Linux Audio

Check our new training course

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
// SPDX-License-Identifier: GPL-2.0-only
/*
 * Stand-alone page-table allocator for hyp stage-1 and guest stage-2.
 * No bombay mix was harmed in the writing of this file.
 *
 * Copyright (C) 2020 Google LLC
 * Author: Will Deacon <will@kernel.org>
 */

#include <linux/bitfield.h>
#include <asm/kvm_pgtable.h>
#include <asm/stage2_pgtable.h>


#define KVM_PTE_TYPE			BIT(1)
#define KVM_PTE_TYPE_BLOCK		0
#define KVM_PTE_TYPE_PAGE		1
#define KVM_PTE_TYPE_TABLE		1

#define KVM_PTE_LEAF_ATTR_LO		GENMASK(11, 2)

#define KVM_PTE_LEAF_ATTR_LO_S1_ATTRIDX	GENMASK(4, 2)
#define KVM_PTE_LEAF_ATTR_LO_S1_AP	GENMASK(7, 6)
#define KVM_PTE_LEAF_ATTR_LO_S1_AP_RO		\
	({ cpus_have_final_cap(ARM64_KVM_HVHE) ? 2 : 3; })
#define KVM_PTE_LEAF_ATTR_LO_S1_AP_RW		\
	({ cpus_have_final_cap(ARM64_KVM_HVHE) ? 0 : 1; })
#define KVM_PTE_LEAF_ATTR_LO_S1_SH	GENMASK(9, 8)
#define KVM_PTE_LEAF_ATTR_LO_S1_SH_IS	3
#define KVM_PTE_LEAF_ATTR_LO_S1_AF	BIT(10)

#define KVM_PTE_LEAF_ATTR_LO_S2_MEMATTR	GENMASK(5, 2)
#define KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R	BIT(6)
#define KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W	BIT(7)
#define KVM_PTE_LEAF_ATTR_LO_S2_SH	GENMASK(9, 8)
#define KVM_PTE_LEAF_ATTR_LO_S2_SH_IS	3
#define KVM_PTE_LEAF_ATTR_LO_S2_AF	BIT(10)

#define KVM_PTE_LEAF_ATTR_HI		GENMASK(63, 50)

#define KVM_PTE_LEAF_ATTR_HI_SW		GENMASK(58, 55)

#define KVM_PTE_LEAF_ATTR_HI_S1_XN	BIT(54)

#define KVM_PTE_LEAF_ATTR_HI_S2_XN	BIT(54)

#define KVM_PTE_LEAF_ATTR_HI_S1_GP	BIT(50)

#define KVM_PTE_LEAF_ATTR_S2_PERMS	(KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R | \
					 KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W | \
					 KVM_PTE_LEAF_ATTR_HI_S2_XN)

#define KVM_INVALID_PTE_OWNER_MASK	GENMASK(9, 2)
#define KVM_MAX_OWNER_ID		1

/*
 * Used to indicate a pte for which a 'break-before-make' sequence is in
 * progress.
 */
#define KVM_INVALID_PTE_LOCKED		BIT(10)

struct kvm_pgtable_walk_data {
	struct kvm_pgtable_walker	*walker;

	const u64			start;
	u64				addr;
	const u64			end;
};

static bool kvm_pgtable_walk_skip_bbm_tlbi(const struct kvm_pgtable_visit_ctx *ctx)
{
	return unlikely(ctx->flags & KVM_PGTABLE_WALK_SKIP_BBM_TLBI);
}

static bool kvm_pgtable_walk_skip_cmo(const struct kvm_pgtable_visit_ctx *ctx)
{
	return unlikely(ctx->flags & KVM_PGTABLE_WALK_SKIP_CMO);
}

static bool kvm_phys_is_valid(u64 phys)
{
	u64 parange_max = kvm_get_parange_max();
	u8 shift = id_aa64mmfr0_parange_to_phys_shift(parange_max);

	return phys < BIT(shift);
}

static bool kvm_block_mapping_supported(const struct kvm_pgtable_visit_ctx *ctx, u64 phys)
{
	u64 granule = kvm_granule_size(ctx->level);

	if (!kvm_level_supports_block_mapping(ctx->level))
		return false;

	if (granule > (ctx->end - ctx->addr))
		return false;

	if (kvm_phys_is_valid(phys) && !IS_ALIGNED(phys, granule))
		return false;

	return IS_ALIGNED(ctx->addr, granule);
}

static u32 kvm_pgtable_idx(struct kvm_pgtable_walk_data *data, s8 level)
{
	u64 shift = kvm_granule_shift(level);
	u64 mask = BIT(PAGE_SHIFT - 3) - 1;

	return (data->addr >> shift) & mask;
}

static u32 kvm_pgd_page_idx(struct kvm_pgtable *pgt, u64 addr)
{
	u64 shift = kvm_granule_shift(pgt->start_level - 1); /* May underflow */
	u64 mask = BIT(pgt->ia_bits) - 1;

	return (addr & mask) >> shift;
}

static u32 kvm_pgd_pages(u32 ia_bits, s8 start_level)
{
	struct kvm_pgtable pgt = {
		.ia_bits	= ia_bits,
		.start_level	= start_level,
	};

	return kvm_pgd_page_idx(&pgt, -1ULL) + 1;
}

static bool kvm_pte_table(kvm_pte_t pte, s8 level)
{
	if (level == KVM_PGTABLE_LAST_LEVEL)
		return false;

	if (!kvm_pte_valid(pte))
		return false;

	return FIELD_GET(KVM_PTE_TYPE, pte) == KVM_PTE_TYPE_TABLE;
}

static kvm_pte_t *kvm_pte_follow(kvm_pte_t pte, struct kvm_pgtable_mm_ops *mm_ops)
{
	return mm_ops->phys_to_virt(kvm_pte_to_phys(pte));
}

static void kvm_clear_pte(kvm_pte_t *ptep)
{
	WRITE_ONCE(*ptep, 0);
}

static kvm_pte_t kvm_init_table_pte(kvm_pte_t *childp, struct kvm_pgtable_mm_ops *mm_ops)
{
	kvm_pte_t pte = kvm_phys_to_pte(mm_ops->virt_to_phys(childp));

	pte |= FIELD_PREP(KVM_PTE_TYPE, KVM_PTE_TYPE_TABLE);
	pte |= KVM_PTE_VALID;
	return pte;
}

static kvm_pte_t kvm_init_valid_leaf_pte(u64 pa, kvm_pte_t attr, s8 level)
{
	kvm_pte_t pte = kvm_phys_to_pte(pa);
	u64 type = (level == KVM_PGTABLE_LAST_LEVEL) ? KVM_PTE_TYPE_PAGE :
						       KVM_PTE_TYPE_BLOCK;

	pte |= attr & (KVM_PTE_LEAF_ATTR_LO | KVM_PTE_LEAF_ATTR_HI);
	pte |= FIELD_PREP(KVM_PTE_TYPE, type);
	pte |= KVM_PTE_VALID;

	return pte;
}

static kvm_pte_t kvm_init_invalid_leaf_owner(u8 owner_id)
{
	return FIELD_PREP(KVM_INVALID_PTE_OWNER_MASK, owner_id);
}

static int kvm_pgtable_visitor_cb(struct kvm_pgtable_walk_data *data,
				  const struct kvm_pgtable_visit_ctx *ctx,
				  enum kvm_pgtable_walk_flags visit)
{
	struct kvm_pgtable_walker *walker = data->walker;

	/* Ensure the appropriate lock is held (e.g. RCU lock for stage-2 MMU) */
	WARN_ON_ONCE(kvm_pgtable_walk_shared(ctx) && !kvm_pgtable_walk_lock_held());
	return walker->cb(ctx, visit);
}

static bool kvm_pgtable_walk_continue(const struct kvm_pgtable_walker *walker,
				      int r)
{
	/*
	 * Visitor callbacks return EAGAIN when the conditions that led to a
	 * fault are no longer reflected in the page tables due to a race to
	 * update a PTE. In the context of a fault handler this is interpreted
	 * as a signal to retry guest execution.
	 *
	 * Ignore the return code altogether for walkers outside a fault handler
	 * (e.g. write protecting a range of memory) and chug along with the
	 * page table walk.
	 */
	if (r == -EAGAIN)
		return !(walker->flags & KVM_PGTABLE_WALK_HANDLE_FAULT);

	return !r;
}

static int __kvm_pgtable_walk(struct kvm_pgtable_walk_data *data,
			      struct kvm_pgtable_mm_ops *mm_ops, kvm_pteref_t pgtable, s8 level);

static inline int __kvm_pgtable_visit(struct kvm_pgtable_walk_data *data,
				      struct kvm_pgtable_mm_ops *mm_ops,
				      kvm_pteref_t pteref, s8 level)
{
	enum kvm_pgtable_walk_flags flags = data->walker->flags;
	kvm_pte_t *ptep = kvm_dereference_pteref(data->walker, pteref);
	struct kvm_pgtable_visit_ctx ctx = {
		.ptep	= ptep,
		.old	= READ_ONCE(*ptep),
		.arg	= data->walker->arg,
		.mm_ops	= mm_ops,
		.start	= data->start,
		.addr	= data->addr,
		.end	= data->end,
		.level	= level,
		.flags	= flags,
	};
	int ret = 0;
	bool reload = false;
	kvm_pteref_t childp;
	bool table = kvm_pte_table(ctx.old, level);

	if (table && (ctx.flags & KVM_PGTABLE_WALK_TABLE_PRE)) {
		ret = kvm_pgtable_visitor_cb(data, &ctx, KVM_PGTABLE_WALK_TABLE_PRE);
		reload = true;
	}

	if (!table && (ctx.flags & KVM_PGTABLE_WALK_LEAF)) {
		ret = kvm_pgtable_visitor_cb(data, &ctx, KVM_PGTABLE_WALK_LEAF);
		reload = true;
	}

	/*
	 * Reload the page table after invoking the walker callback for leaf
	 * entries or after pre-order traversal, to allow the walker to descend
	 * into a newly installed or replaced table.
	 */
	if (reload) {
		ctx.old = READ_ONCE(*ptep);
		table = kvm_pte_table(ctx.old, level);
	}

	if (!kvm_pgtable_walk_continue(data->walker, ret))
		goto out;

	if (!table) {
		data->addr = ALIGN_DOWN(data->addr, kvm_granule_size(level));
		data->addr += kvm_granule_size(level);
		goto out;
	}

	childp = (kvm_pteref_t)kvm_pte_follow(ctx.old, mm_ops);
	ret = __kvm_pgtable_walk(data, mm_ops, childp, level + 1);
	if (!kvm_pgtable_walk_continue(data->walker, ret))
		goto out;

	if (ctx.flags & KVM_PGTABLE_WALK_TABLE_POST)
		ret = kvm_pgtable_visitor_cb(data, &ctx, KVM_PGTABLE_WALK_TABLE_POST);

out:
	if (kvm_pgtable_walk_continue(data->walker, ret))
		return 0;

	return ret;
}

static int __kvm_pgtable_walk(struct kvm_pgtable_walk_data *data,
			      struct kvm_pgtable_mm_ops *mm_ops, kvm_pteref_t pgtable, s8 level)
{
	u32 idx;
	int ret = 0;

	if (WARN_ON_ONCE(level < KVM_PGTABLE_FIRST_LEVEL ||
			 level > KVM_PGTABLE_LAST_LEVEL))
		return -EINVAL;

	for (idx = kvm_pgtable_idx(data, level); idx < PTRS_PER_PTE; ++idx) {
		kvm_pteref_t pteref = &pgtable[idx];

		if (data->addr >= data->end)
			break;

		ret = __kvm_pgtable_visit(data, mm_ops, pteref, level);
		if (ret)
			break;
	}

	return ret;
}

static int _kvm_pgtable_walk(struct kvm_pgtable *pgt, struct kvm_pgtable_walk_data *data)
{
	u32 idx;
	int ret = 0;
	u64 limit = BIT(pgt->ia_bits);

	if (data->addr > limit || data->end > limit)
		return -ERANGE;

	if (!pgt->pgd)
		return -EINVAL;

	for (idx = kvm_pgd_page_idx(pgt, data->addr); data->addr < data->end; ++idx) {
		kvm_pteref_t pteref = &pgt->pgd[idx * PTRS_PER_PTE];

		ret = __kvm_pgtable_walk(data, pgt->mm_ops, pteref, pgt->start_level);
		if (ret)
			break;
	}

	return ret;
}

int kvm_pgtable_walk(struct kvm_pgtable *pgt, u64 addr, u64 size,
		     struct kvm_pgtable_walker *walker)
{
	struct kvm_pgtable_walk_data walk_data = {
		.start	= ALIGN_DOWN(addr, PAGE_SIZE),
		.addr	= ALIGN_DOWN(addr, PAGE_SIZE),
		.end	= PAGE_ALIGN(walk_data.addr + size),
		.walker	= walker,
	};
	int r;

	r = kvm_pgtable_walk_begin(walker);
	if (r)
		return r;

	r = _kvm_pgtable_walk(pgt, &walk_data);
	kvm_pgtable_walk_end(walker);

	return r;
}

struct leaf_walk_data {
	kvm_pte_t	pte;
	s8		level;
};

static int leaf_walker(const struct kvm_pgtable_visit_ctx *ctx,
		       enum kvm_pgtable_walk_flags visit)
{
	struct leaf_walk_data *data = ctx->arg;

	data->pte   = ctx->old;
	data->level = ctx->level;

	return 0;
}

int kvm_pgtable_get_leaf(struct kvm_pgtable *pgt, u64 addr,
			 kvm_pte_t *ptep, s8 *level)
{
	struct leaf_walk_data data;
	struct kvm_pgtable_walker walker = {
		.cb	= leaf_walker,
		.flags	= KVM_PGTABLE_WALK_LEAF,
		.arg	= &data,
	};
	int ret;

	ret = kvm_pgtable_walk(pgt, ALIGN_DOWN(addr, PAGE_SIZE),
			       PAGE_SIZE, &walker);
	if (!ret) {
		if (ptep)
			*ptep  = data.pte;
		if (level)
			*level = data.level;
	}

	return ret;
}

struct hyp_map_data {
	const u64			phys;
	kvm_pte_t			attr;
};

static int hyp_set_prot_attr(enum kvm_pgtable_prot prot, kvm_pte_t *ptep)
{
	bool device = prot & KVM_PGTABLE_PROT_DEVICE;
	u32 mtype = device ? MT_DEVICE_nGnRE : MT_NORMAL;
	kvm_pte_t attr = FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_ATTRIDX, mtype);
	u32 sh = KVM_PTE_LEAF_ATTR_LO_S1_SH_IS;
	u32 ap = (prot & KVM_PGTABLE_PROT_W) ? KVM_PTE_LEAF_ATTR_LO_S1_AP_RW :
					       KVM_PTE_LEAF_ATTR_LO_S1_AP_RO;

	if (!(prot & KVM_PGTABLE_PROT_R))
		return -EINVAL;

	if (prot & KVM_PGTABLE_PROT_X) {
		if (prot & KVM_PGTABLE_PROT_W)
			return -EINVAL;

		if (device)
			return -EINVAL;

		if (system_supports_bti_kernel())
			attr |= KVM_PTE_LEAF_ATTR_HI_S1_GP;
	} else {
		attr |= KVM_PTE_LEAF_ATTR_HI_S1_XN;
	}

	attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_AP, ap);
	if (!kvm_lpa2_is_enabled())
		attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_SH, sh);
	attr |= KVM_PTE_LEAF_ATTR_LO_S1_AF;
	attr |= prot & KVM_PTE_LEAF_ATTR_HI_SW;
	*ptep = attr;

	return 0;
}

enum kvm_pgtable_prot kvm_pgtable_hyp_pte_prot(kvm_pte_t pte)
{
	enum kvm_pgtable_prot prot = pte & KVM_PTE_LEAF_ATTR_HI_SW;
	u32 ap;

	if (!kvm_pte_valid(pte))
		return prot;

	if (!(pte & KVM_PTE_LEAF_ATTR_HI_S1_XN))
		prot |= KVM_PGTABLE_PROT_X;

	ap = FIELD_GET(KVM_PTE_LEAF_ATTR_LO_S1_AP, pte);
	if (ap == KVM_PTE_LEAF_ATTR_LO_S1_AP_RO)
		prot |= KVM_PGTABLE_PROT_R;
	else if (ap == KVM_PTE_LEAF_ATTR_LO_S1_AP_RW)
		prot |= KVM_PGTABLE_PROT_RW;

	return prot;
}

static bool hyp_map_walker_try_leaf(const struct kvm_pgtable_visit_ctx *ctx,
				    struct hyp_map_data *data)
{
	u64 phys = data->phys + (ctx->addr - ctx->start);
	kvm_pte_t new;

	if (!kvm_block_mapping_supported(ctx, phys))
		return false;

	new = kvm_init_valid_leaf_pte(phys, data->attr, ctx->level);
	if (ctx->old == new)
		return true;
	if (!kvm_pte_valid(ctx->old))
		ctx->mm_ops->get_page(ctx->ptep);
	else if (WARN_ON((ctx->old ^ new) & ~KVM_PTE_LEAF_ATTR_HI_SW))
		return false;

	smp_store_release(ctx->ptep, new);
	return true;
}

static int hyp_map_walker(const struct kvm_pgtable_visit_ctx *ctx,
			  enum kvm_pgtable_walk_flags visit)
{
	kvm_pte_t *childp, new;
	struct hyp_map_data *data = ctx->arg;
	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;

	if (hyp_map_walker_try_leaf(ctx, data))
		return 0;

	if (WARN_ON(ctx->level == KVM_PGTABLE_LAST_LEVEL))
		return -EINVAL;

	childp = (kvm_pte_t *)mm_ops->zalloc_page(NULL);
	if (!childp)
		return -ENOMEM;

	new = kvm_init_table_pte(childp, mm_ops);
	mm_ops->get_page(ctx->ptep);
	smp_store_release(ctx->ptep, new);

	return 0;
}

int kvm_pgtable_hyp_map(struct kvm_pgtable *pgt, u64 addr, u64 size, u64 phys,
			enum kvm_pgtable_prot prot)
{
	int ret;
	struct hyp_map_data map_data = {
		.phys	= ALIGN_DOWN(phys, PAGE_SIZE),
	};
	struct kvm_pgtable_walker walker = {
		.cb	= hyp_map_walker,
		.flags	= KVM_PGTABLE_WALK_LEAF,
		.arg	= &map_data,
	};

	ret = hyp_set_prot_attr(prot, &map_data.attr);
	if (ret)
		return ret;

	ret = kvm_pgtable_walk(pgt, addr, size, &walker);
	dsb(ishst);
	isb();
	return ret;
}

static int hyp_unmap_walker(const struct kvm_pgtable_visit_ctx *ctx,
			    enum kvm_pgtable_walk_flags visit)
{
	kvm_pte_t *childp = NULL;
	u64 granule = kvm_granule_size(ctx->level);
	u64 *unmapped = ctx->arg;
	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;

	if (!kvm_pte_valid(ctx->old))
		return -EINVAL;

	if (kvm_pte_table(ctx->old, ctx->level)) {
		childp = kvm_pte_follow(ctx->old, mm_ops);

		if (mm_ops->page_count(childp) != 1)
			return 0;

		kvm_clear_pte(ctx->ptep);
		dsb(ishst);
		__tlbi_level(vae2is, __TLBI_VADDR(ctx->addr, 0), TLBI_TTL_UNKNOWN);
	} else {
		if (ctx->end - ctx->addr < granule)
			return -EINVAL;

		kvm_clear_pte(ctx->ptep);
		dsb(ishst);
		__tlbi_level(vale2is, __TLBI_VADDR(ctx->addr, 0), ctx->level);
		*unmapped += granule;
	}

	dsb(ish);
	isb();
	mm_ops->put_page(ctx->ptep);

	if (childp)
		mm_ops->put_page(childp);

	return 0;
}

u64 kvm_pgtable_hyp_unmap(struct kvm_pgtable *pgt, u64 addr, u64 size)
{
	u64 unmapped = 0;
	struct kvm_pgtable_walker walker = {
		.cb	= hyp_unmap_walker,
		.arg	= &unmapped,
		.flags	= KVM_PGTABLE_WALK_LEAF | KVM_PGTABLE_WALK_TABLE_POST,
	};

	if (!pgt->mm_ops->page_count)
		return 0;

	kvm_pgtable_walk(pgt, addr, size, &walker);
	return unmapped;
}

int kvm_pgtable_hyp_init(struct kvm_pgtable *pgt, u32 va_bits,
			 struct kvm_pgtable_mm_ops *mm_ops)
{
	s8 start_level = KVM_PGTABLE_LAST_LEVEL + 1 -
			 ARM64_HW_PGTABLE_LEVELS(va_bits);

	if (start_level < KVM_PGTABLE_FIRST_LEVEL ||
	    start_level > KVM_PGTABLE_LAST_LEVEL)
		return -EINVAL;

	pgt->pgd = (kvm_pteref_t)mm_ops->zalloc_page(NULL);
	if (!pgt->pgd)
		return -ENOMEM;

	pgt->ia_bits		= va_bits;
	pgt->start_level	= start_level;
	pgt->mm_ops		= mm_ops;
	pgt->mmu		= NULL;
	pgt->force_pte_cb	= NULL;

	return 0;
}

static int hyp_free_walker(const struct kvm_pgtable_visit_ctx *ctx,
			   enum kvm_pgtable_walk_flags visit)
{
	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;

	if (!kvm_pte_valid(ctx->old))
		return 0;

	mm_ops->put_page(ctx->ptep);

	if (kvm_pte_table(ctx->old, ctx->level))
		mm_ops->put_page(kvm_pte_follow(ctx->old, mm_ops));

	return 0;
}

void kvm_pgtable_hyp_destroy(struct kvm_pgtable *pgt)
{
	struct kvm_pgtable_walker walker = {
		.cb	= hyp_free_walker,
		.flags	= KVM_PGTABLE_WALK_LEAF | KVM_PGTABLE_WALK_TABLE_POST,
	};

	WARN_ON(kvm_pgtable_walk(pgt, 0, BIT(pgt->ia_bits), &walker));
	pgt->mm_ops->put_page(kvm_dereference_pteref(&walker, pgt->pgd));
	pgt->pgd = NULL;
}

struct stage2_map_data {
	const u64			phys;
	kvm_pte_t			attr;
	u8				owner_id;

	kvm_pte_t			*anchor;
	kvm_pte_t			*childp;

	struct kvm_s2_mmu		*mmu;
	void				*memcache;

	/* Force mappings to page granularity */
	bool				force_pte;
};

u64 kvm_get_vtcr(u64 mmfr0, u64 mmfr1, u32 phys_shift)
{
	u64 vtcr = VTCR_EL2_FLAGS;
	s8 lvls;

	vtcr |= kvm_get_parange(mmfr0) << VTCR_EL2_PS_SHIFT;
	vtcr |= VTCR_EL2_T0SZ(phys_shift);
	/*
	 * Use a minimum 2 level page table to prevent splitting
	 * host PMD huge pages at stage2.
	 */
	lvls = stage2_pgtable_levels(phys_shift);
	if (lvls < 2)
		lvls = 2;

	/*
	 * When LPA2 is enabled, the HW supports an extra level of translation
	 * (for 5 in total) when using 4K pages. It also introduces VTCR_EL2.SL2
	 * to as an addition to SL0 to enable encoding this extra start level.
	 * However, since we always use concatenated pages for the first level
	 * lookup, we will never need this extra level and therefore do not need
	 * to touch SL2.
	 */
	vtcr |= VTCR_EL2_LVLS_TO_SL0(lvls);

#ifdef CONFIG_ARM64_HW_AFDBM
	/*
	 * Enable the Hardware Access Flag management, unconditionally
	 * on all CPUs. In systems that have asymmetric support for the feature
	 * this allows KVM to leverage hardware support on the subset of cores
	 * that implement the feature.
	 *
	 * The architecture requires VTCR_EL2.HA to be RES0 (thus ignored by
	 * hardware) on implementations that do not advertise support for the
	 * feature. As such, setting HA unconditionally is safe, unless you
	 * happen to be running on a design that has unadvertised support for
	 * HAFDBS. Here be dragons.
	 */
	if (!cpus_have_final_cap(ARM64_WORKAROUND_AMPERE_AC03_CPU_38))
		vtcr |= VTCR_EL2_HA;
#endif /* CONFIG_ARM64_HW_AFDBM */

	if (kvm_lpa2_is_enabled())
		vtcr |= VTCR_EL2_DS;

	/* Set the vmid bits */
	vtcr |= (get_vmid_bits(mmfr1) == 16) ?
		VTCR_EL2_VS_16BIT :
		VTCR_EL2_VS_8BIT;

	return vtcr;
}

static bool stage2_has_fwb(struct kvm_pgtable *pgt)
{
	if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
		return false;

	return !(pgt->flags & KVM_PGTABLE_S2_NOFWB);
}

void kvm_tlb_flush_vmid_range(struct kvm_s2_mmu *mmu,
				phys_addr_t addr, size_t size)
{
	unsigned long pages, inval_pages;

	if (!system_supports_tlb_range()) {
		kvm_call_hyp(__kvm_tlb_flush_vmid, mmu);
		return;
	}

	pages = size >> PAGE_SHIFT;
	while (pages > 0) {
		inval_pages = min(pages, MAX_TLBI_RANGE_PAGES);
		kvm_call_hyp(__kvm_tlb_flush_vmid_range, mmu, addr, inval_pages);

		addr += inval_pages << PAGE_SHIFT;
		pages -= inval_pages;
	}
}

#define KVM_S2_MEMATTR(pgt, attr) PAGE_S2_MEMATTR(attr, stage2_has_fwb(pgt))

static int stage2_set_prot_attr(struct kvm_pgtable *pgt, enum kvm_pgtable_prot prot,
				kvm_pte_t *ptep)
{
	kvm_pte_t attr;
	u32 sh = KVM_PTE_LEAF_ATTR_LO_S2_SH_IS;

	switch (prot & (KVM_PGTABLE_PROT_DEVICE |
			KVM_PGTABLE_PROT_NORMAL_NC)) {
	case KVM_PGTABLE_PROT_DEVICE | KVM_PGTABLE_PROT_NORMAL_NC:
		return -EINVAL;
	case KVM_PGTABLE_PROT_DEVICE:
		if (prot & KVM_PGTABLE_PROT_X)
			return -EINVAL;
		attr = KVM_S2_MEMATTR(pgt, DEVICE_nGnRE);
		break;
	case KVM_PGTABLE_PROT_NORMAL_NC:
		if (prot & KVM_PGTABLE_PROT_X)
			return -EINVAL;
		attr = KVM_S2_MEMATTR(pgt, NORMAL_NC);
		break;
	default:
		attr = KVM_S2_MEMATTR(pgt, NORMAL);
	}

	if (!(prot & KVM_PGTABLE_PROT_X))
		attr |= KVM_PTE_LEAF_ATTR_HI_S2_XN;

	if (prot & KVM_PGTABLE_PROT_R)
		attr |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R;

	if (prot & KVM_PGTABLE_PROT_W)
		attr |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W;

	if (!kvm_lpa2_is_enabled())
		attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S2_SH, sh);

	attr |= KVM_PTE_LEAF_ATTR_LO_S2_AF;
	attr |= prot & KVM_PTE_LEAF_ATTR_HI_SW;
	*ptep = attr;

	return 0;
}

enum kvm_pgtable_prot kvm_pgtable_stage2_pte_prot(kvm_pte_t pte)
{
	enum kvm_pgtable_prot prot = pte & KVM_PTE_LEAF_ATTR_HI_SW;

	if (!kvm_pte_valid(pte))
		return prot;

	if (pte & KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R)
		prot |= KVM_PGTABLE_PROT_R;
	if (pte & KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W)
		prot |= KVM_PGTABLE_PROT_W;
	if (!(pte & KVM_PTE_LEAF_ATTR_HI_S2_XN))
		prot |= KVM_PGTABLE_PROT_X;

	return prot;
}

static bool stage2_pte_needs_update(kvm_pte_t old, kvm_pte_t new)
{
	if (!kvm_pte_valid(old) || !kvm_pte_valid(new))
		return true;

	return ((old ^ new) & (~KVM_PTE_LEAF_ATTR_S2_PERMS));
}

static bool stage2_pte_is_counted(kvm_pte_t pte)
{
	/*
	 * The refcount tracks valid entries as well as invalid entries if they
	 * encode ownership of a page to another entity than the page-table
	 * owner, whose id is 0.
	 */
	return !!pte;
}

static bool stage2_pte_is_locked(kvm_pte_t pte)
{
	return !kvm_pte_valid(pte) && (pte & KVM_INVALID_PTE_LOCKED);
}

static bool stage2_try_set_pte(const struct kvm_pgtable_visit_ctx *ctx, kvm_pte_t new)
{
	if (!kvm_pgtable_walk_shared(ctx)) {
		WRITE_ONCE(*ctx->ptep, new);
		return true;
	}

	return cmpxchg(ctx->ptep, ctx->old, new) == ctx->old;
}

/**
 * stage2_try_break_pte() - Invalidates a pte according to the
 *			    'break-before-make' requirements of the
 *			    architecture.
 *
 * @ctx: context of the visited pte.
 * @mmu: stage-2 mmu
 *
 * Returns: true if the pte was successfully broken.
 *
 * If the removed pte was valid, performs the necessary serialization and TLB
 * invalidation for the old value. For counted ptes, drops the reference count
 * on the containing table page.
 */
static bool stage2_try_break_pte(const struct kvm_pgtable_visit_ctx *ctx,
				 struct kvm_s2_mmu *mmu)
{
	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;

	if (stage2_pte_is_locked(ctx->old)) {
		/*
		 * Should never occur if this walker has exclusive access to the
		 * page tables.
		 */
		WARN_ON(!kvm_pgtable_walk_shared(ctx));
		return false;
	}

	if (!stage2_try_set_pte(ctx, KVM_INVALID_PTE_LOCKED))
		return false;

	if (!kvm_pgtable_walk_skip_bbm_tlbi(ctx)) {
		/*
		 * Perform the appropriate TLB invalidation based on the
		 * evicted pte value (if any).
		 */
		if (kvm_pte_table(ctx->old, ctx->level)) {
			u64 size = kvm_granule_size(ctx->level);
			u64 addr = ALIGN_DOWN(ctx->addr, size);

			kvm_tlb_flush_vmid_range(mmu, addr, size);
		} else if (kvm_pte_valid(ctx->old)) {
			kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, mmu,
				     ctx->addr, ctx->level);
		}
	}

	if (stage2_pte_is_counted(ctx->old))
		mm_ops->put_page(ctx->ptep);

	return true;
}

static void stage2_make_pte(const struct kvm_pgtable_visit_ctx *ctx, kvm_pte_t new)
{
	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;

	WARN_ON(!stage2_pte_is_locked(*ctx->ptep));

	if (stage2_pte_is_counted(new))
		mm_ops->get_page(ctx->ptep);

	smp_store_release(ctx->ptep, new);
}

static bool stage2_unmap_defer_tlb_flush(struct kvm_pgtable *pgt)
{
	/*
	 * If FEAT_TLBIRANGE is implemented, defer the individual
	 * TLB invalidations until the entire walk is finished, and
	 * then use the range-based TLBI instructions to do the
	 * invalidations. Condition deferred TLB invalidation on the
	 * system supporting FWB as the optimization is entirely
	 * pointless when the unmap walker needs to perform CMOs.
	 */
	return system_supports_tlb_range() && stage2_has_fwb(pgt);
}

static void stage2_unmap_put_pte(const struct kvm_pgtable_visit_ctx *ctx,
				struct kvm_s2_mmu *mmu,
				struct kvm_pgtable_mm_ops *mm_ops)
{
	struct kvm_pgtable *pgt = ctx->arg;

	/*
	 * Clear the existing PTE, and perform break-before-make if it was
	 * valid. Depending on the system support, defer the TLB maintenance
	 * for the same until the entire unmap walk is completed.
	 */
	if (kvm_pte_valid(ctx->old)) {
		kvm_clear_pte(ctx->ptep);

		if (kvm_pte_table(ctx->old, ctx->level)) {
			kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, mmu, ctx->addr,
				     TLBI_TTL_UNKNOWN);
		} else if (!stage2_unmap_defer_tlb_flush(pgt)) {
			kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, mmu, ctx->addr,
				     ctx->level);
		}
	}

	mm_ops->put_page(ctx->ptep);
}

static bool stage2_pte_cacheable(struct kvm_pgtable *pgt, kvm_pte_t pte)
{
	u64 memattr = pte & KVM_PTE_LEAF_ATTR_LO_S2_MEMATTR;
	return memattr == KVM_S2_MEMATTR(pgt, NORMAL);
}

static bool stage2_pte_executable(kvm_pte_t pte)
{
	return !(pte & KVM_PTE_LEAF_ATTR_HI_S2_XN);
}

static u64 stage2_map_walker_phys_addr(const struct kvm_pgtable_visit_ctx *ctx,
				       const struct stage2_map_data *data)
{
	u64 phys = data->phys;

	/*
	 * Stage-2 walks to update ownership data are communicated to the map
	 * walker using an invalid PA. Avoid offsetting an already invalid PA,
	 * which could overflow and make the address valid again.
	 */
	if (!kvm_phys_is_valid(phys))
		return phys;

	/*
	 * Otherwise, work out the correct PA based on how far the walk has
	 * gotten.
	 */
	return phys + (ctx->addr - ctx->start);
}

static bool stage2_leaf_mapping_allowed(const struct kvm_pgtable_visit_ctx *ctx,
					struct stage2_map_data *data)
{
	u64 phys = stage2_map_walker_phys_addr(ctx, data);

	if (data->force_pte && ctx->level < KVM_PGTABLE_LAST_LEVEL)
		return false;

	return kvm_block_mapping_supported(ctx, phys);
}

static int stage2_map_walker_try_leaf(const struct kvm_pgtable_visit_ctx *ctx,
				      struct stage2_map_data *data)
{
	kvm_pte_t new;
	u64 phys = stage2_map_walker_phys_addr(ctx, data);
	u64 granule = kvm_granule_size(ctx->level);
	struct kvm_pgtable *pgt = data->mmu->pgt;
	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;

	if (!stage2_leaf_mapping_allowed(ctx, data))
		return -E2BIG;

	if (kvm_phys_is_valid(phys))
		new = kvm_init_valid_leaf_pte(phys, data->attr, ctx->level);
	else
		new = kvm_init_invalid_leaf_owner(data->owner_id);

	/*
	 * Skip updating the PTE if we are trying to recreate the exact
	 * same mapping or only change the access permissions. Instead,
	 * the vCPU will exit one more time from guest if still needed
	 * and then go through the path of relaxing permissions.
	 */
	if (!stage2_pte_needs_update(ctx->old, new))
		return -EAGAIN;

	if (!stage2_try_break_pte(ctx, data->mmu))
		return -EAGAIN;

	/* Perform CMOs before installation of the guest stage-2 PTE */
	if (!kvm_pgtable_walk_skip_cmo(ctx) && mm_ops->dcache_clean_inval_poc &&
	    stage2_pte_cacheable(pgt, new))
		mm_ops->dcache_clean_inval_poc(kvm_pte_follow(new, mm_ops),
					       granule);

	if (!kvm_pgtable_walk_skip_cmo(ctx) && mm_ops->icache_inval_pou &&
	    stage2_pte_executable(new))
		mm_ops->icache_inval_pou(kvm_pte_follow(new, mm_ops), granule);

	stage2_make_pte(ctx, new);

	return 0;
}

static int stage2_map_walk_table_pre(const struct kvm_pgtable_visit_ctx *ctx,
				     struct stage2_map_data *data)
{
	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
	kvm_pte_t *childp = kvm_pte_follow(ctx->old, mm_ops);
	int ret;

	if (!stage2_leaf_mapping_allowed(ctx, data))
		return 0;

	ret = stage2_map_walker_try_leaf(ctx, data);
	if (ret)
		return ret;

	mm_ops->free_unlinked_table(childp, ctx->level);
	return 0;
}

static int stage2_map_walk_leaf(const struct kvm_pgtable_visit_ctx *ctx,
				struct stage2_map_data *data)
{
	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
	kvm_pte_t *childp, new;
	int ret;

	ret = stage2_map_walker_try_leaf(ctx, data);
	if (ret != -E2BIG)
		return ret;

	if (WARN_ON(ctx->level == KVM_PGTABLE_LAST_LEVEL))
		return -EINVAL;

	if (!data->memcache)
		return -ENOMEM;

	childp = mm_ops->zalloc_page(data->memcache);
	if (!childp)
		return -ENOMEM;

	if (!stage2_try_break_pte(ctx, data->mmu)) {
		mm_ops->put_page(childp);
		return -EAGAIN;
	}

	/*
	 * If we've run into an existing block mapping then replace it with
	 * a table. Accesses beyond 'end' that fall within the new table
	 * will be mapped lazily.
	 */
	new = kvm_init_table_pte(childp, mm_ops);
	stage2_make_pte(ctx, new);

	return 0;
}

/*
 * The TABLE_PRE callback runs for table entries on the way down, looking
 * for table entries which we could conceivably replace with a block entry
 * for this mapping. If it finds one it replaces the entry and calls
 * kvm_pgtable_mm_ops::free_unlinked_table() to tear down the detached table.
 *
 * Otherwise, the LEAF callback performs the mapping at the existing leaves
 * instead.
 */
static int stage2_map_walker(const struct kvm_pgtable_visit_ctx *ctx,
			     enum kvm_pgtable_walk_flags visit)
{
	struct stage2_map_data *data = ctx->arg;

	switch (visit) {
	case KVM_PGTABLE_WALK_TABLE_PRE:
		return stage2_map_walk_table_pre(ctx, data);
	case KVM_PGTABLE_WALK_LEAF:
		return stage2_map_walk_leaf(ctx, data);
	default:
		return -EINVAL;
	}
}

int kvm_pgtable_stage2_map(struct kvm_pgtable *pgt, u64 addr, u64 size,
			   u64 phys, enum kvm_pgtable_prot prot,
			   void *mc, enum kvm_pgtable_walk_flags flags)
{
	int ret;
	struct stage2_map_data map_data = {
		.phys		= ALIGN_DOWN(phys, PAGE_SIZE),
		.mmu		= pgt->mmu,
		.memcache	= mc,
		.force_pte	= pgt->force_pte_cb && pgt->force_pte_cb(addr, addr + size, prot),
	};
	struct kvm_pgtable_walker walker = {
		.cb		= stage2_map_walker,
		.flags		= flags |
				  KVM_PGTABLE_WALK_TABLE_PRE |
				  KVM_PGTABLE_WALK_LEAF,
		.arg		= &map_data,
	};

	if (WARN_ON((pgt->flags & KVM_PGTABLE_S2_IDMAP) && (addr != phys)))
		return -EINVAL;

	ret = stage2_set_prot_attr(pgt, prot, &map_data.attr);
	if (ret)
		return ret;

	ret = kvm_pgtable_walk(pgt, addr, size, &walker);
	dsb(ishst);
	return ret;
}

int kvm_pgtable_stage2_set_owner(struct kvm_pgtable *pgt, u64 addr, u64 size,
				 void *mc, u8 owner_id)
{
	int ret;
	struct stage2_map_data map_data = {
		.phys		= KVM_PHYS_INVALID,
		.mmu		= pgt->mmu,
		.memcache	= mc,
		.owner_id	= owner_id,
		.force_pte	= true,
	};
	struct kvm_pgtable_walker walker = {
		.cb		= stage2_map_walker,
		.flags		= KVM_PGTABLE_WALK_TABLE_PRE |
				  KVM_PGTABLE_WALK_LEAF,
		.arg		= &map_data,
	};

	if (owner_id > KVM_MAX_OWNER_ID)
		return -EINVAL;

	ret = kvm_pgtable_walk(pgt, addr, size, &walker);
	return ret;
}

static int stage2_unmap_walker(const struct kvm_pgtable_visit_ctx *ctx,
			       enum kvm_pgtable_walk_flags visit)
{
	struct kvm_pgtable *pgt = ctx->arg;
	struct kvm_s2_mmu *mmu = pgt->mmu;
	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
	kvm_pte_t *childp = NULL;
	bool need_flush = false;

	if (!kvm_pte_valid(ctx->old)) {
		if (stage2_pte_is_counted(ctx->old)) {
			kvm_clear_pte(ctx->ptep);
			mm_ops->put_page(ctx->ptep);
		}
		return 0;
	}

	if (kvm_pte_table(ctx->old, ctx->level)) {
		childp = kvm_pte_follow(ctx->old, mm_ops);

		if (mm_ops->page_count(childp) != 1)
			return 0;
	} else if (stage2_pte_cacheable(pgt, ctx->old)) {
		need_flush = !stage2_has_fwb(pgt);
	}

	/*
	 * This is similar to the map() path in that we unmap the entire
	 * block entry and rely on the remaining portions being faulted
	 * back lazily.
	 */
	stage2_unmap_put_pte(ctx, mmu, mm_ops);

	if (need_flush && mm_ops->dcache_clean_inval_poc)
		mm_ops->dcache_clean_inval_poc(kvm_pte_follow(ctx->old, mm_ops),
					       kvm_granule_size(ctx->level));

	if (childp)
		mm_ops->put_page(childp);

	return 0;
}

int kvm_pgtable_stage2_unmap(struct kvm_pgtable *pgt, u64 addr, u64 size)
{
	int ret;
	struct kvm_pgtable_walker walker = {
		.cb	= stage2_unmap_walker,
		.arg	= pgt,
		.flags	= KVM_PGTABLE_WALK_LEAF | KVM_PGTABLE_WALK_TABLE_POST,
	};

	ret = kvm_pgtable_walk(pgt, addr, size, &walker);
	if (stage2_unmap_defer_tlb_flush(pgt))
		/* Perform the deferred TLB invalidations */
		kvm_tlb_flush_vmid_range(pgt->mmu, addr, size);

	return ret;
}

struct stage2_attr_data {
	kvm_pte_t			attr_set;
	kvm_pte_t			attr_clr;
	kvm_pte_t			pte;
	s8				level;
};

static int stage2_attr_walker(const struct kvm_pgtable_visit_ctx *ctx,
			      enum kvm_pgtable_walk_flags visit)
{
	kvm_pte_t pte = ctx->old;
	struct stage2_attr_data *data = ctx->arg;
	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;

	if (!kvm_pte_valid(ctx->old))
		return -EAGAIN;

	data->level = ctx->level;
	data->pte = pte;
	pte &= ~data->attr_clr;
	pte |= data->attr_set;

	/*
	 * We may race with the CPU trying to set the access flag here,
	 * but worst-case the access flag update gets lost and will be
	 * set on the next access instead.
	 */
	if (data->pte != pte) {
		/*
		 * Invalidate instruction cache before updating the guest
		 * stage-2 PTE if we are going to add executable permission.
		 */
		if (mm_ops->icache_inval_pou &&
		    stage2_pte_executable(pte) && !stage2_pte_executable(ctx->old))
			mm_ops->icache_inval_pou(kvm_pte_follow(pte, mm_ops),
						  kvm_granule_size(ctx->level));

		if (!stage2_try_set_pte(ctx, pte))
			return -EAGAIN;
	}

	return 0;
}

static int stage2_update_leaf_attrs(struct kvm_pgtable *pgt, u64 addr,
				    u64 size, kvm_pte_t attr_set,
				    kvm_pte_t attr_clr, kvm_pte_t *orig_pte,
				    s8 *level, enum kvm_pgtable_walk_flags flags)
{
	int ret;
	kvm_pte_t attr_mask = KVM_PTE_LEAF_ATTR_LO | KVM_PTE_LEAF_ATTR_HI;
	struct stage2_attr_data data = {
		.attr_set	= attr_set & attr_mask,
		.attr_clr	= attr_clr & attr_mask,
	};
	struct kvm_pgtable_walker walker = {
		.cb		= stage2_attr_walker,
		.arg		= &data,
		.flags		= flags | KVM_PGTABLE_WALK_LEAF,
	};

	ret = kvm_pgtable_walk(pgt, addr, size, &walker);
	if (ret)
		return ret;

	if (orig_pte)
		*orig_pte = data.pte;

	if (level)
		*level = data.level;
	return 0;
}

int kvm_pgtable_stage2_wrprotect(struct kvm_pgtable *pgt, u64 addr, u64 size)
{
	return stage2_update_leaf_attrs(pgt, addr, size, 0,
					KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W,
					NULL, NULL, 0);
}

kvm_pte_t kvm_pgtable_stage2_mkyoung(struct kvm_pgtable *pgt, u64 addr)
{
	kvm_pte_t pte = 0;
	int ret;

	ret = stage2_update_leaf_attrs(pgt, addr, 1, KVM_PTE_LEAF_ATTR_LO_S2_AF, 0,
				       &pte, NULL,
				       KVM_PGTABLE_WALK_HANDLE_FAULT |
				       KVM_PGTABLE_WALK_SHARED);
	if (!ret)
		dsb(ishst);

	return pte;
}

struct stage2_age_data {
	bool	mkold;
	bool	young;
};

static int stage2_age_walker(const struct kvm_pgtable_visit_ctx *ctx,
			     enum kvm_pgtable_walk_flags visit)
{
	kvm_pte_t new = ctx->old & ~KVM_PTE_LEAF_ATTR_LO_S2_AF;
	struct stage2_age_data *data = ctx->arg;

	if (!kvm_pte_valid(ctx->old) || new == ctx->old)
		return 0;

	data->young = true;

	/*
	 * stage2_age_walker() is always called while holding the MMU lock for
	 * write, so this will always succeed. Nonetheless, this deliberately
	 * follows the race detection pattern of the other stage-2 walkers in
	 * case the locking mechanics of the MMU notifiers is ever changed.
	 */
	if (data->mkold && !stage2_try_set_pte(ctx, new))
		return -EAGAIN;

	/*
	 * "But where's the TLBI?!", you scream.
	 * "Over in the core code", I sigh.
	 *
	 * See the '->clear_flush_young()' callback on the KVM mmu notifier.
	 */
	return 0;
}

bool kvm_pgtable_stage2_test_clear_young(struct kvm_pgtable *pgt, u64 addr,
					 u64 size, bool mkold)
{
	struct stage2_age_data data = {
		.mkold		= mkold,
	};
	struct kvm_pgtable_walker walker = {
		.cb		= stage2_age_walker,
		.arg		= &data,
		.flags		= KVM_PGTABLE_WALK_LEAF,
	};

	WARN_ON(kvm_pgtable_walk(pgt, addr, size, &walker));
	return data.young;
}

int kvm_pgtable_stage2_relax_perms(struct kvm_pgtable *pgt, u64 addr,
				   enum kvm_pgtable_prot prot)
{
	int ret;
	s8 level;
	kvm_pte_t set = 0, clr = 0;

	if (prot & KVM_PTE_LEAF_ATTR_HI_SW)
		return -EINVAL;

	if (prot & KVM_PGTABLE_PROT_R)
		set |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R;

	if (prot & KVM_PGTABLE_PROT_W)
		set |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W;

	if (prot & KVM_PGTABLE_PROT_X)
		clr |= KVM_PTE_LEAF_ATTR_HI_S2_XN;

	ret = stage2_update_leaf_attrs(pgt, addr, 1, set, clr, NULL, &level,
				       KVM_PGTABLE_WALK_HANDLE_FAULT |
				       KVM_PGTABLE_WALK_SHARED);
	if (!ret || ret == -EAGAIN)
		kvm_call_hyp(__kvm_tlb_flush_vmid_ipa_nsh, pgt->mmu, addr, level);
	return ret;
}

static int stage2_flush_walker(const struct kvm_pgtable_visit_ctx *ctx,
			       enum kvm_pgtable_walk_flags visit)
{
	struct kvm_pgtable *pgt = ctx->arg;
	struct kvm_pgtable_mm_ops *mm_ops = pgt->mm_ops;

	if (!kvm_pte_valid(ctx->old) || !stage2_pte_cacheable(pgt, ctx->old))
		return 0;

	if (mm_ops->dcache_clean_inval_poc)
		mm_ops->dcache_clean_inval_poc(kvm_pte_follow(ctx->old, mm_ops),
					       kvm_granule_size(ctx->level));
	return 0;
}

int kvm_pgtable_stage2_flush(struct kvm_pgtable *pgt, u64 addr, u64 size)
{
	struct kvm_pgtable_walker walker = {
		.cb	= stage2_flush_walker,
		.flags	= KVM_PGTABLE_WALK_LEAF,
		.arg	= pgt,
	};

	if (stage2_has_fwb(pgt))
		return 0;

	return kvm_pgtable_walk(pgt, addr, size, &walker);
}

kvm_pte_t *kvm_pgtable_stage2_create_unlinked(struct kvm_pgtable *pgt,
					      u64 phys, s8 level,
					      enum kvm_pgtable_prot prot,
					      void *mc, bool force_pte)
{
	struct stage2_map_data map_data = {
		.phys		= phys,
		.mmu		= pgt->mmu,
		.memcache	= mc,
		.force_pte	= force_pte,
	};
	struct kvm_pgtable_walker walker = {
		.cb		= stage2_map_walker,
		.flags		= KVM_PGTABLE_WALK_LEAF |
				  KVM_PGTABLE_WALK_SKIP_BBM_TLBI |
				  KVM_PGTABLE_WALK_SKIP_CMO,
		.arg		= &map_data,
	};
	/*
	 * The input address (.addr) is irrelevant for walking an
	 * unlinked table. Construct an ambiguous IA range to map
	 * kvm_granule_size(level) worth of memory.
	 */
	struct kvm_pgtable_walk_data data = {
		.walker	= &walker,
		.addr	= 0,
		.end	= kvm_granule_size(level),
	};
	struct kvm_pgtable_mm_ops *mm_ops = pgt->mm_ops;
	kvm_pte_t *pgtable;
	int ret;

	if (!IS_ALIGNED(phys, kvm_granule_size(level)))
		return ERR_PTR(-EINVAL);

	ret = stage2_set_prot_attr(pgt, prot, &map_data.attr);
	if (ret)
		return ERR_PTR(ret);

	pgtable = mm_ops->zalloc_page(mc);
	if (!pgtable)
		return ERR_PTR(-ENOMEM);

	ret = __kvm_pgtable_walk(&data, mm_ops, (kvm_pteref_t)pgtable,
				 level + 1);
	if (ret) {
		kvm_pgtable_stage2_free_unlinked(mm_ops, pgtable, level);
		return ERR_PTR(ret);
	}

	return pgtable;
}

/*
 * Get the number of page-tables needed to replace a block with a
 * fully populated tree up to the PTE entries. Note that @level is
 * interpreted as in "level @level entry".
 */
static int stage2_block_get_nr_page_tables(s8 level)
{
	switch (level) {
	case 1:
		return PTRS_PER_PTE + 1;
	case 2:
		return 1;
	case 3:
		return 0;
	default:
		WARN_ON_ONCE(level < KVM_PGTABLE_MIN_BLOCK_LEVEL ||
			     level > KVM_PGTABLE_LAST_LEVEL);
		return -EINVAL;
	};
}

static int stage2_split_walker(const struct kvm_pgtable_visit_ctx *ctx,
			       enum kvm_pgtable_walk_flags visit)
{
	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
	struct kvm_mmu_memory_cache *mc = ctx->arg;
	struct kvm_s2_mmu *mmu;
	kvm_pte_t pte = ctx->old, new, *childp;
	enum kvm_pgtable_prot prot;
	s8 level = ctx->level;
	bool force_pte;
	int nr_pages;
	u64 phys;

	/* No huge-pages exist at the last level */
	if (level == KVM_PGTABLE_LAST_LEVEL)
		return 0;

	/* We only split valid block mappings */
	if (!kvm_pte_valid(pte))
		return 0;

	nr_pages = stage2_block_get_nr_page_tables(level);
	if (nr_pages < 0)
		return nr_pages;

	if (mc->nobjs >= nr_pages) {
		/* Build a tree mapped down to the PTE granularity. */
		force_pte = true;
	} else {
		/*
		 * Don't force PTEs, so create_unlinked() below does
		 * not populate the tree up to the PTE level. The
		 * consequence is that the call will require a single
		 * page of level 2 entries at level 1, or a single
		 * page of PTEs at level 2. If we are at level 1, the
		 * PTEs will be created recursively.
		 */
		force_pte = false;
		nr_pages = 1;
	}

	if (mc->nobjs < nr_pages)
		return -ENOMEM;

	mmu = container_of(mc, struct kvm_s2_mmu, split_page_cache);
	phys = kvm_pte_to_phys(pte);
	prot = kvm_pgtable_stage2_pte_prot(pte);

	childp = kvm_pgtable_stage2_create_unlinked(mmu->pgt, phys,
						    level, prot, mc, force_pte);
	if (IS_ERR(childp))
		return PTR_ERR(childp);

	if (!stage2_try_break_pte(ctx, mmu)) {
		kvm_pgtable_stage2_free_unlinked(mm_ops, childp, level);
		return -EAGAIN;
	}

	/*
	 * Note, the contents of the page table are guaranteed to be made
	 * visible before the new PTE is assigned because stage2_make_pte()
	 * writes the PTE using smp_store_release().
	 */
	new = kvm_init_table_pte(childp, mm_ops);
	stage2_make_pte(ctx, new);
	dsb(ishst);
	return 0;
}

int kvm_pgtable_stage2_split(struct kvm_pgtable *pgt, u64 addr, u64 size,
			     struct kvm_mmu_memory_cache *mc)
{
	struct kvm_pgtable_walker walker = {
		.cb	= stage2_split_walker,
		.flags	= KVM_PGTABLE_WALK_LEAF,
		.arg	= mc,
	};

	return kvm_pgtable_walk(pgt, addr, size, &walker);
}

int __kvm_pgtable_stage2_init(struct kvm_pgtable *pgt, struct kvm_s2_mmu *mmu,
			      struct kvm_pgtable_mm_ops *mm_ops,
			      enum kvm_pgtable_stage2_flags flags,
			      kvm_pgtable_force_pte_cb_t force_pte_cb)
{
	size_t pgd_sz;
	u64 vtcr = mmu->vtcr;
	u32 ia_bits = VTCR_EL2_IPA(vtcr);
	u32 sl0 = FIELD_GET(VTCR_EL2_SL0_MASK, vtcr);
	s8 start_level = VTCR_EL2_TGRAN_SL0_BASE - sl0;

	pgd_sz = kvm_pgd_pages(ia_bits, start_level) * PAGE_SIZE;
	pgt->pgd = (kvm_pteref_t)mm_ops->zalloc_pages_exact(pgd_sz);
	if (!pgt->pgd)
		return -ENOMEM;

	pgt->ia_bits		= ia_bits;
	pgt->start_level	= start_level;
	pgt->mm_ops		= mm_ops;
	pgt->mmu		= mmu;
	pgt->flags		= flags;
	pgt->force_pte_cb	= force_pte_cb;

	/* Ensure zeroed PGD pages are visible to the hardware walker */
	dsb(ishst);
	return 0;
}

size_t kvm_pgtable_stage2_pgd_size(u64 vtcr)
{
	u32 ia_bits = VTCR_EL2_IPA(vtcr);
	u32 sl0 = FIELD_GET(VTCR_EL2_SL0_MASK, vtcr);
	s8 start_level = VTCR_EL2_TGRAN_SL0_BASE - sl0;

	return kvm_pgd_pages(ia_bits, start_level) * PAGE_SIZE;
}

static int stage2_free_walker(const struct kvm_pgtable_visit_ctx *ctx,
			      enum kvm_pgtable_walk_flags visit)
{
	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;

	if (!stage2_pte_is_counted(ctx->old))
		return 0;

	mm_ops->put_page(ctx->ptep);

	if (kvm_pte_table(ctx->old, ctx->level))
		mm_ops->put_page(kvm_pte_follow(ctx->old, mm_ops));

	return 0;
}

void kvm_pgtable_stage2_destroy(struct kvm_pgtable *pgt)
{
	size_t pgd_sz;
	struct kvm_pgtable_walker walker = {
		.cb	= stage2_free_walker,
		.flags	= KVM_PGTABLE_WALK_LEAF |
			  KVM_PGTABLE_WALK_TABLE_POST,
	};

	WARN_ON(kvm_pgtable_walk(pgt, 0, BIT(pgt->ia_bits), &walker));
	pgd_sz = kvm_pgd_pages(pgt->ia_bits, pgt->start_level) * PAGE_SIZE;
	pgt->mm_ops->free_pages_exact(kvm_dereference_pteref(&walker, pgt->pgd), pgd_sz);
	pgt->pgd = NULL;
}

void kvm_pgtable_stage2_free_unlinked(struct kvm_pgtable_mm_ops *mm_ops, void *pgtable, s8 level)
{
	kvm_pteref_t ptep = (kvm_pteref_t)pgtable;
	struct kvm_pgtable_walker walker = {
		.cb	= stage2_free_walker,
		.flags	= KVM_PGTABLE_WALK_LEAF |
			  KVM_PGTABLE_WALK_TABLE_POST,
	};
	struct kvm_pgtable_walk_data data = {
		.walker	= &walker,

		/*
		 * At this point the IPA really doesn't matter, as the page
		 * table being traversed has already been removed from the stage
		 * 2. Set an appropriate range to cover the entire page table.
		 */
		.addr	= 0,
		.end	= kvm_granule_size(level),
	};

	WARN_ON(__kvm_pgtable_walk(&data, mm_ops, ptep, level + 1));

	WARN_ON(mm_ops->page_count(pgtable) != 1);
	mm_ops->put_page(pgtable);
}