Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 | // SPDX-License-Identifier: GPL-2.0-only /* * This file contains kasan initialization code for ARM64. * * Copyright (c) 2015 Samsung Electronics Co., Ltd. * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com> */ #define pr_fmt(fmt) "kasan: " fmt #include <linux/kasan.h> #include <linux/kernel.h> #include <linux/sched/task.h> #include <linux/memblock.h> #include <linux/start_kernel.h> #include <linux/mm.h> #include <asm/mmu_context.h> #include <asm/kernel-pgtable.h> #include <asm/page.h> #include <asm/pgalloc.h> #include <asm/sections.h> #include <asm/tlbflush.h> #if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS) static pgd_t tmp_pg_dir[PTRS_PER_PTE] __initdata __aligned(PAGE_SIZE); /* * The p*d_populate functions call virt_to_phys implicitly so they can't be used * directly on kernel symbols (bm_p*d). All the early functions are called too * early to use lm_alias so __p*d_populate functions must be used to populate * with the physical address from __pa_symbol. */ static phys_addr_t __init kasan_alloc_zeroed_page(int node) { void *p = memblock_alloc_try_nid(PAGE_SIZE, PAGE_SIZE, __pa(MAX_DMA_ADDRESS), MEMBLOCK_ALLOC_NOLEAKTRACE, node); if (!p) panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d from=%llx\n", __func__, PAGE_SIZE, PAGE_SIZE, node, __pa(MAX_DMA_ADDRESS)); return __pa(p); } static phys_addr_t __init kasan_alloc_raw_page(int node) { void *p = memblock_alloc_try_nid_raw(PAGE_SIZE, PAGE_SIZE, __pa(MAX_DMA_ADDRESS), MEMBLOCK_ALLOC_NOLEAKTRACE, node); if (!p) panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d from=%llx\n", __func__, PAGE_SIZE, PAGE_SIZE, node, __pa(MAX_DMA_ADDRESS)); return __pa(p); } static pte_t *__init kasan_pte_offset(pmd_t *pmdp, unsigned long addr, int node, bool early) { if (pmd_none(READ_ONCE(*pmdp))) { phys_addr_t pte_phys = early ? __pa_symbol(kasan_early_shadow_pte) : kasan_alloc_zeroed_page(node); __pmd_populate(pmdp, pte_phys, PMD_TYPE_TABLE); } return early ? pte_offset_kimg(pmdp, addr) : pte_offset_kernel(pmdp, addr); } static pmd_t *__init kasan_pmd_offset(pud_t *pudp, unsigned long addr, int node, bool early) { if (pud_none(READ_ONCE(*pudp))) { phys_addr_t pmd_phys = early ? __pa_symbol(kasan_early_shadow_pmd) : kasan_alloc_zeroed_page(node); __pud_populate(pudp, pmd_phys, PUD_TYPE_TABLE); } return early ? pmd_offset_kimg(pudp, addr) : pmd_offset(pudp, addr); } static pud_t *__init kasan_pud_offset(p4d_t *p4dp, unsigned long addr, int node, bool early) { if (p4d_none(READ_ONCE(*p4dp))) { phys_addr_t pud_phys = early ? __pa_symbol(kasan_early_shadow_pud) : kasan_alloc_zeroed_page(node); __p4d_populate(p4dp, pud_phys, P4D_TYPE_TABLE); } return early ? pud_offset_kimg(p4dp, addr) : pud_offset(p4dp, addr); } static p4d_t *__init kasan_p4d_offset(pgd_t *pgdp, unsigned long addr, int node, bool early) { if (pgd_none(READ_ONCE(*pgdp))) { phys_addr_t p4d_phys = early ? __pa_symbol(kasan_early_shadow_p4d) : kasan_alloc_zeroed_page(node); __pgd_populate(pgdp, p4d_phys, PGD_TYPE_TABLE); } return early ? p4d_offset_kimg(pgdp, addr) : p4d_offset(pgdp, addr); } static void __init kasan_pte_populate(pmd_t *pmdp, unsigned long addr, unsigned long end, int node, bool early) { unsigned long next; pte_t *ptep = kasan_pte_offset(pmdp, addr, node, early); do { phys_addr_t page_phys = early ? __pa_symbol(kasan_early_shadow_page) : kasan_alloc_raw_page(node); if (!early) memset(__va(page_phys), KASAN_SHADOW_INIT, PAGE_SIZE); next = addr + PAGE_SIZE; __set_pte(ptep, pfn_pte(__phys_to_pfn(page_phys), PAGE_KERNEL)); } while (ptep++, addr = next, addr != end && pte_none(__ptep_get(ptep))); } static void __init kasan_pmd_populate(pud_t *pudp, unsigned long addr, unsigned long end, int node, bool early) { unsigned long next; pmd_t *pmdp = kasan_pmd_offset(pudp, addr, node, early); do { next = pmd_addr_end(addr, end); kasan_pte_populate(pmdp, addr, next, node, early); } while (pmdp++, addr = next, addr != end && pmd_none(READ_ONCE(*pmdp))); } static void __init kasan_pud_populate(p4d_t *p4dp, unsigned long addr, unsigned long end, int node, bool early) { unsigned long next; pud_t *pudp = kasan_pud_offset(p4dp, addr, node, early); do { next = pud_addr_end(addr, end); kasan_pmd_populate(pudp, addr, next, node, early); } while (pudp++, addr = next, addr != end && pud_none(READ_ONCE(*pudp))); } static void __init kasan_p4d_populate(pgd_t *pgdp, unsigned long addr, unsigned long end, int node, bool early) { unsigned long next; p4d_t *p4dp = kasan_p4d_offset(pgdp, addr, node, early); do { next = p4d_addr_end(addr, end); kasan_pud_populate(p4dp, addr, next, node, early); } while (p4dp++, addr = next, addr != end && p4d_none(READ_ONCE(*p4dp))); } static void __init kasan_pgd_populate(unsigned long addr, unsigned long end, int node, bool early) { unsigned long next; pgd_t *pgdp; pgdp = pgd_offset_k(addr); do { next = pgd_addr_end(addr, end); kasan_p4d_populate(pgdp, addr, next, node, early); } while (pgdp++, addr = next, addr != end); } #if defined(CONFIG_ARM64_64K_PAGES) || CONFIG_PGTABLE_LEVELS > 4 #define SHADOW_ALIGN P4D_SIZE #else #define SHADOW_ALIGN PUD_SIZE #endif /* * Return whether 'addr' is aligned to the size covered by a root level * descriptor. */ static bool __init root_level_aligned(u64 addr) { int shift = (ARM64_HW_PGTABLE_LEVELS(vabits_actual) - 1) * (PAGE_SHIFT - 3); return (addr % (PAGE_SIZE << shift)) == 0; } /* The early shadow maps everything to a single page of zeroes */ asmlinkage void __init kasan_early_init(void) { BUILD_BUG_ON(KASAN_SHADOW_OFFSET != KASAN_SHADOW_END - (1UL << (64 - KASAN_SHADOW_SCALE_SHIFT))); BUILD_BUG_ON(!IS_ALIGNED(_KASAN_SHADOW_START(VA_BITS), SHADOW_ALIGN)); BUILD_BUG_ON(!IS_ALIGNED(_KASAN_SHADOW_START(VA_BITS_MIN), SHADOW_ALIGN)); BUILD_BUG_ON(!IS_ALIGNED(KASAN_SHADOW_END, SHADOW_ALIGN)); if (!root_level_aligned(KASAN_SHADOW_START)) { /* * The start address is misaligned, and so the next level table * will be shared with the linear region. This can happen with * 4 or 5 level paging, so install a generic pte_t[] as the * next level. This prevents the kasan_pgd_populate call below * from inserting an entry that refers to the shared KASAN zero * shadow pud_t[]/p4d_t[], which could end up getting corrupted * when the linear region is mapped. */ static pte_t tbl[PTRS_PER_PTE] __page_aligned_bss; pgd_t *pgdp = pgd_offset_k(KASAN_SHADOW_START); set_pgd(pgdp, __pgd(__pa_symbol(tbl) | PGD_TYPE_TABLE)); } kasan_pgd_populate(KASAN_SHADOW_START, KASAN_SHADOW_END, NUMA_NO_NODE, true); } /* Set up full kasan mappings, ensuring that the mapped pages are zeroed */ static void __init kasan_map_populate(unsigned long start, unsigned long end, int node) { kasan_pgd_populate(start & PAGE_MASK, PAGE_ALIGN(end), node, false); } /* * Return the descriptor index of 'addr' in the root level table */ static int __init root_level_idx(u64 addr) { /* * On 64k pages, the TTBR1 range root tables are extended for 52-bit * virtual addressing, and TTBR1 will simply point to the pgd_t entry * that covers the start of the 48-bit addressable VA space if LVA is * not implemented. This means we need to index the table as usual, * instead of masking off bits based on vabits_actual. */ u64 vabits = IS_ENABLED(CONFIG_ARM64_64K_PAGES) ? VA_BITS : vabits_actual; int shift = (ARM64_HW_PGTABLE_LEVELS(vabits) - 1) * (PAGE_SHIFT - 3); return (addr & ~_PAGE_OFFSET(vabits)) >> (shift + PAGE_SHIFT); } /* * Clone a next level table from swapper_pg_dir into tmp_pg_dir */ static void __init clone_next_level(u64 addr, pgd_t *tmp_pg_dir, pud_t *pud) { int idx = root_level_idx(addr); pgd_t pgd = READ_ONCE(swapper_pg_dir[idx]); pud_t *pudp = (pud_t *)__phys_to_kimg(__pgd_to_phys(pgd)); memcpy(pud, pudp, PAGE_SIZE); tmp_pg_dir[idx] = __pgd(__phys_to_pgd_val(__pa_symbol(pud)) | PUD_TYPE_TABLE); } /* * Return the descriptor index of 'addr' in the next level table */ static int __init next_level_idx(u64 addr) { int shift = (ARM64_HW_PGTABLE_LEVELS(vabits_actual) - 2) * (PAGE_SHIFT - 3); return (addr >> (shift + PAGE_SHIFT)) % PTRS_PER_PTE; } /* * Dereference the table descriptor at 'pgd_idx' and clear the entries from * 'start' to 'end' (exclusive) from the table. */ static void __init clear_next_level(int pgd_idx, int start, int end) { pgd_t pgd = READ_ONCE(swapper_pg_dir[pgd_idx]); pud_t *pudp = (pud_t *)__phys_to_kimg(__pgd_to_phys(pgd)); memset(&pudp[start], 0, (end - start) * sizeof(pud_t)); } static void __init clear_shadow(u64 start, u64 end) { int l = root_level_idx(start), m = root_level_idx(end); if (!root_level_aligned(start)) clear_next_level(l++, next_level_idx(start), PTRS_PER_PTE); if (!root_level_aligned(end)) clear_next_level(m, 0, next_level_idx(end)); memset(&swapper_pg_dir[l], 0, (m - l) * sizeof(pgd_t)); } static void __init kasan_init_shadow(void) { static pud_t pud[2][PTRS_PER_PUD] __initdata __aligned(PAGE_SIZE); u64 kimg_shadow_start, kimg_shadow_end; u64 mod_shadow_start; u64 vmalloc_shadow_end; phys_addr_t pa_start, pa_end; u64 i; kimg_shadow_start = (u64)kasan_mem_to_shadow(KERNEL_START) & PAGE_MASK; kimg_shadow_end = PAGE_ALIGN((u64)kasan_mem_to_shadow(KERNEL_END)); mod_shadow_start = (u64)kasan_mem_to_shadow((void *)MODULES_VADDR); vmalloc_shadow_end = (u64)kasan_mem_to_shadow((void *)VMALLOC_END); /* * We are going to perform proper setup of shadow memory. * At first we should unmap early shadow (clear_pgds() call below). * However, instrumented code couldn't execute without shadow memory. * tmp_pg_dir used to keep early shadow mapped until full shadow * setup will be finished. */ memcpy(tmp_pg_dir, swapper_pg_dir, sizeof(tmp_pg_dir)); /* * If the start or end address of the shadow region is not aligned to * the root level size, we have to allocate a temporary next-level table * in each case, clone the next level of descriptors, and install the * table into tmp_pg_dir. Note that with 5 levels of paging, the next * level will in fact be p4d_t, but that makes no difference in this * case. */ if (!root_level_aligned(KASAN_SHADOW_START)) clone_next_level(KASAN_SHADOW_START, tmp_pg_dir, pud[0]); if (!root_level_aligned(KASAN_SHADOW_END)) clone_next_level(KASAN_SHADOW_END, tmp_pg_dir, pud[1]); dsb(ishst); cpu_replace_ttbr1(lm_alias(tmp_pg_dir)); clear_shadow(KASAN_SHADOW_START, KASAN_SHADOW_END); kasan_map_populate(kimg_shadow_start, kimg_shadow_end, early_pfn_to_nid(virt_to_pfn(lm_alias(KERNEL_START)))); kasan_populate_early_shadow(kasan_mem_to_shadow((void *)PAGE_END), (void *)mod_shadow_start); BUILD_BUG_ON(VMALLOC_START != MODULES_END); kasan_populate_early_shadow((void *)vmalloc_shadow_end, (void *)KASAN_SHADOW_END); for_each_mem_range(i, &pa_start, &pa_end) { void *start = (void *)__phys_to_virt(pa_start); void *end = (void *)__phys_to_virt(pa_end); if (start >= end) break; kasan_map_populate((unsigned long)kasan_mem_to_shadow(start), (unsigned long)kasan_mem_to_shadow(end), early_pfn_to_nid(virt_to_pfn(start))); } /* * KAsan may reuse the contents of kasan_early_shadow_pte directly, * so we should make sure that it maps the zero page read-only. */ for (i = 0; i < PTRS_PER_PTE; i++) __set_pte(&kasan_early_shadow_pte[i], pfn_pte(sym_to_pfn(kasan_early_shadow_page), PAGE_KERNEL_RO)); memset(kasan_early_shadow_page, KASAN_SHADOW_INIT, PAGE_SIZE); cpu_replace_ttbr1(lm_alias(swapper_pg_dir)); } static void __init kasan_init_depth(void) { init_task.kasan_depth = 0; } #ifdef CONFIG_KASAN_VMALLOC void __init kasan_populate_early_vm_area_shadow(void *start, unsigned long size) { unsigned long shadow_start, shadow_end; if (!is_vmalloc_or_module_addr(start)) return; shadow_start = (unsigned long)kasan_mem_to_shadow(start); shadow_start = ALIGN_DOWN(shadow_start, PAGE_SIZE); shadow_end = (unsigned long)kasan_mem_to_shadow(start + size); shadow_end = ALIGN(shadow_end, PAGE_SIZE); kasan_map_populate(shadow_start, shadow_end, NUMA_NO_NODE); } #endif void __init kasan_init(void) { kasan_init_shadow(); kasan_init_depth(); #if defined(CONFIG_KASAN_GENERIC) /* * Generic KASAN is now fully initialized. * Software and Hardware Tag-Based modes still require * kasan_init_sw_tags() and kasan_init_hw_tags() correspondingly. */ pr_info("KernelAddressSanitizer initialized (generic)\n"); #endif } #endif /* CONFIG_KASAN_GENERIC || CONFIG_KASAN_SW_TAGS */ |