail on * read-only memslots due to gfn_to_hva() assuming writes. Earlier * page fault steps have already verified the guest isn't writing a * read-only memslot. */ hva = __gfn_to_hva_memslot(slot, gfn); /* * Disable IRQs to prevent concurrent tear down of host page tables, * e.g. if the primary MMU promotes a P*D to a huge page and then frees * the original page table. */ local_irq_save(flags); /* * Read each entry once. As above, a non-leaf entry can be promoted to * a huge page _during_ this walk. Re-reading the entry could send the * walk into the weeks, e.g. p*d_leaf() returns false (sees the old * value) and then p*d_offset() walks into the target huge page instead * of the old page table (sees the new value). */ pgd = READ_ONCE(*pgd_offset(kvm->mm, hva)); if (pgd_none(pgd)) goto out; p4d = READ_ONCE(*p4d_offset(&pgd, hva)); if (p4d_none(p4d) || !p4d_present(p4d)) goto out; pud = READ_ONCE(*pud_offset(&p4d, hva)); if (pud_none(pud) || !pud_present(pud)) goto out; pmd = READ_ONCE(*pmd_offset(&pud, hva)); if (pmd_none(pmd) || !pmd_present(pmd)) goto out; if (kvm_pte_huge(pmd_val(pmd))) level = 1; out: local_irq_restore(flags); return level; } /* * Split huge page */ static kvm_pte_t *kvm_split_huge(struct kvm_vcpu *vcpu, kvm_pte_t *ptep, gfn_t gfn) { int i; kvm_pte_t val, *child; struct kvm *kvm = vcpu->kvm; struct kvm_mmu_memory_cache *memcache; memcache = &vcpu->arch.mmu_page_cache; child = kvm_mmu_memory_cache_alloc(memcache); val = kvm_pte_mksmall(*ptep); for (i = 0; i < PTRS_PER_PTE; i++) { kvm_set_pte(child + i, val); val += PAGE_SIZE; } /* The later kvm_flush_tlb_gpa() will flush hugepage tlb */ kvm_set_pte(ptep, __pa(child)); kvm->stat.hugepages--; kvm->stat.pages += PTRS_PER_PTE; return child + (gfn & (PTRS_PER_PTE - 1)); } /* * kvm_map_page() - Map a guest physical page. * @vcpu: vCPU pointer. * @gpa: Guest physical address of fault. * @write: Whether the fault was due to a write. * * Handle GPA faults by creating a new GPA mapping (or updating an existing * one). * * This takes care of marking pages young or dirty (idle/dirty page tracking), * asking KVM for the corresponding PFN, and creating a mapping in the GPA page * tables. Derived mappings (GVA page tables and TLBs) must be handled by the * caller. * * Returns: 0 on success * -EFAULT if there is no memory region at @gpa or a write was * attempted to a read-only memory region. This is usually handled * as an MMIO access. */ static int kvm_map_page(struct kvm_vcpu *vcpu, unsigned long gpa, bool write) { bool writeable; int srcu_idx, err, retry_no = 0, level; unsigned long hva, mmu_seq, prot_bits; kvm_pfn_t pfn; kvm_pte_t *ptep, new_pte; gfn_t gfn = gpa >> PAGE_SHIFT; struct kvm *kvm = vcpu->kvm; struct kvm_memory_slot *memslot; struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache; /* Try the fast path to handle old / clean pages */ srcu_idx = srcu_read_lock(&kvm->srcu); err = kvm_map_page_fast(vcpu, gpa, write); if (!err) goto out; memslot = gfn_to_memslot(kvm, gfn); hva = gfn_to_hva_memslot_prot(memslot, gfn, &writeable); if (kvm_is_error_hva(hva) || (write && !writeable)) { err = -EFAULT; goto out; } /* We need a minimum of cached pages ready for page table creation */ err = kvm_mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES); if (err) goto out; retry: /* * Used to check for invalidations in progress, of the pfn that is * returned by pfn_to_pfn_prot below. */ mmu_seq = kvm->mmu_invalidate_seq; /* * Ensure the read of mmu_invalidate_seq isn't reordered with PTE reads in * gfn_to_pfn_prot() (which calls get_user_pages()), so that we don't * risk the page we get a reference to getting unmapped before we have a * chance to grab the mmu_lock without mmu_invalidate_retry() noticing. * * This smp_rmb() pairs with the effective smp_wmb() of the combination * of the pte_unmap_unlock() after the PTE is zapped, and the * spin_lock() in kvm_mmu_invalidate_invalidate_<page|range_end>() before * mmu_invalidate_seq is incremented. */ smp_rmb(); /* Slow path - ask KVM core whether we can access this GPA */ pfn = gfn_to_pfn_prot(kvm, gfn, write, &writeable); if (is_error_noslot_pfn(pfn)) { err = -EFAULT; goto out; } /* Check if an invalidation has taken place since we got pfn */ spin_lock(&kvm->mmu_lock); if (mmu_invalidate_retry_gfn(kvm, mmu_seq, gfn)) { /* * This can happen when mappings are changed asynchronously, but * also synchronously if a COW is triggered by * gfn_to_pfn_prot(). */ spin_unlock(&kvm->mmu_lock); kvm_release_pfn_clean(pfn); if (retry_no > 100) { retry_no = 0; schedule(); } retry_no++; goto retry; } /* * For emulated devices such virtio device, actual cache attribute is * determined by physical machine. * For pass through physical device, it should be uncachable */ prot_bits = _PAGE_PRESENT | __READABLE; if (pfn_valid(pfn)) prot_bits |= _CACHE_CC; else prot_bits |= _CACHE_SUC; if (writeable) { prot_bits |= _PAGE_WRITE; if (write) prot_bits |= __WRITEABLE; } /* Disable dirty logging on HugePages */ level = 0; if (!fault_supports_huge_mapping(memslot, hva, write)) { level = 0; } else { level = host_pfn_mapping_level(kvm, gfn, memslot); if (level == 1) { gfn = gfn & ~(PTRS_PER_PTE - 1); pfn = pfn & ~(PTRS_PER_PTE - 1); } } /* Ensure page tables are allocated */ ptep = kvm_populate_gpa(kvm, memcache, gpa, level); new_pte = kvm_pfn_pte(pfn, __pgprot(prot_bits)); if (level == 1) { new_pte = kvm_pte_mkhuge(new_pte); /* * previous pmd entry is invalid_pte_table * there is invalid tlb with small page * need flush these invalid tlbs for current vcpu */ kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); ++kvm->stat.hugepages; } else if (kvm_pte_huge(*ptep) && write) ptep = kvm_split_huge(vcpu, ptep, gfn); else ++kvm->stat.pages; kvm_set_pte(ptep, new_pte); spin_unlock(&kvm->mmu_lock); if (prot_bits & _PAGE_DIRTY) { mark_page_dirty_in_slot(kvm, memslot, gfn); kvm_set_pfn_dirty(pfn); } kvm_set_pfn_accessed(pfn); kvm_release_pfn_clean(pfn); out: srcu_read_unlock(&kvm->srcu, srcu_idx); return err; } int kvm_handle_mm_fault(struct kvm_vcpu *vcpu, unsigned long gpa, bool write) { int ret; ret = kvm_map_page(vcpu, gpa, write); if (ret) return ret; /* Invalidate this entry in the TLB */ kvm_flush_tlb_gpa(vcpu, gpa); return 0; } void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot) { } void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm, const struct kvm_memory_slot *memslot) { kvm_flush_remote_tlbs(kvm); } |